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ABSTRACT

Automated RNA alignment algorithms often fail to recapture the essential conserved sites that are critical for function. To assist
in the refinement of these algorithms, we manually curated a set of 148 alignments with a total of 9600 unique sequences, in
which each alignment was backed by at least one crystal or NMR structure. These alignments included both naturally and
artificially selected molecules. We used principles of isostericity to improve the alignments from an average of 83%–94%
isosteric base pairs. We expect that this alignment collection will assist in a wide range of benchmarking efforts and provide new
insight into evolutionary principles governing change in RNA structural motifs. The improved alignments have been contributed
to the Rfam database.
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INTRODUCTION

Multiple sequence alignments are critical for understanding

evolutionary principles including phylogenetic relationships

among sequences (Thompson et al. 2005; Brown et al.

2009) and functional principles such as critical active sites,

or even elements of three-dimensional (3D) structures, re-
vealed through patterns of conservation (Cruz and Westhof

2011). The alignment can even have more of an influence

on the inferred phylogeny than does the phylogeny in-

ference method (Loytynoja and Goldman 2008; Wong et al.

2008). In studies of RNA, large alignments such as those in

the CRW (Cannone et al. 2002) and in Rfam (Griffiths-

Jones et al. 2003) have been useful for identifying new
family members and inferring the secondary structures they

contain. Tools such as INFERNAL (Nawrocki et al. 2009)

have greatly assisted in this endeavor, especially as the data-

bases continue to grow.

Improved alignments of natural and artificial RNAs will

also increase our ability to test hypotheses about RNA evo-

lution and architecture. Clear patterns of nucleotide com-

position have been noted in both natural and artificial RNA
families (Wang and Hickey 2002; Gan et al. 2003; Gevertz

et al. 2005; Knight et al. 2005; Smit et al. 2006, 2007, 2009),

and one fascinating question is thus whether RNAs shaped

by natural selection share similar features with those ar-

tificially selected in the laboratory. Comparing natural and

artificial RNAs is important because such comparisons tell

us whether we are seeing contingent features of organisms
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as they have evolved on Earth, or universal principles of

RNA architecture (Yarus and Welch 2000). Artificial

RNAs also provide ideal test cases for homology compar-

ison methods because they provide a test set of sequences

that are known to be nonhomologous with each other, or

with any natural RNA. A key question is whether tertiary

motifs (Batey et al. 1999; Leontis and Westhof 2002) reliably

recur among different classes of RNAs and can be used as
universal building blocks for synthetic biology of functional

RNAs (Jaeger and Chworos 2006; Jossinet et al. 2010).

There has been substantial progress toward automated

alignment methods, although they are still relatively in-

accurate, especially for distantly related RNAs (Gardner

et al. 2005). Most alignment programs do not incorporate

features such as isostericity (Leontis and Westhof 1998)

and compositional preference (Smit et al. 2009) that are

known to be important in RNA evolution. BoulderALE

(Stombaugh et al. 2011) incorporates both of these features,

allowing construction of manually curated, high-quality

alignments that can be used to improve algorithms for
automated methods.

When evaluating an alignment of RNA molecules,

nucleotides are aligned based on conservation, which can

be at the level of the nucleotide or at the level of structure

FIGURE 1. Overview of workflow for alignment.
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(secondary or 3D). The evaluation of an alignment at the

level of structure consists of understanding the nucleotide

interactions and the effects of nucleotide mutations on

those interactions. For instance, if NT1 and NT2 form a

specific base pairing, a mutation of NT1 could affect the

base-pairing interaction to NT2. Leontis et al. (2002)

classified all RNA base-pairing interactions into 12 geo-

metric families. Then, using qualitative methods, they id-
entified the base pairs within a family that could be easily

substituted for one another without disrupting the structure,

otherwise known as isostericity (Leontis et al. 2002). In a more

recent publication, Stombaugh et al. (2009) extended this

notion by developing the IsoDiscrepancy Index (IDI), a quan-

titative method for classifying each base pair into an isosteric

group. When determining the IDI between two base pairs, the

method determines three attributes: (1) if the C19–C19
distances between the interacting nucleotides are nearly

identical; (2) if the corresponding nucleotides form hydrogen

bonds between equivalent atoms; and (3) if the rotational

matrices between corresponding nucleotides are nearly iden-

tical (Stombaugh et al. 2009). Using these three attributes, the

IDI between two base pairs can be calculated, where lower

IDIs (<2) refer to isosteric base pairs.

Therefore, we constructed a large collection of crystal and
NMR structures that were related to multiple sequence align-

ments using the procedure shown in Figure 1. This collection

of manually curated alignments backed by experimentally

determined atomic-resolution structures provides us both

with an ideal training set for further algorithm development

and with seeds for more sensitive database searches.

RESULTS AND DISCUSSION

We chose the 3D structures by manually examining all

NMR and atomic-resolution crystal structures in the PDB
containing RNA with a resolution <4.1 Å up to October

2011 (except for the 5S rRNA PDB 1YL3, which was 5.5 Å).

Base-pair information was derived from each structure

using FR3D (Sarver et al. 2008). Redundant sequences,

defined as structures with identical base composition and

base pairing, were dropped from the data set, typically by

choosing the most recent and/or highest-resolution struc-

ture. Structures for which no homologous sequences could
be found in Rfam (Griffiths-Jones et al. 2003), the tRNA

database (Juhling et al. 2009), the Aptamer Database (Lee

et al. 2004), or as readable figures in the literature (Guo

et al. 1993; Burgstaller and Famulok 1994; Jenison et al.

1994; Pan et al. 1994; Wallis et al. 1995; Wang and Rando

1995; Famulok and Huttenhofer 1996; Jiang et al. 1996,

1997, 1999; Wang et al. 1996; Yang et al. 1996; Zimmermann

et al. 1997; Wilson et al. 1998; Kim et al. 1999, 2000; Seelig
and Jaschke 1999; Giedroc et al. 2000; Collins 2002;

Lafontaine et al. 2002; Wang and Hickey 2002; Licis and

van Duin 2006) were excluded from the analysis.

FIGURE 2. Comparison of original and improved alignments. The manually curated alignment scores (y-axis) are compared with each of three
kinds of automated alignment (x-axis): inserting the PDB sequence with INFERNAL (white), inserting the PDB sequence with MUSCLE (red),
and building the alignment de novo with MUSCLE (black). Scores are based on fraction of non-isosteric base pairs. Data are supplied in
Supplemental Table S2.
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The manually curated alignments were substantially im-

proved over automated alignments produced using MUSCLE

(Edgar 2004) or INFERNAL (Nawrocki et al. 2009), with

essentially all showing an improvement in the fraction of

non-isosteric base pairs (Fig. 2). An example of the

Hammerhead ribozyme MUSCLE alignment versus the

manually curated alignment is shown in Figure 3. For
these alignments, the crystal structure sequence (PDB:

379D) was aligned to a homologous set of sequences from

Rfam (RF00163): Note the substantially lower number of

gaps and increased number of aligned positions in the

manually curated alignment, which improve the IDI

scores for a given alignment. On average, alignments in

which the manual curation affected a greater number of

positions also improved more substantially (Fig. 4), as

measured by IDI score (Stombaugh et al. 2009): The

curated alignments had an average IDI score of 0.94,

compared with an average score of 0.87 for INFERNAL

alignments and 0.83 for the two MUSCLE alignment
methods (see Materials and Methods). Relative to the

automatically generated alignments, the IDI scores of the

curated alignment improved 32% of the sequences rela-

tive to INFERNAL, 39% relative to MUSCLE, and 49%

relative to the MUSCLE realigned method. The IDI scores of

FIGURE 3. BoulderALE screenshots showing Hammerhead ribozyme alignment (Rfam: RF00163), where MUSCLE was used to align the
corresponding crystal structure (PDB: 379D) sequence (A) versus the manually curated alignment (B). The colors from BoulderALE highlight
isosteric (green), non-isosteric (pink), and not allowed (blue) covariations with respect to the 3D structure. For this alignment, there is an element
expansion, and as you can see in A, MUSCLE aligned the X-ray crystal structure to a portion of the insertion. For the manual alignment (B), we
shifted the X-ray crystal structure to align with the appropriate corresponding region.
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the curated alignment decreased in 1.6% of the sequences

relative to INFERNAL, 1.0% relative to MUSCLE, and 1.6%

relative to the MUSCLE realigned method. Finally, the

SPuNC scores, which calculate how well the RNA secondary

structure predicted by an alignment matches the known

compositional preferences for that secondary structure

type (Smit et al. 2009), were substantially improved in the

curated alignments over the automated alignments (Table
1). Consequently, manual curation substantially improved

the overall alignment quality, as shown by two distinct

measures.

Overall, 146 of the 148 alignments showed equal or im-

proved IDI scores. The two exceptions were special cases.

The valine tRNA alignment (RST00143.sto), which applies

the base-pairing information from PDB ID: 1J2B, only aligns

optimally when base-pairing information from all available
crystal structures is taken into consideration, possibly sug-

gesting structural variation. For this alignment there were

three corresponding X-ray crystal structures, thus we in-

serted all three sequences from those structures and applied

the FR3D base-pairing information for each structure in-

dependently to determine the quality of the manually curated

alignment. The VS ribozyme alignment (RST00145.sto)

using the base-pairing information from PDB ID: 1HWQ
has a different issue: The automated alignment has the first

base pair at the start of extremely long sequences, then

inserts z100 bases until the next base pair on both sides,

thereby getting a perfect IDI score. In the curated align-

ment, the closing base pair is next to all of the other base

pairs, producing a non-isosteric substitution. However, this

substitution is more likely as the true alignment and is

sterically acceptable at the end of the helix.

As an example of the utility of a structure-backed align-

ment database incorporating both natural and artificial

RNAs and using consistent methodology, we compared

natural RNA families with artificial RNA families in terms

of their rates of change of GC content across specific
structural categories. On average, the total GC content did

not differ substantially between natural (Fig. 5A) and

artificial (Fig. 5B) RNAs (t = 1.29, p = 0.198). When we

look at the responses to altered GC in the multiple

sequence alignment within each category, we see a remark-

able degree of universality in the response. Figure 6 shows

the scatterplots of total GC content of natural sequences

(Fig. 6A) and artificial sequences (Fig. 6B) against GC
content of each structural category (stems, loops, bulges).

For each structural category, the slopes of regression were

determined and are represented as histograms in Figure 7

separated by structural category—stem (Fig. 7A), loop (Fig.

7B), and bulge (Fig. 7C). The t-test comparing natural

versus artificial distributions of slopes shows that the

difference in responses in stems is significant between

natural and artificial RNA families (t = 2.63, p < 0.01),
but the difference in responses in bulges and loops is not

significant (p > 0.6 in both cases). The apparent difference

in stem responses is likely driven by the greater range of

mutation pressures that genomes experience relative to

artificial RNA pools. A more sophisticated ANCOVA anal-

FIGURE 4. Alignments that underwent greater change during the manual curation process also improve more as shown by the change in IDI
between the curated alignment and the three kinds of automated alignments: INFERNAL (white), MUSCLE (red), and de novo MUSCLE (black).
The y-axis shows average IDI score change, and the x-axis shows the average fraction of changed base-pairing positions within an alignment. Data
are supplied in Supplemental Table S3.
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ysis, which separates out the effects of covariation in each

category, suggests that interaction effects are at best weak

(uncorrected interaction P-values are 0.02 for stems, 0.51 for

loops, and 0.15 for bulges; none are statistically signif-
icant when corrected for multiple comparisons). Conse-

quently, the results are consistent with the idea that

universal patterns of compositional change under GC

content variation hold for both natural and artificial

RNA families.

CONCLUSIONS

Manual alignments, especially those backed by crystal

structures, still substantially outperform automated tech-

niques by a range of metrics, suggesting that substantial

improvement in algorithms is still possible. Since scoring

schemes such as IDI and SPuNC can detect the improve-

ment in manually curated alignments, incorporation of

these metrics of isostericity and sequence composition into
automated alignment software will likely lead to improve-

ments in automated techniques.

IDI scores could provide an important filter for motif

searching in large sequence databases, such as those now

generated by sequencing SELEX pools or by metagenomics.

More broadly, improved manually curated alignments will

assist with benchmarking different RNA alignment and

structure prediction algorithms and provide a training set
for ongoing development of these algorithms as well as

providing us insight into how RNA molecules evolve.

MATERIALS AND METHODS

Our choice of alignments was based on a requirement that there

was a corresponding crystal structure or NMR structure in the

Protein Data Bank (PDB). A full list of alignments and their

corresponding PDBs is found in Supplemental Table S1. We did

not accept poor-resolution (>4.1 Å with the exception of 5S rRNA

PDB 1YL3, which was 5.5 Å) or cryo-EM structures for our

reference structures. Redundant structures and those superseded

by newer structures were not included in the curated alignments.

Base-pair lists corresponding to each X-ray crystal structure

were downloaded from the ‘‘Find RNA 3D’’ (FR3D) website (Sarver

et al. 2008) (http://rna.bgsu.edu/FR3D/AnalyzedStructures/). FR3D

classifies all canonical and noncanonical base-

pair interactions for a given RNA 3D structure

using the Leontis and Westhof (2001) base-

pair nomenclature, which has been adopted by

the RNA Ontology Consortium as the stan-

dard annotation scheme for RNA base-pair

interactions (Hoehndorf et al. 2011).

Structures that were identical or super-

seded by newer structures were eliminated

from the analysis. Redundant sequences

were eliminated from the analysis. Sequences

introducing gaps in >95% of the positions in

the alignment were also eliminated from the

analysis. After these filter criteria, we ended

up with 9600 nonredundant sequences corresponding to 148

unique structures.

Sequences were aligned using INFERNAL 1.0.2 and MUSCLE

3.7. For the INFERNAL alignments containing a secondary

structure, we aligned the PDB sequence to the alignment with

FIGURE 5. (A) Histogram of average GC content split up by
structural category for naturally occurring sequences. (B) Histogram
of average GC content split by structural category for artificially
occurring sequences.

TABLE 1. Averages from SPuNC output for manually curated alignments, INFERNAL
automated alignments, MUSCLE automated alignments, and MUSCLE realigned alignments

Alignment
Unweighted
extreme

Unweighted
trained

Weighted
extreme

Weighted
trained

Curated 1.361414599 0.911091926 1.659870363 1.099245743
Infernal 1.376352659 0.958821011 1.680768259 1.141649617
Muscle 1.414364163 0.988129238 1.737054868 1.159960456
Muscle realigned 1.597322008 1.07525067 1.962070865 1.308403591

The manually curated alignments as a whole comply far better with overall compositional
preferences in different RNA structure regions as reported by Smit et al. (2008).
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default parameters. For the cases in which no secondary structure

was present, we built a CM with cmbuild (using the–ignorant flag)

and used an unpaired placeholder for the consensus secondary

structure, then aligned the PDB sequence to this alignment with

cmalign. MUSCLE alignments were produced using two methods:

(1) find the best pairwise match in an existing alignment to the

PDB sequence, then insert the PDB sequence into the full alignment

with MUSCLE and align it to its best match; (2) using an existing

alignment, remove all gaps in all sequences, then use MUSCLE to

realign the entire alignment and insert the PDB sequence into this

alignment using MUSCLE in the same way as the first method.

Curation of alignments was done using BoulderALE, where we

were able to apply Watson-Crick and non-Watson-Crick base-

pair information onto the alignment. Using the base-pairing

information, we were able to manually curate the alignment to

optimize isostericity. For some cases, manual inspection of the

X-ray structure was necessary to determine the reliability of speci-

fic base-pair interactions and for insight into the appropriate lo-

cation for insertion/deletions.

We used several scoring schemes to assess the quality of the

curated versus the automated alignments. The simplest way to score

the alignments was to calculate the total entropy of the alignment.

This is done by using the frequency of all nucleotides in each

position (column) of the alignment to calculate the Shannon

entropy for that position. The entropy values for each position

can vary from 0 (absolutely conserved) to 2 (completely degener-

FIGURE 6. Scatterplot of total GC content (y-axis) of natural (A) and artificial sequences (B) against GC content of each structural category
(stem, loop, bulge) of the same sequences on the x-axis.
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ate). These values were then summed for the entire alignment.

However, we found that this simple method lacked statistical power

to discriminate even among visually very good and very bad align-

ments (data not shown).

We also scored the alignments based on isostericity of base

pairs that are known to form in the crystal/NMR structures. Using

the 3D base interaction annotations from FR3D (Sarver et al.

2008), we were able to assess the quality of the pairing regions of

the alignments. Using the PDB sequence as a reference, for each

sequence, each base pair was assigned a value of 1 for isosteric

and near-isosteric or a value of 0 for non-isosteric or not allowed.

The sequence was then given a score that represented the fraction

isosteric/near-isosteric base pairs. The alignment score is the

average of each sequence’s score, ranging from 0.0 (completely

non-isosteric/not allowed) to 1.0 (perfectly isosteric/near-isosteric).

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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