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ABSTRACT

Understanding the 3D structural properties of RNAs

will play a critical role in identifying their functional

characteristics and designing new RNAs for RNA-

based therapeutics and nanotechnology. While sev-

eral existing computational methods can help in the

analysis of RNA properties by recognizing structural

motifs, they do not provide the means to compare

and contrast those motifs extensively. We have de-

veloped a new method, RNAMotifContrast, which fo-

cuses on analyzing the similarities and variations of

RNA structural motif characteristics. In this method,

a graph is formed to represent the similarities among

motifs, and a new traversal algorithm is applied to

generate visualizations of their structural proper-

ties. Analyzing the structural features among mo-

tifs, we have recognized and generalized the con-

cept of motif subfamilies. To asses its effectiveness,

we have applied RNAMotifContrast on a dataset of

known RNA structural motif families. From the re-

sults, we observed that the derived subfamilies pos-

sess unique structural variations while holding stan-

dard features of the families. Overall, the visualiza-

tion approach of this method presents a new per-

spective to observe the relation among motifs more

closely, and the discovered subfamilies provide op-

portunities to achieve valuable insights into RNA’s

diverse roles.

INTRODUCTION

Non-coding RNAs have been one of the central focuses of
biological and medical research due to its connection to
many cellular functions (1–3) and diseases, including can-
cer (4) and Alzheimer’s (5). One of the key features that dic-
tate non-codingRNA functions is their 3D structures (6–8).
As a result, understanding the characteristics of RNA 3D
structures becomes a critical element of biological research.
With>5000 RNA 3D structures being available in the PDB
(9) database and growing, the opportunities to gain deep in-

sight into the architecture and the functionality of RNA are
greatly expanding.
One approach to identify the characteristics of RNA

is �nding recurring structural components across various
types of RNAs. Those recurring structural components are
called RNA structural motifs and considered as building
blocks of the RNA architectures (10,11). The importance
of RNA structural motifs is shown in many contexts, in-
cluding how different molecules engage with RNA through
interactions in the known motif regions (12–14). Moreover,
it has been shown that RNA motifs can be used in building
structural elements in nanotechnology (15). Finding RNA
structural motifs of similar characteristics and identifying
variations of them can help in understanding the basics
of RNA functions and aid in the rising new directions of
RNA-inspired research.
There are methods, such as RNAMotifScan (16),

RNAMotifScanX (17) and FR3D (18), that utilize well-
de�ned motifs to search for new instances in different loca-
tions and organisms. These methods have discovered many
instances of known motifs, such as kink-turn (12), reverse
kink-turn (19), sarcin-ricin (13), C-loop (20) and E-loop
(21). There are also approaches that can �nd similarities
among motifs through clustering, such as, RNAMotifScan
alignment-based clustering (22,23) and FR3D alignment-
based RNA 3D Motif Atlas (24). In addition to �nding in-
stances of knownmotif families, these computational meth-
ods also have identi�ed new motif families. These methods
attempt to put all the instances of a motif family into the
same cluster. But they cannot manage to do so in many
cases due to the inherent variations of structural features in
the motif instances. If these methods allow too much �ex-
ibility to encompass these variations, they run the risk of
putting instances of different motif families together. As a
result, they choose the option to be rigid to some extent.
Consequently, the instances of one family get separated into
multiple groups in these clustering results. The details of
these separations into groups and the corresponding impli-
cations is an area worth investigating, but there is not much
work focusing in this direction yet.
A few research were conducted to extensively analyze

the variations in a couple of well-known motif families,
such as kink-turn and sarcin-ricin. Leontis et al. system-
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atically evaluated isosteric relationships among different
base-pairing interactions (25), and consequently showed
that similar structural features of motifs can be achieved
with a variety of base-pairings (26). The extent of accept-
able sequence variations, especially the isosteric variants,
to achieve desired structural features of known motif fami-
lies is also shown in simulation-based experiments (27,28).
Substantial work on the kink-turn motif family has been
done by Lilley (29,30) to identify different structural fea-
tures and corresponding functional behaviors. The analysis
shown in all these studies presents the importance of rec-
ognizing the variations of sequences and structures to un-
derstand the functionalities of motifs. However, no existing
computational method provides the capability to compre-
hensively compare and contrast the variations in a given set
of motif family instances.
In this work, we have the generalized goal to address

the variations in the motif families and categorize them
into subfamilies based on their similar and unique struc-
tural features. We have designed a de novo computational
method, RNAMotifContrast, which provides a compre-
hensive insight intoRNA structuralmotifs through its anal-
ysis and visualization of structural features in a way that
was not possible before. RNAMotifContrast �rst creates
a structural similarity-based graph with relational proper-
ties that utilize (i) the �exible alignment of RNAMotifS-
canX and (ii) a new similarity measurement, based on the
alignment length and RMSD. Then, it uses a novel traver-
sal algorithm that guides the ordering and superimposi-
tion of structures to visualize the contrasting features of
motif families. Applying this method on a newly prepared
data set, we have speci�ed and discovered RNA structural
motif subfamilies for all the well-known motif families. By
analyzing the known motif families such as kink-turn, re-
verse kink-turn, sarcin-ricin, C-loop, E-loop and T-loop,
we have identi�ed key structural characteristics and corre-
sponding subfamilies for all of them. Instances of subfami-
lies can be found at the Supplementary Table S5, along with
all the images and corresponding details of subfamily fea-
tures in the SupplementaryWebsite (http://genome.ucf.edu/
RNAMotifContrast).

METHODS

InRNAMotifContrast, we take all the instances of anRNA
structural motif family from our curated dataset as input
and identify structural features to analyze the variations
among these motifs (details of the dataset is provided in
the Results section). From the input motif instances, we
�rst consider the annotations of base-base interactions and
generate pairwise alignments. With the help of those align-
ments, we determine themost similar structure for eachmo-
tif using alignment-length-restricted RMSD comparisons
(explained in the ‘Alignment-length-restricted RMSD com-
parison’ subsection). Based on the most similar pairings,
we create a directed graph that provides the platform to as-
sess the overall relations among the motifs to identify the
groups with similar structural features. We apply a merging
algorithm to combine the smaller groups of similar struc-
tural motifs into forming subfamilies. We then execute a
three-layer hierarchical traversal algorithm that connects

and orders all the motifs in the motif family through build-
ing parent–child relationships. These connections guide the
superimposition of the motifs and generate the coveted im-
ages that give the most visually explicit comparison among
the RNA structural motifs. The steps of this method are il-
lustrated in Figure 1, and the descriptions are given in the
following sections.

Extract annotations and coordinates from PDB data

For theRNAmotif instances in the input, we download cor-
responding structure �les from the PDB database. For the
PDB �les, we collect the FR3D (18) annotations from their
webpage and also generate the DSSR (31) annotations. We
then generate amerged annotation for each PDBcombining
the annotations from these two tools to increase the prob-
ability of recognizing more interactions in a motif than any
of these tools can do individually.While merging, con�ict of
annotations happens in some cases. For those cases, two an-
notation tools give different annotations for the same pair
of bases. We address these con�icts, based on the likelihood
of interactions occurring between a given pair of bases. We
counted the frequencies of interactions for all possible pairs
of bases in RNAs from the annotations of all PDBs in the
nonredundant PDB list (32) release 3.57 at resolution 4.0
Å. The frequency and the corresponding ranking of anno-
tation for each pair of bases are given in Supplementary Ta-
ble S3. We consider one straightforward rule - the higher
the frequency, the higher the likelihood of that interaction
between a given pair of bases. As a result, from the con�ict-
ing annotations, we choose the one interaction which has a
higher number of occurrences in RNAs. Examples of such
con�ict resolves are shown in the Supplementary Figures S3
and S4. Moreover, for each structural motif, we generate a
customized PDB �le. It includes only the coordinates of the
local region, which contains the given motif. This reduction
of coordinates from the original PDB reduces the memory
usage signi�cantly and improves the run-time while gener-
ating images using PyMOL.

Pairwise alignment of motifs

The next step in RNAMotifContrast is to generate pair-
wise alignments among all the motifs. To generate better
pairwise alignments ef�ciently, we have developed a new,
improved version of the existing alignment tool RNAMo-
tifScanX (17). We are calling this version RNAMotifS-
canX 2.0. Major modi�cations made in this version are:
(i) adding a new module to align structures that do not
have any common base-pairing annotations but may have
shared features based on sequences and base-stacking in-
teractions (33), (ii) choosing better alignment based on var-
ious structural features when alignment scores are equal
among multiple options of aligning two motifs, (iii) includ-
ing possible triple-interactions for improved heuristics in
the branch-and-bound approach to ensure �nding the opti-
mal alignment, (iv) balancing the penalty for missing base
pairs in the aligned core region for both query and target
structure (which was different in the original RNAMotif-
ScanX), (v) implementing a basic Genetic Algorithm for
clique �nding (34) when RNAMotifScanX is likely to take
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Figure 1. The pipeline of RNAMotifContrast. (A) PyMOL images of the input motifs in the default orientation. (B) Visual representation of annotation
and coordinate extraction of the regions around each motif. (C) Generating Similarity Graph from the pairwise alignments and identifying subfamilies.
Edges are labeled with ‘(RMSD, alignment length)’. Edges connecting the instances of a subfamily are colored the same. (D) The parent-child relationships
generated from the traversal algorithm and the corresponding rotation of structures to superimpose each motif to its parent. The root node is rotated to
get a better orientation to observe the features. (E) Motifs ordered according to the traversal. (F) Subfamily and family-wise superimposition of motifs.

too much time to �nd the clique and the alignment accord-
ingly and (vi) rede�ning the boundary of the region rep-
resenting core features of aligned structural motifs. Previ-
ously, the boundaries of core aligned regions were de�ned
based on the outer-most aligned base pairs. However, with
the extensive analysis in this project, we identi�ed that the
boundary could be extended to make longer alignment and
include more structural features. For each segment in the
alignment, we extended them in both directions as long as
it improves the alignment score. The details of these modi-
�cations are discussed in the Supplementary Data. We use
the aligned residues fromRNAMotifScanX 2.0 to superim-
pose motifs and calculate RMSDs. The alignment lengths
correspond to the number of aligned residues in the pair-
wise alignments. These alignment lengths and RMSDs are
used in the alignment-length-restricted RMSD comparison
to �nd the most similar pair of motifs accordingly.

Alignment-length-restricted RMSD comparison

A commonly used measurement to evaluate a set of RNA
3D structure alignments is Root-Mean-Square Deviation
(RMSD) (35). However, RMSD may not provide the best
assessment while comparing aligned structures of various
lengths. When we have a smaller number of nucleotides to
align, it would be more likely to get a better RMSD. Nev-

ertheless, achieving a better RMSD with a small number
of nucleotides may be a less desired option compared to a
longer alignment with a relatively worse RMSD. To address
this issue, we compare two alignments based on RMSD
only if the alignment lengths are above a threshold. Other-
wise, we consider that the longer alignment is better, regard-
less of its RMSD. The alignment length thresholds depend
on the properties of a given family (see Supplementary Ta-
ble S1). Further explanation with an example is provided in
the Supplementary Data.

Generating similarity graph and subfamilies

The relations among motifs are represented in a directed
graph, which we call the Similarity Graph. In the Similarity
Graph, themotifs represent the nodes. For eachmotif A, we
consider the alignments with all other motifs and apply the
alignment-length-restricted RMSD comparison to �nd the
most similar structure with it. If motif B is the most similar
structure for A, we add an incoming edge to A from B. The
incoming edge to motif B may come fromA or another mo-
tif C. As we consider exactly onemost similar motif for each
of the motifs in building this Similarity Graph, each node
will have exactly one incoming edge. With this one partic-
ular restriction, the Similarity Graph evolves into a graph
with interesting properties. While all the motifs in a Simi-
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larity Graph may not be connected, one or more mutually
exclusive subsets of them will be connected to each other.
We call such subsets Connected Motif Groups (CMGs).
The graph, along with the CMGs, has these two important
properties: (i) it consists of one or more CMGs, where each
CMGhas at least two nodes, (ii) each CMGhas exactly one
cycle in it. The formal proofs of these properties are pro-
vided in the Supplementary Data along with an example of
Similarity Graph in Supplementary Figure S1.
A directed edge from B to A in a CMG implies that B

is the most similar structure for A. As a result, if we put A
in a group, it should be in the same group as B. By apply-
ing the transitivity rule for all edges, we can deduce that all
nodes in a CMG can be placed in the same group. However,
we also consider the fact that there might be similarities
among the CMGs. We address this situation with a merg-
ing algorithm. For any pair of CMGs, we test if they can
be merged together. We check how many motif instances of
one CMG have strong similarities with the instances of the
other CMG. An alignment is considered well-matched and
represents strong enough similarity if it passes the align-
ment length threshold for the given family and has a good
RMSD (1.0 Å by default, and it can be con�gured to a dif-
ferent value by the user). If the number of well-matched
pairs of motifs passes a given percentage or count threshold
frombothCMGs, wemerge them. Ifmultiple pair of CMGs
passes the threshold, we merge the pair with the best aver-
age RMSD �rst. We continue this process in a guided-tree
based approach until no further merging is possible. As the
end result, eachmerged set of CMGs represents a subfamily
with certain structural properties of their own. An example
Similarity Graph is shown in Figure 1C, where each motif
represents a node, and the red/green colored edges repre-
sent the best similarity connection among the instances of
CMGs. In this case, there are two CMGs, and they cannot
be merged further. So, from these six motif instances, we get
two subfamilies.

Motif traversal, ordering and visualization

In this section, we address how to superimpose and visu-
alize multiple motifs that can show the structural features
in the most comparable and contrasting way. One straight-
forward and commonly used method for the superimposi-
tion of multiple motifs is the ‘align-to’ approach. With this
method, onemotif is considered as a reference, and all other
motifs are superimposed with the reference. While this ap-
proach works �ne for the highly similar structures, it does
not show the structural characteristics well for superimpos-
ing motifs with different types of variations. The situation
with the ‘align-to’ approach for an example set of motifs is
shown in Figure 2A–D. For the �rst three cases, we used the
‘align-to’ method of PyMOL with three different algorith-
mic parameters.We then addressed the fact that thismethod
in PyMOLuses sequence alignment based superimposition.
So, we developed a version of the ‘align-to’ method, where
the alignment from RNAMotifScanX 2.0 is used to de-
termine the residues to superimpose. The outcome of the
RNAMotifScanX based ‘align-to’ is shown in Figure 2D.
It improves the result signi�cantly over the ‘align-to’ in Py-
MOL, but it is not the best possible option. We designed a

new approach that utilizes the properties of the Similarity
Graph to determine the relationship and ordering in super-
imposition.
Instead of superimposing all the motifs with a �xed ref-

erence motif, we dynamically choose the reference of su-
perimposition for each motif. For a given CMG, we utilize
the directed edges among motifs to represent the parent-
child relationships for the superimposition, where the par-
ent is used as the reference to superimpose the child. For
example, an edge from motif A to B implies A can be used
as the reference to superimpose B. We choose a starting
motif from the motifs in the cycle of CMGs, depending
on two criteria. If it is the �rst CMG to superimpose, the
starting motif is selected based on the higher connectivity
and better alignments with other motifs. From the second
CMG, the selection of the starting motif depends on the
already superimposed CMGs. Starting with the �rst mo-
tif, we follow the directed edges to superimpose the subse-
quent motifs and progressively superimpose them on top
of the existing superimposed motifs. The traversal of a
CMG makes sure that a motif is superimposed with the
most similar motif through the parent-child relationship.
However, in order to superimpose all instances of a sub-
family or the whole family, we need to address multiple
CMGs that are not connected with each other. We devel-
oped a three-layer traversal algorithm to create the parent-
child relations among the CMGs in the subfamilies and
the subfamilies of a family. The �rst goal of the three-layer
traversal is to generate the best possible parent-child rela-
tions among the subfamilies and components. The second
goal is to achieve a comparative visualization by generat-
ing the side-by-side images to keep similar motifs as close
as possible. The de�nition and details of the traversal algo-
rithm are provided in the Supplementary Data. An exam-
ple of this traversal approach is also given in Supplementary
Figure S2.
For the visualization, we provide users the option to

choose the orientation of the �rst motif in the superimpo-
sition. From there, we traverse all the motifs and rotate ac-
cordingly to align and superimpose with its parent struc-
turally. This parent–child relationship to de�ne the rotation
reference is one of the key features of RNAMotifContrast
that enables us to generate the improved comparative vi-
sualization of the motifs. One straightforward outcome we
get from this traversal and rotation is the superimposed im-
ages of each input family and their subfamilies. The super-
imposed images provide an overview of the structural fea-
tures and variations. For detailed observations of the sub-
family characteristics, we also generate side-by-side images
of the rotated motifs according to the ordered list of the
traversal. Figure 1E shows the example of side-by-side im-
ages, and Figure 1F shows an example of the superimposed
images. Besides, we generate progressive images that dis-
play the changes for adding each structure to the pool of
superimposed motifs. The progressive images are provided
in the Supplementary Website. Moreover, we provide an
option to save the PyMOL sessions of our superimposed
motifs, which allows users further �exibility for observing
the structural features of subfamilies from different orien-
tations. Overall, the outcome of this traversal algorithm and
the visualization provides us the opportunity to analyze the
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Figure 2. Comparison of different superimposition approaches for an example dataset. The �rst loop in all the superimposition is colored red. (A–C) Su-
perimposition using three different algorithms of ‘align-to’ approach in PyMOL. (D) Superimposition for our implementation of ‘align-to’ using RNAMo-
tifScanX alignment. (E) Superimposition using traversal of RNAMotifContrast. In (A–D), the same color (green) is used to represent all the superimposed
loops to the �rst loop (in red). In (E), three different colors (red, green and blue) are used in this superimposition to represent three different subfamilies
identi�ed for this set of loops.

�ne details of similarities and dissimilarities among the mo-
tif instances.

RESULTS

Dataset with instances of known motif families

As a means to show its effectiveness, we have applied
RNAMotifContrast on a dataset of known motifs of inter-
nal and hairpin loops. To prepare this data, we �rst con-
sidered the instances of well-known motif families anno-
tated in the clustering work of Ge et al. (23), which is built

Table 1. Number of instances in two different sources and in the �ltered

merged list for known motif families

Number of motif instances

Loop type Ge et al. RNA 3DM. atlas Merged list Filtered list

IL 250 256 368 347
HL 209 364 415 397
Total 459 620 783 744

IL, internal loop; HL, hairpin loop.
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Table 2. Subfamilies of the known motif families with their average RMSDs and aligned lengths for three different superimposition

No. of No. of subfamilies Superimposition avg. RMSD/aligned length

Loop type Motif family Motifs (Sizes) No ordering Ordered Subfamilies

Internal loop (IL) Kink-turn (KT) 67 4 (45,7,10,5) 2.804 / 6 0.678 / 10 0.468 / 10
reverse Kink-turn (rKT) 8 3 (4,2,2) 1.490 / 19 0.910 / 22 0.702 / 23
Sarcin-ricin (SR) 72 4 (55,7,7,3) 1.726 / 7 0.913 / 10 0.419 / 10
C-loop (CL) 41 6 (11,8,5,7,3,7) 2.389 / 5 0.726 / 7 0.589 / 7
E-loop (EL) 47 3 (24,19,4) 1.521 / 7 0.506 / 8 0.474 / 8
Hook-turn (HT) 34 3 (27,5,2) 1.483 / 8 0.830 / 8 0.762 / 8
Tandem-shear (TS) 44 3 (39,2,3) 1.016 / 5 0.491 / 6 0.482 / 6
Tetraloop-receptor (TR) 19 2 (17,2) 0.992 / 5 0.534 / 6 0.536 / 6
L1-complex (L1C) 6 2 (4,2) 2.400 / 11 1.701 / 13 0.833 / 13
Rope-sling (RS) 9 1 (9) 0.632 / 8 0.409 / 9 0.409 / 9

Hairpin loop (HL) GNRA 291 6 (254,12,10,5,3,7) 0.561 / 5 0.272 / 5 0.252 / 5
T-loop (TL) 106 6 (81,5,3,8,4,5) 0.827 / 8 0.538 / 8 0.443 / 9

‘Sizes’ represents number of motifs in each subfamily. ‘No ordering’ represents superimposition with single reference using RNAMotifScanX alignment.
‘Ordered’ represents superimposition using parent-child relation from traversal. ‘Subfamilies’ represents separate superimposition of subfamilies.

upon theRNAMotifScan alignment. Then, using thesemo-
tifs, we identi�ed corresponding clusters in RNA 3D Mo-
tif Atlas (24) (Release 3.2), which include some of those
instances, along with additional motif occurrences discov-
ered through their 3D structure comparison. For both these
clustering results, we mapped the loops to the RNAs of the
nonredundant list (version 3.57). This mappingmakes them
compatible to �nd overlap of loops. While processing these
loops, we have identi�ed and removed some of them, which
have a signi�cant number of missing residues. By merging
the results of these two clustering methods, we have created
a combined list of instances for each known motif family.
We additionally applied �ltering based on the RNAMotifS-
canX alignment score and the corresponding RMSD value
to exclude instances that do not have good enough align-
ment with any other instance in the family. The �nal list of
motif instances incorporated (i) the feature of FR3D, which
is built upon matching 3D structural properties and (ii) the
�exibility of structural variations allowed by RNAMotifS-
can. Consequently, this data set provides a new platform to
do an extensive analysis of themotif properties with the help
of RNAMotifContrast. The number of instances for the �l-
tered list, as well as instances from each source, is given in
Table 1, and the instances of the merged list for each family
is provided in Supplementary Table S4. Amore detailed de-
scription of the curation process is provided in the Supple-
mentary Data along with the numbers of instances in Sup-
plementary Table S2.

Analysis of subfamily extraction and traversal based super-
imposition

We apply RNAMotifContrast on each motif family to ex-
tract key features to compare and contrast the instances.
As the outcome of merging the CMGs of the similarity
graph, we discover the subfamilies. However, de�ning how
many exact subfamilies are there, depends on the merging
threshold. To merge two connected motif groups (CMGs),
we have used the criteria that combines the required thresh-
olds: at least 50% of instances from each CMGneed to have
alignment with the instances of other CMG that passes the
threshold of the alignment length for that family and the
RMSD 1.0 Å. The alignment length threshold we found for

the dataset is given in Supplementary Table S1. It is worth
mentioning here that we provide the additional feature in
our tool for users to modify all these thresholds. The num-
ber of subfamilies along with the instance count (sizes) for
each family is given in Table 2.

From Table 2, we can notice that the number of subfam-
ilies varies dramatically from one family to another. There
are families, such as Rope-sling (22), for which the instances
in the family are structurally very similar. With the merging
thresholds we have used, all the instances of this family are
grouped together. On the other hand, some motif families
are distributed intomany subfamilies.We found six subfam-
ilies for hairpin T-loop and six subfamilies for C-loop. In ac-
cordance with our criteria, these separations into subfam-
ilies imply that even half of the instances in any subfamily
pair do not have enough similarity with each other. Most
of the alignments among the instances of those subfamilies
were unacceptable for having RMSD worse than 1.0 Å or
alignment length less than the threshold. For example, the
alignment length threshold we found for C-loop is 5, and it
implies that for an alignment to be capable of representing
the features of the C-loop, it has to be at least �ve residues
long. For the hairpin T-loop, the threshold is 8, and accord-
ingly, an alignment can be acceptable only if the length of
the alignment is at least 8.
Additionally, Table 2 shows the comparison of average

RMSDs and average alignment length for three options
of superimposition: (i) when all the motifs are superim-
posed with a single reference motif (using the RNAMotif-
ScanX alignment based ‘align-to’ approach), (ii) when the
motifs are ordered and superimposed using the traversal
of the similarity graph and (iii) when the motifs are sepa-
rated to superimpose as subfamilies. The changes from op-
tion 1 (no ordering) to option 2 (ordered) shows the effect
of parent–child relationship based superimposition, guided
by the traversal of subfamilies and CMGs. The change in
option 3 (subfamilies) compared to option 2 shows the im-
pact of separating the motifs into subfamilies and superim-
posing among subfamily instances (effectively the average
by excluding the inter-subfamily superimposition). In most
of the cases, average RMSDs for the option 3 are expected
to be better than the option 2. However, in some cases the
inter-subfamily best edge might have a lower RMSD than
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Figure 3. RNAMotifContrast input/output for kink-turn motif family data. (A) Input motif instances from the kink-turn family in the default orientation
of PDB data. (B) The rotated and ordered output motifs according to the traversal algorithm of RNAMotifContrast. The aligned parts of the loops are
colored. The non-aligned part of the loops and the helices around them are gray. The different colors represent instances of different subfamilies. The motif
ID in (B) corresponds to the input order of the motif in (A).

average. It represents strong similarity between a single pair
of instances in two subfamilies while the overall similarities
among the instances are not good enough to merge them
together. One such example is the case for the Tetraloop-
receptor shown in Table 2. In summary, the similarity score
(average RMSD and average alignment length) improves
signi�cantly with the use of traversal based ordering of mo-
tif for the superimposition.

Properties of the discovered motif subfamilies

The traversal based superimposition and side-by-side im-
ages provides an explicit visualization of the similarities and
differences of the structural features among the motifs and
their subfamilies. We additionally identify a representative
motif from each subfamily for further comparative analysis
on the subfamilies. The representatives are selected based
on the overall alignment quality of a motif with other mem-
bers of the subfamily. Color-annotated images (see Figure
4 as an example) for all the representatives motifs and the

corresponding details of sequence and interactions are pro-
vided in the Supplementary Website. We utilized the repre-
sentatives to recognize the source of structural differences
among motif subfamilies. Based on the representative anal-
ysis of our result, we identi�ed the association of struc-
tural variations with the following sources: (i) the variation
in base-pairing and base-stacking interactions, (ii) different
bulge lengths and (iii) varying nucleotide sequence. For a
givenmotif family, some subfamilies havemore interactions
than other subfamilies, while some of them have different
types of interactions. For example, CL-Sub1 and CL-Sub3
representatives have six base-pairing interactions compared
to CL-Sub4 representative having only four. Similarly, EL-
Sub1 has six base-pairing interactions, and EL-Sub3 has
four. Some of the subfamilies have longer or shorter bulges
compared to the more frequent type of instances of a given
family. The motifs in L1C-Sub2 has a longer bulge that cre-
ates an interesting structural extension. BothL1C-Sub1 and
L1C-Sub2 representative motifs have six base-pairing inter-
actions, but two of those interactions are different, while
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four of them are similar. The additional residues of the
longer bulges also cause additional base-stacking interac-
tions. The subfamily representatives of the hairpin T-loop
shows how the bulge length and the additional stack inter-
actions can affect the structural features of the motifs to
the extent where they can be considered as different sub-
families (while most of them have a similar set of annotated
base-pairing interactions). In some cases, the differences in
participating nucleotides in the interactions cause the struc-
tural variation. The representative of subfamilies GNRA–
Sub5 and GNRA–Sub6 have similar type of interactions,
but the variation of sequences caused the instances to be
partitioned into subfamilies.
Overall, the structural variations of subfamilies in a fam-

ily stem from one or more of these sources of variations.
Visualization and the corresponding description of proper-
ties for all subfamilies are provided in the Supplementary
Website. In the remaining section, we present the analysis
of three very well-known motif families, kink-turn, reverse
kink-turn, and sarcin-ricin, to show the characteristics of
the subfamilies in depth.

Kink-turn

Kink-turn (12) is a well-studied motif with very distinctive
features and known to play an essential role in RNA struc-
tural architecture along with serving as a binding site for
proteins. It is an asymmetric internal loop that changes the
direction of the helix with the characteristics kink and turns.
In our kink-turn motif family, there are 67 instances. From
Figure 3A,we can observe the fact that it is dif�cult to assess
the structural features in the default orientation of the mo-
tifs even when they belong to the same family and placed
side by side. On the other hand, the parent-child relation-
ship based ordered and rotated representation of the in-
stances in Figure 3B provides signi�cantly improved means
to make comparison and have a better understanding on
the properties of motif instances in the family. For the kink-
turnmotif family, we have found four subfamilies with 45, 7,
10 and 5 instances accordingly. By observing the subfamilies
in Figure 3 and the corresponding representatives in Figure
4, we can identify the characteristics that differentiate them.

The structural features of kink-turn subfamily 1 (KT-
Sub1) shows the characteristics of the traditionally ad-
dressed kink-turn (12) and its variations studied by many
works, including Lescoute et al. (26) and Lilley (29,30).
From the interactions of the representative motif shown
in Figure 4A, we can observe several features that de�ne
kink-turn properties. The representative motif has the bulge
followed by two A/G and G/A interactions, which corre-
sponds to the de�nition of traditionally known kink-turn
(12). The motif also shares three ‘H/S trans’ and one ‘S/S
trans’ interactions with the consensus of kink-turn reported
by Lescoute et al. (26). These key features of this motif
evidently show KT-Sub1 to be the representative of the
well-known kink-turn. Annotations of other instances of
this subfamily also show there are some variations of se-
quences, annotations, and location of interactions among
them. However, the structural similarities among the in-
stances of this subfamily are evident from the visualization
outcome generated by RNAMotifContrast, which is pre-

Figure 4. Superimposed motifs and analysis of the kink-turn subfamily
properties through the representative motifs along with their interactions
(A) 45 motif instances of KT-Sub1 (the representative motif of this sub-
family is similar to the well known kink-turn instances), (B) seven motif
instances of KT-Sub2, (C) 10 motif instances of KT-Sub3 and (D) �ve mo-
tif instances of KT-Sub4. The residues on the loop boundaries that form
‘W/W cis’ interactions are marked orange. The noncanonical interactions
are colored red, and the residues associated with them are colored green.
The additional residues in the loop are marked blue. The representatives
show that the kink and turns of the subfamilies are created and supported
by different sets of noncanonical interactions.

sented in the side-by-side images in Figure 3B and the super-
imposition image in Figure 4A. It is worth mentioning here
that the side-by-side image facilitates additional opportu-
nities to observe and analyze the structural features of the
whole family compared to only using the superimposition
of structures.
On the other hand, KT-Sub2, KT-Sub3, and KT-Sub4

have the kink and turn, but they have some unique charac-
teristics compared to KT-Sub1. Their interaction sets and
structural features are quite different, which is shown in
Figure 4. For the KT-Sub2 representative, the structure of
the longer strand is almost identical to the KT-Sub1, even
though the base-pairing interactions in these motifs are not
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Figure 5. Subfamily result analysis for the reverse kink-turn motif family. The coloring scheme for the representative motifs is the same as Figure 4.
Superimposed motifs, along with the 3D images and interactions of the subfamily representatives for (A) four motif instances of rKT-Sub1, (B) two motif
instances of rKT-Sub2 and (C) two motif instances of rKT-Sub3.

similar. The structure of the shorter strand is different and
has an S-shape twist, which is similar to the sarcin-ricin mo-
tif. This twist is present in most instances of this subfam-
ily. Both the subfamilies KT-Sub3 and KT-Sub4 have addi-
tional structural features, including kinks in both strands.
KT-Sub3 has three kinks, one in the short strand and two in
the longer strand. A more biological investigation into the
function of these complex kink is likely to bring interesting
insight. The set of interactions in some of these subfami-
lies are signi�cantly different from the traditionally de�ned
kink-turn. However, given a subfamily, the interactions are
very conserved, and those interactions help them to achieve
the structural features of kink-turn. The details of interac-
tions for all the instances of these subfamilies are provided
in the Supplementary Website.

Reverse kink-turn

Reverse kink-turn has similar structural properties to the
kink-turnmotifs with its kink and the turn, but the direction
of the kink is different (19). It turns toward themajor groove
while the kink-turn motif turns toward the minor groove.

For this family, there are eight instances. We have identi�ed
three reverse kink-turn subfamilies with four, two and two
instances. While all the subfamilies have the common kink
and turn features of reverse kink-turn, each subfamily has
some structural characteristics of their own. The superim-
posed motifs, along with the structural details of the rep-
resentative motifs for each subfamily, are shown in Figure
5. It gives an explicit perspective on the visualization aspect
of RNAMotifContrast. The structures here not only clearly
shows the common structural features of the instances but
also provides the variations among them explicitly.
By comparing rKT-Sub1 with rKT-Sub2 and rKT-Sub3,

we can observe that the sequence and structure of the longer
strands are very similar to each other. However, the shorter
strand in rKT-Sub1 is very different in terms of the length
and shape of the bulge. It has signi�cantly more nucleotides
than other two. As can be seen from Figure 5A, these extra
nucleotides create an extended kink of the motif. This ad-
dition of structural features can be expected to have some
additional functional implications.
All the subfamily representatives have two common non-

canonical interactions - ‘A/A H/H trans’ and ‘G/A S/H
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Figure 6. Subfamily result analysis for the sarcin-ricinmotif family. The coloring scheme for the representativemotifs is the same as Figure 4. Superimposed
motifs, along with the 3D images and interactions of the subfamily representatives for (A) 55 motif instances of SR-Sub1, (B) seven motif instances of
SR-Sub2, (C) seven motif instances of SR-Sub3 and (D) three motif instances of SR-Sub4.

trans’, which corresponds to the consensus de�ned by
Leontis et al. (36). rKT-Sub1 has one interaction that is in
a similar location as rKT-Sub2 and rKT-Sub3, but the in-
teraction is annotated as ‘H/H cis’ instead of ‘W/H trans’.
Both rKT-Sub1 and rKT-Sub2 have another common ‘H/S
cis’ interaction which is absent in rKT-Sub3. Further bio-
logical analysis on these subfamilies can provide insight into
the various roles the reverse kink-turn may play in living
cells.

Sarcin-ricin

Sarcin-ricin is another very-well studied motif family and
recognized site for critical functional interactions with pro-
teins (13). It is an asymmetric internal loop with its charac-
teristics S-like twist. For the 72 instances of the sarcin-ricin
family, we have discovered four subfamilies with 55, 7, 7 and
3 instances. The visualization of the subfamilies is shown in
Figure 6. The SR-Sub1 is the largest subfamily with 55 in-
stances and represents traditionally well-known instances

of the sarcin-ricin family. The representative motif of this
subfamily contains the G/U/A base triplets that have been
emphasized highly in (28) as strictly conserved. Overall, the
motif shows two ‘H/S trans’, one ‘W/H trans’, one ‘H/S
cis’ and one ‘H/H trans’ interactions. These interactions,
along with the sequence of this motif, also match exactly
with the known sarcin-ricin consensus (21). The other sub-
families (SR-Sub2, SR-Sub3, SR-Sub4) forms the charac-
teristics S-turn of sarcin-ricin motifs but deviates from the
well-known instances in terms of interactions and sequence
properties. While some of the features correspond to the ex-
pected variations in the known �exible region of sarcin-ricin
(28), some features are quite unique and show �exibility op-
tions in other regions too.
SR-Sub3 contains one ‘H/S trans’ and one ‘H/H trans’

interaction, which corresponds with the interactions in SR-
Sub1. Compared to SR-Sub1 interactions, it ismissing three
interactions and contains an additional ‘S/S trans’ interac-
tion. SR-Sub2 has a ‘W/H trans’ interaction, which cor-
responds with SR-Sub1, but that is the only interaction
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match. SR-Sub2 additionally has another ‘W/H trans’ and
a ‘W/W trans’ interaction. SR-Sub4 also has some inter-
esting features. First of all, it only has one interaction––a
‘W/H cis’. However, it has symmetric sarcin-ricin like struc-
tural twists in both strands, which is not the case for other
subfamilies. Sarcin-ricin being a well-studied motif and
known to have very conserved sequence and structure, the
variations discovered through these subfamilies provide op-
portunities to explore new directions to understanding the
properties of this motif family.

CONCLUSION AND DISCUSSION

In this manuscript, we presented RNAMotifContrast, a
novel computational approach to discover RNA structural
motif subfamilies. It takes the instances of aRNA structural
motif family as input and generates one or more subfami-
lies as output. Additionally, optimized superimpositions of
themotifs and side-by-side images are produced to visualize
the variations among the motif instances of a family. The
similarity graph to determine the relationship among the
instances and the traversal algorithm to generate the super-
imposition are the two major features of RNAMotifCon-
trast. The subfamilies we identi�ed provide signi�cant in-
sights into the characteristics of RNA structural motif fam-
ilies compared to the resources of existing motif databases.
We have identi�ed the sources of the structural varia-

tions among the subfamilies in terms of sequence and in-
teractions. While our identi�ed sources can explain most of
them, there is a possibility that the variation for some in-
stances come from the coordinate error due to resolution
problems in the PDB data, or problems in interaction an-
notations, or the clustering result. Those are some inherent
characteristics of the data we are using as input and not ad-
dressed in our method. However, only a small percentage of
instances are likely to be characterized in those categories,
and the effects on results are expected to be insigni�cant.
RNAMotifContrast provides the infrastructure for ex-

tensive future research to analyze the characteristics of
RNA structural motifs. We have taken a signi�cant step in
utilizing this method and showing its effectiveness by fo-
cusing on a dataset which considers the union of motif in-
stances from the work of Ge et al. and the RNA 3D Motif
Atlas. In the future, more instances of motif families will
improve the result even further, as more data will provide
a better understanding of other possible variations and im-
prove the estimate of the alignment length threshold. Ad-
ditionally, this method can be con�gured to apply on any
structure to compare and contrast, including longer RNA
components and even proteins. The con�guration required
for this extension includes providing pairwise alignments as
input and de�ning the set of atoms in the residues to be used
for superimposition.
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RNAMotifContrast source codes are available at the
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The detailed results are available on the Supplementary
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