
RNAcontext: A New Method for Learning the Sequence
and Structure Binding Preferences of RNA-Binding
Proteins
Hilal Kazan1, Debashish Ray2, Esther T. Chan3, Timothy R. Hughes2,3,4, Quaid Morris1,2,3,4*

1 Department of Computer Science, University of Toronto, Toronto, Ontario, Canada, 2 Banting and Best Department of Medical Research, University of Toronto, Toronto,

Ontario, Canada, 3 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada, 4 Donnelley Centre for Cellular and Biomolecular Research,

University of Toronto, Toronto, Ontario, Canada

Abstract

Metazoan genomes encode hundreds of RNA-binding proteins (RBPs). These proteins regulate post-transcriptional gene
expression and have critical roles in numerous cellular processes including mRNA splicing, export, stability and translation.
Despite their ubiquity and importance, the binding preferences for most RBPs are not well characterized. In vitro and in vivo
studies, using affinity selection-based approaches, have successfully identified RNA sequence associated with specific RBPs;
however, it is difficult to infer RBP sequence and structural preferences without specifically designed motif finding methods.
In this study, we introduce a new motif-finding method, RNAcontext, designed to elucidate RBP-specific sequence and
structural preferences with greater accuracy than existing approaches. We evaluated RNAcontext on recently published in
vitro and in vivo RNA affinity selected data and demonstrate that RNAcontext identifies known binding preferences for
several control proteins including HuR, PTB, and Vts1p and predicts new RNA structure preferences for SF2/ASF, RBM4,
FUSIP1 and SLM2. The predicted preferences for SF2/ASF are consistent with its recently reported in vivo binding sites.
RNAcontext is an accurate and efficient motif finding method ideally suited for using large-scale RNA-binding affinity
datasets to determine the relative binding preferences of RBPs for a wide range of RNA sequences and structures.
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Introduction

RBPs act in the post-transcriptional regulation (PTR) of gene

expression by binding to target RNAs to control splicing, stability,

localization and translation. Recent draft networks of RBP-

transcript physical interaction in yeast [1], fruit flies [2], and

humans [3] reveal a complex and combinatorial pattern of RBP

targeting and supports an RNA regulon model [4] in which cis-

regulatory transcript sequence dictates the post-transcriptional fate

of an mRNA at multiple, distinct stages of regulation. Deciphering

this operon code as well as the role of individual RBPs in post-

transcriptional regulation requires the detailed characterization of

the binding preferences of RBPs.

We have recently introduced the RNAcompete assay [5], a

microarray-based in vitro method to estimate the binding affinity of

selected RBPs to a defined population of short RNA sequences.

RNAcompete, along with in vivo methods such as RIP-seq [6] and

CLIP-seq [7], can be used to determine binding preferences of

individual RBPs for a large number of RNA sequences. Motif

representation generated from these data can be used to scan

mRNA transcripts to identify potential RBP binding sites.

However, this step can prove challenging because many RBPs

show a preference for both specific sequences and secondary

structure contexts in their binding sites [8–12].

Despite these structural preferences, motif finding algorithms

that ignore RNA secondary structure work surprisingly well for

some RBPs. This approach has been successful for both in vitro and

in vivo binding data [1,2,5,13,14]. For example, structure-naive

motif finding applied to mRNAs targeted by yeast proteins Puf3p

and Puf4p recover sequence preferences confirmed by crystal

structures of the RBP-RNA complexes [15,16]; and motif models

for YB-1, SF2 and PTB fit to in vitro binding data from the

RNAcompete assay predict their in vivo targets with high accuracy

[5].

However, this approach can give misleading results when an

RBP has non-trivial structural preferences. For example, Vts1p is a

yeast RBP that preferentially binds CNGG loop sequences within

RNA hairpins [17], however, this binding preference can be

difficult to detect without consideration of this structural

preference (e.g., [1]). RBP motif finding can made more reliable

by training structure-naive algorithms only on RNA sequence

likely to be in the preferred context [9,18]. For example, Foat and

Stormo [18] could reliably extract the Vts1p sequence binding

preferences from in vivo binding data by using only loop sequences

(from likely hairpin loops) to train the MatrixREDUCE[19] motif

finding algorithm. Similarly, the MEMERIS [9] algorithm adapts

the MEME [20] motif finding algorithm to search for RNA motifs

enriched in single-stranded regions by assessing a prior on each
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word according to its structural accessibility. MEMERIS predicts

binding sites more accurately than MEME for a number of

proteins, including the mammalian stem-loop binding RBP U1A.

However, applying this strategy only allows a single, pre-defined

structural preference to be queried. Ideally, an RBP motif finding

method should consider multiple possible structural contexts

simultaneously, and detect the relative preferences of a particular

RBP for each.

Covariance models (CMs) [21] are RNA motif models often

used for modeling families of ncRNAs (e.g., [22]) and have the

capacity, in theory, to represent both the sequence and (arbitrary)

structure preferences of RBPs. However, CMs have a reported

tendency to overpredict secondary structure [23]. Indeed, recent

CM-based motif models of Puf3p, Puf4p, and HuR [24,25] predict

they preferentially bind RNA hairpins and contradict structural, in

vitro and in vivo evidence [5,12,26,27], that they bind unstructured

ssRNA.

We present a new strategy for modeling RBP binding sites that

learns both the sequence and structure binding preferences of an

RBPs. Our method assumes that the primary role of RNA

secondary structure in RBP binding is to establish a structural

context (e.g., loop or unstructured) for the RNA sequence

recognized by the RBP. As such, we annotate each nucleotide in

terms of its secondary structure context (e.g., paired, in a hairpin

loop or bulge). Cognizant of the fact that a given RNA sequence

can have multiple, distinct stable secondary structures, this

annotation takes the form of a distribution over all its possible

contexts. These distributions are estimated using computational

models of RNA folding. Our new model can be discriminatively

trained (as [19,28,29]) thus facilitating its use with either binding

affinity data or sets of bound sequences.

We apply RNAcontext to several RNA-binding affinity datasets,

demonstrating that it can infer the RBP structure and sequence-

binding preferences with greater accuracy than other motif-finding

methods. RNAcontext recovers previously reported sequence and

structure binding preferences for well-charactered RBPs including

Vts1p, HuR, and PTB and predicts new structure binding

preferences for FUSIP1, SF2/ASF, SLM2, and RBM4.

Methods

We now present our approach for discovering RNA sequence

and structure binding preferences of RBPs. This section is

organized as follows: we first describe how we annotate an RNA

sequence in terms of its structural context. Then, we discuss the

details and the mathematical formulation of our motif model.

Lastly, we describe our procedure for fitting the RNAcontext motif

model. Because part of our model is derived from prior work on

DNA motif finding, we summarize this work in Protocol S1.

Source code in C++ for RNAcontext is available online at http://

morrislab.med.utoronto.ca/software.

Structural annotation of RNA sequences
We use computational algorithms to predict RNA secondary

structures though our algorithm can use experimentally deter-

mined RNA secondary structures when they are available. Instead

of focusing on the single minimum free energy structure which is

often not representative of the full ensemble of possible structures

[30], we consider the ensemble of secondary structures that the

RNA can form.

In the experiments reported here, we used SFOLD [30] to

estimate the marginal distribution at each nucleotide over

structural contexts (e.g. paired, unpaired, hairpin loop) for each

position of the sequence by sampling a large number of structures

for the sequence according to the Boltzmann distribution. We

annotated each base in each structure using our context

annotation alphabet (described below) and then we set the

structural context distribution (hereafter called the annotation

profile) to be the empirical annotation frequencies for that base

across these samples. In all experiments described herein we used

1,000 samples.

Our motif model can use any annotation alphabet. However, in

this manuscript, we only use the alphabet P, L, U, M indicating

that the nucleotide is paired (P), in a hairpin loop (L), or in an

unstructured (or external) region (U). The last annotation, M,

stands for miscellaneous because we combine the remaining

unpaired contexts (i.e., the nucleotide is in a bulge, internal loop or

multiloop). This group of structural contexts are expressive enough

to distinguish most known RBP structure preferences.

Motif model
Figure 1 shows an overview of our method. A set of sequences

together with SFOLD predicted structure annotation profiles serve

as input to the model. Each input RNA molecule is scored using

the sequence and structure parameters. Formally, let

S~fs1,s2, . . . ,sNg represent the input set of sequences and let

P~fp1,p2, . . . ,pNg be a set of real-valued matrices that represent

the annotation profiles of the corresponding sequences. We use A

to represent the alphabet which is composed of the structure

features and associate each annotation in A with one of the rows of

pi. The columns of pi correspond to the positions in sequence si

and are discrete probability distributions over the annotations in

the alphabet A.

Let H~fW,C,bs,bp,Kg represent the model parameters where

K is the width of the binding site, W is a position weight matrix

(PWM) of sequence features with dimensions 4|K , C is a vector

of structure annotation parameters with one element for each

letter in the alphabet A. For instance if A = fP, L, M, Ug then C
will consist of parameters (CP, CL, CM , CU ) for the structure

annotations P, L, M and U , respectively. Lastly, bs and bp stands

for the bias terms in sequence affinity model and structural context

model respectively.

Author Summary

Many disease-associated mutations do not change the
protein sequence of genes; instead they change the
instructions on how a gene’s mRNA transcript should be
processed. Translating these instructions allows us to
better understand the connection between these muta-
tions and disease. RNA-binding proteins (RBP) perform this
translation by recognizing particular ‘‘phrases’’ that occupy
short regions of the transcript. Recognition occurs by the
binding of the RBP to the phrase. The set of phrases bound
by a particular RBP is defined by the RNA base content of
the binding site as well as the 3D configuration of these
bases. Because it is impossible to assess RBP binding to
every possible phrase, we have developed a mathematical
model called RNAcontext that can be trained by measur-
ing RBP binding strength on one set of phrases. Once
trained, this model can then be used to accurately predict
binding strength to any possible phrase. Compared to
previously described methods, RNAcontext learns a more
precise description of the 3D shapes of binding sites. This
precision translates into more accurate generalization of
RBP binding preferences to new phrases and allows us to
make new discoveries about the binding preferences of
well-studied RBPs.

RNAcontext
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We use H to assign a score, f (s,p,H), to a sequence s and its

corresponding annotation profile p. For an RBP with a binding

site of width K , following [31], we define f (s,p,H) as the

probability that at least one of its subsequences of length K (which

we call K-mers) is bound by the RBP, that is:

f (s,p,H)~1{ P
DsD{K

t~0
1{N(stz1:tzK ,ptz1:tzK ,H) ð1Þ

where N(stz1:tzK ,ptz1:tzK ,H) is an estimate of the probability

that the K-mer with base content stz1:tzK and with structural

context defined by the probability profile matrix ptz1:tzK is

bound. Here, stz1:tzK indicates the subsequence of s between

(tz1)-th element and (tzK)-th element, inclusive, and ptz1:tzK

is a matrix whose columns are the annotation distributions for

each of the bases between (tz1)-th and (tzK)-th position. We set

N(stz1:tzK ,ptz1,tzK ,H) to be the product between a term that

depends only its base content, Nseq(stz1:tzK ,H), and one that

depends only upon its structural context C(ptz1,tzK ,H), i.e.:

N(stz1:tzK ,ptz1:tzK ,H)~Nseq(stz1:tzK ,H)|C(ptz1:tzK ,H): ð2Þ

We interpret the term Nseq(s,H) as an estimate of the probability

that the RBP will bind stz1:tzk in the ideal structural context. We

use a standard biophysical model [28,31,32] to define Nseq(s,H)
(please see Protocol S1 for more details on this model):

Nseq(s,H)~s(bsz
XK

k~1

Wsk ,k) ð3Þ

where s(x)~(1z exp ({x)){1 is the well-known logistic func-

tion. The logistic function takes value s(0)~0:5 at x~0 where it is

an approximately linear function of x, but it quickly saturates

toward 0 for negative x and 1 for positive x. We also model the

structural context term using a logistic function of the sum of the

structure parameters weighted by corresponding profile values

plus a bias term bp:

C(p,H)~s(bpz
X

a[A

Ca|
XK

k~1

pa,k) ð4Þ

where pa,k represents the probability that the base at position k of

s has structural annotation a. In a preferred structural context, as

represented by an annotation a associated with large positive

values of Ca, the score N(s,p,H) for a K-mer s approximately

equals Nseq(s,H) and is thus determined by the base content s.

Whereas in a highly disfavored structural context, as represented

by highly negative values of Ca, C(p,H)&0 and therefore the

score N(s,p,H)&0 regardless of s because Nseq(s,H) is bounded

above by 1 for all s. So, the context term licenses binding in

favored structured contexts.

In the following section, we describe how to estimate the

parameters of our motif model from binding data. However, in

theory, our motif model has the flexibility to represent many

different modes of RBP binding. For example, the binding

preferences of RBPs, like HuR and Vts1p, that bind their

preferred sequences within a specific structural context, unstruc-

tured (U) [33] and hairpin (H) [17] respectively, can be

represented by setting W to match their sequence binding

preferences and C to have negative elements except for the

elements of C that corresponds to their preferred structural context

(either CU or CH respectively). The binding preferences of RBPs,

like U1A, that have multiple preferred contexts (e.g., hairpin loops

[34] or unstructured ssRNA [35]) can be captured by setting CH

and CU to large positive values. RBPs, like Staufen, that bind

dsRNA without obvious sequence preferences [36], can be

Figure 1. Overview of RNAcontext method: the input, parameters and motif model. The input to RNAcontext consists of a set of
sequences together with their associated structure annotation profiles (estimated using SFOLD) and RNA-binding affinity estimates for the given RBP.
The motif model has sequence parameters (W) and structure parameters (C) where the former describes the inferred base preferences (as a PWM) and
the latter describes the relative structural preferences of the RBP to different structural contexts. Shown is a toy example, where the sequences with
highest binding affinities have AUA or CUA in hairpin loop context and the sequences with lowest binding affinities either lack the sequence motif or
contain the sequence motif in another structural context. By learning a motif model that predicts the input affinities, RNAcontext would infer the
sequence and RNA structure preferences as shown on the right part of the figure.
doi:10.1371/journal.pcbi.1000832.g001

RNAcontext
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represented by setting the elements of W to constant values, and

setting CP to a large positive value. Similarly, RBPs without strong

structure preferences can be represented by setting the elements of

C to zero and setting bp to a large positive value. Our model thus

extends previous efforts that model RBP binding preferences [8]

by associating each RBP with a single preferred structured context

which is required for binding.

In the next section, we describe how we can estimate the

sequence and structure preferences of new RBPs by training our

model using RBP binding or RBP binding affinity data for short

RNA sequences.

Parameter estimation
We learn H by using our model to attempt to reproduce the

observed affinity data R~fr1,r2, . . . ,rNg given the associated

sequences S~fs1,s2, . . . ,sNg. In particular, we model the affinity

ri of a sequence si as a linear function of the sequence score

f (si,H) with unknown slope a and y-intercept b and search for

settings of H, a, and b that minimize the sum of the squared

differences between the measured affinity ri and our predicted

affinities r̂ri~a|f (si,H)zb. When we only know whether or not a

given sequence is bound we use ri~1 for all bound sequences and

ri~{1 for sequences not bound. This formulation leads to the

following least squares cost function, E(H,a,b), that we attempt to

minimize with respect to a, b, and H using the L-BFGS method

[37]:

E(H,a,b)~
XN

i

(ri{r̂ri)2zd(
X

Wk[W

(Wk)2z
X

Ck[C

(Ck)2) ð5Þ

Here, we have added a regularization term scaled by a small

constant d to avoid indeterminancy thus ensuring a unique global

minimum. We use the same value of this constant in all

experiments. We use the bound constraints feature of the L-

BFGS-B package to constrain a to take positive values so that the

estimated affinity increases as a function of the sequence score.

The cost function optimized by RNAcontext is multimodal, so

different initializations can generate different results. For the

experiments reported here, we used ten different initialization for

each motif width. For motif lengths, Kz1, longer than the

minimum length, two of these initial settings are generated by

taking the optimal W matrix learned for K and adding a column of

zeros to its left and right sides, respectively. The elements of W
matrix for the other initializations are randomly sampled

uniformly between 20.05 and 0.05. In all cases, the other

parameters (C, bs, bp, a, b) are randomly sampled uniformly

between 20.05 and 0.05.

Results

Dataset
We evaluated our motif model on RNAcompete-derived datasets

[5] comprised of the measured binding preferences of nine RBPs

(i.e., HuR, Vts1p, PTB, FUSIP1, U1A, SF2/ASF, SLM2, RBM4

and YB1) to a pool of 213,130 unique short (29- to 38-nt) RNA

sequences (see GEO record GSE15769 and/or Agilent array

design: AMADID # 022053 for the array design and data).

RNAcompete estimates an RBP’s binding affinity for each sequence

in an RNA pool based on the relative enrichment of that RNA

sequence in the bound fraction versus the total RNA pool (as

measured by transformed microarray intensity ratios).

The RNA pool can be divided into two separate sets, Set A and

Set B, that each individually satisfy the following constraints: (i)

each loop of length 3 to 7 (inclusive) is represented on at least one

sequence flanked by RNA stems of 10 bases; and (ii) a population

of ‘‘weakly structured RNAs’’ wherein each possible 7-mer is

represented in at least 64 different sequences that have high

folding free energy, and therefore are linear or form weak

secondary structures. We call the group satisfying the first

constraint the stem-loop sequences. This group also contains 60%

of the possible length eight loops. We call the sequences satisfying

the second constraint the weakly structured sequences. There is no

overlap between the stem-loop and weakly structured sequences.

So in summary, there are two different groups of stem-loops,

one in Set A and one in Set B, and similarly, two different groups

of weakly structured sequences. It is important to note two things.

First, though we attempted to design these sequences to be linear

or hairpins, there are many unintended structures represented in

the pool. For example, some of the sequences contain bulge or

internal loops and some of the weakly structured sequences

contain stem-loops. Second, no two sequences within the pool

share a common subsequence more than 12 nt long. The design

and properties of these sequences are described in greater detail in

[5].

The division of the RNA sequence pool into Set A and Set B

provides a natural strategy for evaluating our motif models using

two-fold cross-validation: we train our algorithm on one of the two

sets and test its predictive power on the other set. This strategy

provides us with two independent measurements of performance

on non-overlapping training sets. Table S1 contains more

information on the sizes and compositions of the sequences used

for training and testing. The categorizations ‘‘Positive’’, ‘‘Nega-

tive’’, and ‘‘Other’’ that appear in this table are described below.

Note due to stringent RNAcompete quality controls, some affinity

data is missing for some of the sequences, so the numbers in the

table do not add up to 213,130 for each RBP.

Justification of choice of motif models for comparison
We evaluated RNAcontext against two other motif finding

methods: MEMERIS [9] and MatrixREDUCE [19]. MEMERIS

and RNAcontext use similar approaches to model the structural

context of an RNA binding site except that MEMERIS only

models a single structural context where RNAcontext considers

multiple contexts simultaneously. In contrast, MatrixREDUCE

does not consider the structural context of RBP binding sites and

therefore can help determine the value of considering structural

context in RNA motif finding. Additionally, MatrixREDUCE

outperforms many standard DNA motif finding algorithms on a

similar experimental assay [38] and therefore provides a strong

algorithm to benchmark to compare RNAcontext and MEMERIS

against. Also, like RNAcontext, MatrixREDUCE learns its motif

model by trying to predict RNA sequence affinity whereas

MEMERIS searches for motif models enriched in a set of bound

sequences.

Fitting motif models
In this subsection we describe our protocol for using the training

data to fit the MEMERIS, MatrixREDUCE and RNAcontext

motif models. Note that for all three methods, we fit all

parameters, including those of the motif models and any free

parameters (like motif width), using the training data. One of the

free parameters that we consider for each method is whether it is

better to train their motif model on the whole training set, or a

defined subset of the training set. All of the free parameters that we

consider for each method are described below. For every setting of

the free parameters, we fit one motif model. The ‘‘best’’ motif

model for each method was selected based on its ability to

RNAcontext

PLoS Computational Biology | www.ploscompbiol.org 4 July 2010 | Volume 6 | Issue 7 | e1000832



correctly classify ‘‘Positive’’ and ‘‘Negative’’ RNA sequences in the

training set, as defined in the next paragraph. The final result of

training is a single motif model for each method that we then

evaluate on the test set.

The parameters of some motif models are fit using subsets of the

training set because: (i) MatrixREDUCE does not model RNA

secondary structure and it is possible that its performance would

degrade when trained on stem-loop sequences (most of whose

bases are paired); and (ii) MEMERIS takes as input a set of

‘‘bound’’ sequences that contain RBP binding sites. For MEM-

ERIS, ‘‘bound’’ sequences are selected using a manual cutoff that

captures the right tail of the distribution of the RNAcompete

affinity estimates. We used a different cutoff for each RBP and

each training set and the number of bound sequences ranged

between 234 and 792 for the RBPs analyzed. Additionally, we

used these bound sequence as the ‘‘Positive’’ sequences for Area

Under the Precision-Recall Curve (AUC-PR). For the ‘‘Negative’’

sequences required by the AUC-PR calculation, we used those

with estimated affinities below the median affinity of the training

set. Any sequence not deemed a ‘‘Positive’’ or ‘‘Negative’’ is

labeled as ‘‘Other’’ in Table S1. We score each motif model’s

performance by using it to estimate RNA-binding affinities for the

‘‘Positive’’ and ‘‘Negative’’ sequences and then evaluating

classification accuracy using the AUC-PR. Because each algorithm

models RBP binding preferences in a slightly different manner, in

this section, we also describe how we estimate RNA-binding

affinity for each sequence using the motif models for each

algorithm.

For each method, we trained two sets of motif models. One set

of models was fit using the full training set which consists of all

RNA sequences in the training set for MatrixREDUCE and

RNAcontext and all bound RNA sequences in the training set for

MEMERIS. The other set of models was fit using only the weakly

structured sequences in the training set (i.e., removing the

stem-loops).

We consider a wide range of combinations of free parameters

for MEMERIS. In particular, we tried all possible combinations of

the following free parameter choices: the EF and PU options for

measurement of single-strandedness; OOPS, ZOOPS and TCM

options for the expected number of motifs per sequence (see

Protocol S1 for details on these options); motif lengths between 4

and 12 nts (inclusive); different values for the pseudocount

parameter (i.e. 0.1, 1 and 3); and selecting the training set using

a permissive cutoff (i.e., the bound sequences) or a stringent cutoff

(i.e., the top half of bound sequences). The final option means that

we consider four different subsets of the training set for each

setting of the other free parameters (i.e. permissive/full, stringent/

full, permissive/weak, stringent/weak). In total, we fit 648 different

motif models for MEMERIS for each training set. We estimate

affinity for each RNA sequence using a MEMERIS Position

Frequency Matrix (PFM) motif model by following an approach

similar to that used by MotifRegressor [39]. Namely, we

calculated the foreground probability of a K-mer under the

product-multinomial distribution defined by the PFM and

calculated the background probability using a third-order Markov

model trained on either the full training set (or test set, as

appropriate). As explained in Protocol S1, the ratio of the

foreground and background probabilities is an estimate of the

relative affinity of the RBP for that K-mer. For some RBPs, when

it led to a performance increase, we also multiplied this affinity by

the probability that the site was accessible, as determined using the

optimized settings of the EF/PU and pseudocount parameters for

that training set. To estimate the affinity of the entire sequence, we

summed its k-mer relative affinities. Note that we also tried MAST

[40] to score the sequences using MEMERIS’s motif models but

test set performance decreased (data not shown).

We used MatrixREDUCE to generate single motifs with widths

ranging from 4 to 12 by setting max motif to 1. The

MatrixREDUCE program automatically selects the appropriate

motif width, so we only needed to choose between two different

MatrixREDUCE motifs on each training set (one trained on the

full set and the other only on the weakly structured sequences).

Note that MatrixREDUCE’s PSAM motif model directly

estimates relative binding affinity of the RBP for each k-mer, so

to estimate RNA sequence affinity, we summed PSAM scores for

each constituent k-mer.

We ran RNAcontext with motifs width ranging from 4 to 12,

thus creating 18 motif models per training set, and used equation

(1) to score RNA sequences using these models.

For all three methods, for each training set, we used the AUC-

PR on training set ‘‘Positives’’ and ‘‘Negatives’’, to select the best

single model among the fitted models. The free parameters settings

for the selected models are in Table S2.

Performance evaluation
RNAcontext achieved higher average AUC-PR values than

MEMERIS and MatrixREDUCE on all of the nine RBPs

analyzed (Table 1). It also had significantly higher AUC-PRs

than either method on 15 of the 18 test sets encompassing seven of

the nine RBPs (the largest P-value was P~10{94, Wilcoxon’s sign-

rank test on the AUC-PR values of 1,000 bootstrap samples; See

Table S3 for the complete results of bootstrap analysis).

The improvement in AUC-PR of RNAcontext compared with

MatrixREDUCE is largest for proteins whose preferred structural

context is less common in the RNA pool, reflecting the fact these

are the hardest binding sites for MatrixREDUCE to predict. For

example, RNAcontext performs much better than MatrixRE-

DUCE on Vts1p which binds to CNGG in the loop of an RNA

stem-loop. This sequence appears frequently outside of a loop

Table 1. Comparison of predictive accuracy of three motif
finding models using both weakly structured and stem-loop
sequences in the test set.

Proteins RNAcontext MEMERIS MatrixREDUCE

RBM4 0.91 0.43 0.63

FUSIP1 0.53 0.31 0.32

Vts1p 0.65 0.58 0.56

YB1 0.17 0.07 0.11

SLM2 0.81 0.49 0.77

SF2 0.70 0.50 0.66

U1A 0.30 0.27 0.21

HuR 0.96 0.74 0.94

PTB 0.69 0.26 0.67

The values show the average AUC-PR across two test sets and bold values
indicate the best performing method. Rows are sorted by decreasing relative
gain of RNAcontext to the best of MEMERIS & MatrixREDUCE. For all the
methods, displayed values were calculated using the single best motif model
for each method chosen based on the two training set performance. According
to the Wilcoxon’s sign rank test performed on paired AUC-PR values across
1,000 bootstrap samples from the test set results of the three methods, all
differences between RNAcontext AUC-PR and that of the other algorithms are
statistically significant (the largest P-value is 1:9|10{95 , see Table S3 for the
complete results of bootstrap analysis) except for the differences on PTB and
U1A.
doi:10.1371/journal.pcbi.1000832.t001
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context in the RNA pool. We also see large improvements for

RBM4 that binds to CG containing sequences in an unpaired

context, likely because these sequences often appear in stems. In

contrast, HuR’s binding site is U-rich and, as such, is rarely paired

in either the training or test set. In this circumstance,

MatrixREDUCE’s lack of a structural model does little harm to

its performance.

Although MEMERIS has higher average AUC-PR than

MatrixREDUCE for stem-loop binding proteins Vts1p and

U1A, reflecting the value of its model of structural context, its

average AUC-PR was otherwise worse than that of MatrixRE-

DUCE and always worse than that of RNAcontext. This is likely

due to its inability to make use of the affinity data associated with

each sequence. One consequence of this is that it can only trained

on a small subset of the data. Some of the loss in AUC-PR on the

test set may also be due to overfitting because of the large number

of parameter combinations that needed to be considered.

The predictive value of structural context
Having established that RNAcontext can capture RBP binding

preferences better than comparable motif models that either do

not model RNA secondary structure (MatrixREDUCE), or use a

limited representation (MEMERIS), we then attempted to confirm

that the added predictive value was due to the incorporation of

structural context, rather than differences in how we estimate

sequence affinity. To do this, we compared our model based on

the fP, L, U, Mg structural annotation alphabet to a simplified

version of our model whose alphabet only contains a single letter

(i.e. all bases have an identical structural annotation). As in

previous sections, the two models were fit to the data for each of

the nine RBPs using a variety of motif widths (4–12). Also, as

before, we used training set AUC-PR to choose the optimal motif

width and to choose between the full training set and only the

weakly structured sequences. After selecting the single best model

for the two methods, we compared RNAcontext against the

structure-naive model using AUC-PR on the full test set. To assess

the significance of difference in AUC-PR, we used 95% confidence

interval of the difference estimated from 1,000 bootstrap samples.

Figure 2 shows these differences for nine RBPs on the two cross-

validation test sets. Using structural context lead to a significant

improvement in AUC-PR for eight of the nine RBPs. In some

cases, the difference was dramatic, particularly for Vts1p, RBM4,

FUSIP1 and U1A.

Position-specific scoring matrices provide good
approximations of sequence binding preferences for six
RBPs

We then sought to assess the accuracy of position-specific

scoring matrix (PSSM) approximations of RNA-sequence binding

preferences by comparing the predictive power of inferred 7-mers

affinities to that of the three PSSM-based models. We trained a

‘‘fully-specified 7-mer model’’ that estimates the binding affinity of

an RBP for every 7-mer by taking a trimmed average of the

transformed intensity ratios of the weakly-structured sequences

that contain the 7-mer in the training set (see [5] for more details

of this model). We then used these estimated affinities to assign a

score to RNA sequences longer than seven nucleotides, by taking

the mean of the affinities of each 7-mer in each sequence in the test

set. We also trained and evaluated RNAcompete, MatrixRE-

DUCE and MEMERIS motif models as previously described

except that we always restricted the training and test sets to the

weakly-structured sequences. We used only the weakly-structured

sequences in this comparison so that we could more readily

evaluate the ability of PSSM models to assess sequence binding

preferences separately from each method’s ability to capture RBP

structure binding preferences. Figure 3 compares the 7-mer model

against the three methods with respect to average AUC-PR on the

test sets. PSSM-based motif models perform significantly better

than the 7-mer model for every RBP except U1A (and only on test

set A), YB1, and SF2/ASF (the Wilcoxon sign-rank P-values for

the best PSSM motif model are all less than 10{22). Notice that

because MatrixREDUCE performs significantly better than the

Figure 2. Change in predictive accuracy of RNAcontext due to
the representation of RNA structural context. Bar graph shows
the increase in AUC-PR of RNAcontext with fP, L, U, Mg alphabet
compared with the model without RNA structural context for each of
nine RBPs using the two test sets. Error bars show 95% confidence
interval of the difference estimated from 1,000 bootstrap samples of the
test set.
doi:10.1371/journal.pcbi.1000832.g002

Figure 3. The predictive value of the fully-specified 7-mer
model (i.e., the RNAcompete model) with respect to the motif
models. This scatter plot compares the performance of the RNAcom-
pete model to other motif models where the training and test sets are
formed using only weakly structured sequences. The x-axis shows the
AUC-PRs of RNAcompete and the y-axis shows the AUC-PRs of the three
motif models: RNAcontext (blue), MEMERIS (red) and MatrixREDUCE
(green). Each point corresponds to the mean AUC-PR of 1,000 bootstrap
samples, averaged across the two test sets. The error bars indicate the
95% bootstrap confidence interval.
doi:10.1371/journal.pcbi.1000832.g003

RNAcontext

PLoS Computational Biology | www.ploscompbiol.org 6 July 2010 | Volume 6 | Issue 7 | e1000832



RNAcompete method for five of the nine RBPs, this performance

gain can not be explained by the incorporation of structural

context in RNAcontext.

The sequence and structure binding preferences for
seven RBPs

Having established that RNAcontext accurately predicts the in

vitro affinity for seven of the nine RBPs (with the exception of YB-1

and U1A), we applied RNAcontext to the entire dataset to make

the best possible prediction for their binding preferences. The

results are shown in Figure 4 and Figure 5. Figure 4 shows the

relative structural context preference of each RBP. RNAcontext’s

predicted structural preferences are consistent with co-crystal

structures for Vts1p [17] (loop) and PTB [41] (ssRNA) and in vitro

and in vivo binding data for HuR [5,8,12]. RNAcontext also

predicts new structural preferences for SLM2, RBM4 and SF2/

ASF. Of particular interest, is that RNAcontext predicts that SF2/

ASF has a slight preference for RNA binding sites in bulges,

internal loops, and/or multiloops (the M annotation). For FUSIP1,

we report the motif model trained using only the weakly structured

sequences even though the model trained on the full set (shown in

Figure S1) had higher AUC-PR. As mentioned in the legend of

Figure S1, we could not rule out the possibility that this model

reflected an artifact of our pool design despite the fact that the two

models both suggest that FUSIP1 prefers its binding site to be 59 to

an RNA stem.

Figure 5 compares the motif logo representations (generated by

Enologos software[42]) of RNAcontext’s W parameters with

previously reported motifs for those RBPs. To derive the energy

parameters required by Enologos, we uniformly rescaled the

elements of the W matrix so that Nseq(s�,H) of the optimal binding

site, s�, would be 0.5 (as suggested by [31]). Underneath each of

the logos for the RNAcontext motifs, we have displayed an

estimate of the preferred structural context for each base. In order

to identify this context, we found the top 20 best scoring k-mers in

the test set under each motif model, averaged the annotation

profiles for these 20 k-mers and deemed the annotation with the

highest average frequency to be the preferred context for each

position in the k-mer. These estimates recover the fact that the

Vts1p binding site (CNGG) occurs at the 59 end of the hairpin

loop. Our RNAcontext motifs match previously reported binding

sites [12,17,43–45] and the motifs that we have previously derived

from the RNAcompete data[5].

In vivo confirmation of RNAcontext motif for SF2/ASF
In both Figure 4 and Figure 5, we observe a preference for the

M structural context for the SF2/ASF motif. This preference has

not been previously reported for SF2/ASF [43]. To confirm this

unusual preference, we collected data on the in vivo targets of SF2/

ASF from [13]. These targets were generated using the CLIP-Seq

assay and consist of 296 short RNA fragments that cross-link to the

protein in cultured cells which we call ‘‘bound’’; and 314 transcript

sequences not observed to cross-link which we call ‘‘unbound’’.

These data supported our inferred structure preferences for SF2/

ASF. In particular, by manual inspection, we discovered a number

of cases of the RNAcontext motif within bulge and internal loops

within the bound sequences. Also, using our model trained on the

RNAcompete data, we were able to distinguish between bound

and unbound sequences with higher accuracy using our model

(AUC-PR 0.915) compared with the version of our model with a

single letter annotation alphabet (AUC-PR 0.898) and MatrixRE-

DUCE (AUC-PR 0.898). Furthermore, when we train our

RNAcontext model on the in vivo data, assigning bound sequences

an affinity of 1 and unbound ones an affinity of 21, we recover the

same structural preference for SF2/ASF (Figure S2).

Discussion

We have demonstrated that RNAcontext represents an advance

over existing methods for modeling mRNA-binding protein

binding preferences. Motifs learned by RNAcontext more

accurately predicted a held out in vitro binding dataset for all of

the nine RBPs tested. Seven of these differences were statistically

significant. As expected, the size of an improvement depends on

the relative representation of the preferred binding site in the

preferred structural context (or contexts) in the RNAcontext

dataset.

RNAcontext motif models reflect previously reported sequence

and structure preferences for well-studied RBPs like HuR, Vts1p

and PTB and predict new structure binding preferences for SLM2,

RBM4 and SF2/ASF. RNAcontext’s predictions are supported by

in vivo binding data for SF2/ASF: the RNAcontext in vitro motif

model more accurately predicts in vivo binding of SF2/ASF, and

RNAcontext motif models trained using the in vivo data recover the

same structural context preference. We expect similar success with

our other new predictions because, as we have previously

established (in [5]), binding preferences inferred from RNAcom-

pete data are consistent with in vivo binding preferences and that

more accurate prediction of RNAcompete-measured binding

affinity translates into more accurate prediction of in vivo binding.

We have also provided evidence that the position-specific

scoring matrix (PSSM) motif representation is a better approxi-

mation for the RNA binding preferences of RBPs than it is for

Figure 4. Relative RNA structure preferences inferred by
RNAcontext. Y-axis indicates the ratio between the context scale
factor C(pa) (see equation 4) for a structural context with probability
one for the indicated annotation (a) for all bases (i.e. pa

a,k~1,Vk) to the
context scale factor C(p�) for the best possible structural context for the
RBP (i.e. p�a�,k~1,Vk where a�~argmaxaCa). Displayed are ratios across
parameters learned from the training set containing all the sequences
(i.e. both Set A and Set B). For Vts1p, the most preferred context was
predicted to be hairpin loop and this is consistent with the known
binding preferences. SLM2, RBM4, and HuR have similar preferences,
and predicted to bind regions that are not paired.
doi:10.1371/journal.pcbi.1000832.g004
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dsDNA binding preferences of TFs. In particular, in previous work

[38], using a similar evaluation framework, we had found that that

a ‘‘fully-specified 8-mer model’’ trained on protein-binding

microarray (PBM) [46] data had greater predictive power for 7

of 10 TFs than a set of standard DNA motif-finding algorithms,

including MatrixREDUCE, trained on the same data. These

observations were consistent with many others (e.g., [47–49]) that

PSSMs were inaccurate approximations dsDNA binding affinities

for the majority of TFs. In Figure 3, we show that the opposite

holds for RNA-binding data: PSSM models learned by Matrix-

REDUCE, which does not consider RNA structure, had greater

predictive power than a fully-specified 7-mer model for a majority

of RBPs. Although the sample size is small, this result may reflect

the increased flexibility of RNA compared with dsDNA which

may permit more independent movement and recognition of

individual bases. Our observations further suggests that modifica-

tions of the basic PSSM model made for TFs that incorporate

interactions between bases may not be as indispensible for

modeling RBP binding preferences. Note that our conclusions

here differ from our previous analyses on the same data [5]. We

suspect that this difference is due our use, in the present study, of

motif finding methods that take full advantage of the affinity data

associated with each sequence. Indeed, MEMERIS, one of the

algorithms we also used in [5] performed worse than the fully 7-

mer model in Figure 3 for eight of the nine RBPs.

In summary, we have introduced a new motif model of RBP

binding preferences and a corresponding algorithm for fitting this

model to quantitative estimates of RBP binding affinity for short

RNA sequences. Our RNAcontext model makes use of a new

technique for representing RNA structure based on a structural

context alphabet that we use to annotate individual bases of RNA

sequence. This representation is particularly amenable to

modeling RBP binding preferences. Although we provide a

pipeline to annotate RNA sequences according to the PLUM

alphabet, our motif finding code does not require a particular

structural context annotation alphabet for bases or even a

particular RNA structure prediction method. Hence, RNAcontext

can easily be expanded to integrate more parsimonious annota-

tions of structural context or improvements in RNA structure

prediction methods.

Supporting Information

Protocol S1 A brief review of DNA motif finding.

Found at: doi:10.1371/journal.pcbi.1000832.s001 (0.16 MB PDF)

Figure S1 Inferred sequence and RNA structure binding

preferences for FUSIP1 using all the sequences as the training

set. A) Predicted sequence parameters are shown using a sequence

logo representation. An estimate of the preferred structural context

for each base is displayed underneath the logo. B) The bar graph

shows the relative RNA structure preferences of FUSIP1. Note

that all sequences in the RNA pool, including the stem-loop

sequences, have an unpaired 59-AGA or 59-AGG (the initiation

sequence for T7 promoter) at their 59 end. In all stem-loop

sequences, this initiation sequence is followed by a G because the

bottom base pair of every stem-loop is G-C. Since AG(A/G)G is

very similar to previously reported FUSIP1 binding sites [5,45], we

were concerned that this artifact of the pool design had an impact

on the model of FUSIP1 binding preferences fit to the full training

set. However, even in the model fit only to the weakly-structured

sequences shown in Figure 4, there is a slight preference for the

paired context compared to L and M.

Figure 5. Inferred sequence and structure binding preferences for seven RBPs. RNA-binding domains of the proteins are displayed on the
second column and previously reported binding sites are displayed on the third column for reference. RNAcontext predicted sequence parameters
are shown as a PFM (fourth column). Also, an estimate of the preferred structural context for each base is displayed underneath each of the logos.
doi:10.1371/journal.pcbi.1000832.g005
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Found at: doi:10.1371/journal.pcbi.1000832.s002 (1.04 MB EPS)

Figure S2 Inferred sequence and RNA structure binding

preferences for SF2. RNAcontext is used to infer binding

preferences of SF2 from in vivo data [13] A) Predicted sequence

parameters are shown use a sequence logo representation and an

estimate of the preferred structural context for each base is

displayed underneath the logo. B) The bar graph shows the

relative RNA structure preferences of SF2.

Found at: doi:10.1371/journal.pcbi.1000832.s003 (0.90 MB EPS)

Table S1 Properties of the sequences in the input sets. The

composition of Sets A and B in terms of relative proportions of

stem-loops and weakly structured sequences among their Positive,

Negative and Other groups. The input sets are partitioned into

these three groups according to their RNAcompete-measured

affinities. The sequences with affinities above a threshold are

defined as Positive; the sequences with affinities below the median

affinities over all the sequences in the given set are defined as

Negative and the remaining sequences are placed in the Other

group. Within each group, the number of weakly structured

sequences and stem-loops are displayed. For RNAcontext and

MatrixREDUCE all the sequences in Positive, Negative and

Other categories are used for training whereas when running

MEMERIS, only Positive sequences are used for training. The test

sets are comprised of all sequences in the Positive and Negative

groups.

Found at: doi:10.1371/journal.pcbi.1000832.s004 (0.01 MB PDF)

Table S2 Details about the chosen models for RNAcontext,

MEMERIS and MatrixREDUCE. Optimal free parameter

settings for RNAcontext, MEMERIS and MatrixREDUCE. The

column Set describes the training set and contains either weak or

full where weak indicates that motifs were trained on the weakly

structured sequences and full indicates that motifs were trained on

the full set of sequences. The columns, MW-A and MW-B, show

the selected motif length for the test sets A and B respectively.

There is an extra other column for MEMERIS which shows the

other free parameters that are chosen. Namely, EF and PU are

two different ways to measure single-strandedness of a region;

OOPS (exactly one motif occurrence per sequence), ZOOPS (zero

or one motif occurrence per sequence), and TCM (zero or more

motif occurrence per sequence) are options (-mod) that indicate

the expected number of motifs per sequence. The values in the

next column (i.e. 0.1 or 1) are the chosen pseudocount parameters

among the available values 0.1, 1, 3. The lower the pseudocount

value, the more impact the single-strandedness of the binding site

has in the model. Two different thresholds were used to define the

input to MEMERIS and * indicates that the more stringent

threshold was selected. The last three columns contain the selected

free parameter settings for MatrixREDUCE.

Found at: doi:10.1371/journal.pcbi.1000832.s005 (0.01 MB PDF)

Table S3 Result of bootstrap analysis of relative AUC-PRs.

Each entry represents the number of times RNAcontext has a

larger/smaller AUC-PR value compared to AUC-PR values of

MatrixREDUCE & MEMERIS on 1,000 bootstrap samples from

the test set results (shown in Table 1). * indicates that the difference

is not significant according to Wilcoxon’s sign rank test.

Found at: doi:10.1371/journal.pcbi.1000832.s006 (0.01 MB
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