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Abstract

DNA methylation is a widely investigated epigenetic mark with important roles in development and disease. High-
throughput assays enable genome-scale DNA methylation analysis in large numbers of samples. Here, we describe a
new version of our RnBeads software - an R/Bioconductor package that implements start-to-finish analysis workflows
for Infinium microarrays and various types of bisulfite sequencing. RnBeads 2.0 (https://rnbeads.org/) provides
additional data types and analysis methods, new functionality for interpreting DNA methylation differences, improved
usability with a novel graphical user interface, and better use of computational resources. We demonstrate RnBeads
2.0 in four re-runnable use cases focusing on cell differentiation and cancer.
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Background

DNA methylation at CpG dinucleotides is a widely studied

epigenetic mark that is involved in the regulation of cell

state and relevant for a broad range of diseases. Changes in

DNA methylation at promoters and enhancers have been

associated with cell differentiation, developmental pro-

cesses, cancer development, and regulation of the immune

system. The vast majority of current assays for DNA

methylation profiling use bisulfite treatment to selectively

convert unmethylated cytosines (including 5-formyl-cyto-

sine and 5-carboxy-cytosine) into uracil (which is subse-

quently replaced by thymine), while methylated cytosines

(including 5-hydroxy-cytosine) remain unconverted. Bisul-

fite conversion thus transforms DNA methylation informa-

tion into DNA sequence information that can be read by

next-generation sequencing or DNA microarrays [1, 2].

Whole-genome bisulfite sequencing (WGBS) constitutes

the current gold standard for DNA methylation profiling,

given its genome-wide coverage and single-basepair resolution

[3]. However, WGBS requires deep sequencing of the entire

genome (which is a significant cost factor), while shallow

sequencing leads to poor sensitivity for detecting small differ-

ences in DNA methylation. Reduced representation bisulfite

sequencing (RRBS) offers a cost-effective alternative for profil-

ing large sets of patient samples, by focusing the sequencing

on a subset of the genome enriched using restriction enzymes

[4]. RRBS is particularly useful for studying DNA methylation

heterogeneity, which profits from deep sequencing coverage

and from analyzing many samples using a sequencing-based

assay [5–8]. Target-capture bisulfite sequencing enables the

analysis of a defined set of genomic regions in large numbers

of samples at low cost per sample, but with high setup cost [9,

10]. Finally, the microarray-based Infinium DNA methyla-

tion assays—including the MethylationEPIC BeadChip

(EPIC) and its predecessor, the HumanMethylation450

BeadChip (450k)—facilitate standardized, high-throughput

DNA methylation profiling of a pre-defined subset of

CpGs in large sample cohorts [11, 12].

These assays have enabled DNA methylation mapping

for a large number of cell types [13, 14] and, following the

concept of epigenome-wide association studies (EWAS),

for various diseases with a suspected role of epigenetic

regulation [15, 16]. The resulting datasets typically com-

prise DNA methylation profiles as well as sample annota-

tions such as tissue or cell type, phenotypic data (donor

age, sex, etc.), and sample grouping (case vs. control,

treated vs. untreated, etc.). The primary goal for the
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bioinformatic analysis of such datasets is to identify charac-

teristic and reliable DNA methylation patterns, and to asso-

ciate them with relevant annotation data. While various

software packages exist that support individual steps of the

DNA methylation analysis (reviewed in [17–20] and sum-

marized as a feature table in Additional file 1: Table S1),

many users would benefit from an integrative analysis tool

that provides extensive, easy-to-understand analysis reports

and that requires minimal configuration and no detailed

bioinformatic knowledge of the various analysis steps.

We have previously developed the RnBeads software

package [21] as a start-to-finish pipeline for DNA methyla-

tion analysis in accordance with established standards and

practices [16–18]. Initially released in 2012 and published

in 2014 [21], RnBeads has become a popular and widely

used tool for DNA methylation analysis (200–300 down-

loads per month from Bioconductor). Here, we present a

new, substantially extended version of RnBeads, providing

an up-to-date, user-friendly, feature-rich, and readily scal-

able workflow for the bioinformatic analysis of DNA

methylation datasets. The new RnBeads 2.0 software pack-

age addresses feedback and feature requests from the tool’s

active user community, implements new analysis methods,

introduces a graphical user interface, and improves

computational efficiency. With these advances, RnBeads

provides state-of-the-art support for DNA methylation

data analysis in an easy-to-use way, with high flexibility

and performance.

Results and discussion

RnBeads overview and new features

RnBeads includes modules for data import, quality control,

filtering and normalization (“preprocessing”), export of

processed data (“tracks and tables”), covariate inference

(e.g., predicting epigenetic age and cell type heterogeneity

from DNA methylation data), exploratory analysis (e.g., di-

mension reduction, global distribution of DNA methyla-

tion levels, hierarchical clustering), and differential DNA

methylation analysis (Fig. 1). Each analysis module gener-

ates an HTML report that combines method descriptions,

results tables, and publication-grade plots. These reports

provide the user with a comprehensive and readily sharable

summary of the dataset.

Fig. 1 Overview of the RnBeads analysis workflow and new features added in RnBeads 2.0. Conceptual drawing of the RnBeads workflow for
DNA methylation analysis, listing key features (right) for each of the RnBeads analysis modules (center), with newly added features indicated in
bold red text. tab, tabular (e.g., comma-separated) files; idat, Infinium signal intensity files; geo, download from the GEO data repository
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Of the various features that we introduced into

RnBeads since the original publication in 2014, we

specifically highlight the following four areas:

1. New data types and cross-platform analysis:

RnBeads now supports EPIC microarrays and

enables seamless data integration across different

DNA methylation assays (e.g., EPIC, 450k, and 27k

microarrays as well as WGBS and RRBS), which

facilitates DNA methylation meta-analyses that

combine several data sources into a single set

of results.

2. Extended analysis and inference methods: We added

new functionality for handling incomplete data and

missing values, for detecting genetic evidence of

sample contamination or low data quality, for

quantifying DNA methylation heterogeneity, and

for DNA methylation-based inference of phenotypic

information. We incorporated the LUMP algorithm

[22], which estimates immune cell content of tumors

and other heterogeneous tissue samples, and epigenetic

age prediction [23] for both Infinium microarray and

bisulfite sequencing data. These predictions are useful

not only for inferring missing donor annotations, but

also for detecting deviations indicative of accelerated

aging [24] or evidence of sample mix-ups. Additional

new features include the identification of genomic

regions characterized by differential DNA methylation

variability [25, 26] and genomic region enrichment

analysis using the LOLA tool [27].

3. New user-friendly interface: We provide a graphical

user interface for RnBeads that facilitates the

configuration and execution of DNA methylation

analyses. Together with RnBeads’ interactive and self-

explanatory HTML reports, this new interface makes

RnBeads analyses more readily accessible for users

with limited R/Bioconductor knowledge.

4. Improved computational efficiency: Using

parallelization and automatic distribution of RnBeads

analyses across a high-performance computing (HPC)

cluster, we were able to process datasets comprising

hundreds of RRBS/WGBS profiles and thousands of

microarray-based profiles in a single analysis run.

To illustrate the practical utility of these new RnBeads

features, we present four use cases: (i) DNA methylation

in human peripheral blood samples, (ii) cell type-specific

DNA methylation in human hematopoiesis, (iii) DNA

methylation heterogeneity in cancer samples, and (iv)

cross-platform DNA methylation analysis. Detailed

re-runnable versions of these analyses, including config-

urations and results, are available for visualization and

download from the RnBeads website (https://rnbead-

s.org/methylomes.html). These pre-configured analyses

and pre-calculated reports also provide a good starting

point for learning about the use of RnBeads, thereby

complementing the tutorials provided on the RnBeads

website (https://rnbeads.org/tutorial.html), and for con-

figuring custom analyses that integrate newly generated

datasets with publicly available reference data.

Use case 1: Analyzing DNA methylation in a large cohort

of peripheral blood samples

To illustrate the use of RnBeads for analyzing DNA

methylation microarray data in a large cohort, we

obtained Infinium 450k profiles for peripheral blood

samples of 732 healthy individuals [28]. We also in-

cluded reference profiles for sorted blood cell types [29],

in order to account for inter-individual differences in the

frequency of different cell types [30]. First, we used

RnBeads to infer donor age and sex for each sample,

thereby filling in a handful of missing annotations with

imputed values, while also checking for potential sample

mix-ups among those samples that have donor age and

sex documented as part of their annotation (Fig. 2a, b).

Second, we performed reference-based estimation of im-

mune cell composition [30] as implemented in RnBeads,

and we found that the inferred immune cell content [22]

(as well as other annotations) are indeed associated with

important principal components of the DNA methyla-

tion dataset (Fig. 2c, d). Our results emphasize the need

to correct for these covariates when identifying CpGs

and genomic regions that are associated with the anno-

tation(s) of primary interest. Third, we compared

chronological age with the fraction of CD4+ T cells in-

ferred from the DNA methylation data using sorted

blood cell types as reference [30] (Fig. 2e) and observed

a negative correlation, consistent with the known

age-related shift toward myeloid (instead of lymphoid)

hematopoiesis [31]. In summary, this use case illustrates

the prediction of age, sex, and cell composition based on

DNA methylation data, and it provides a framework for

microarray-based epigenome-wide association studies.

Use case 2: Dissecting the DNA methylation landscape of

human hematopoiesis

The efforts of the International Human Epigenome Con-

sortium [14] and its contributing projects have resulted

in large sets of publicly available WGBS data for various

cell types. To demonstrate RnBeads’ ability to process

such large reference collections, we analyzed a DNA

methylome dataset comprising 195 WGBS profiles and

26,238,599 unique CpG sites (after the preprocessing

step) for various hematopoietic cell types (Fig. 3a), which

was originally established by the BLUEPRINT project

[32]. Focusing on pre-defined genomic region sets in-

cluding the Ensembl Regulatory Build [33], we observed

the expected distribution of DNA methylation, with high
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levels of DNA methylation in genome-wide tiling

regions, slightly lower levels at enhancers and transcrip-

tion factor binding sites, and much lower levels (and a

bimodal distribution) of DNA methylation at gene

promoters and transcription start sites (Fig. 3b). The

DNA methylation profiles clustered according to cellular

lineage (lymphoid vs. myeloid cells), cell maturation

stage (naïve vs. effector/memory cells), and cell type

(Fig. 3c). Comparing two myeloid cell types (monocytes

and neutrophils), RnBeads identified decreased DNA

methylation levels in monocytes at a subset of putative

regulatory regions (Fig. 3d). LOLA analysis for enrichment

of genomic region sets [27] (a new feature we

introduced in RnBeads 2.0 to facilitate biological inter-

pretation) identified characteristic enrichment for cell

type-specific regulatory regions (including monocyte-

specific open chromatin and its associated histone

modifications) and for the binding sites of important

hematopoietic transcription factors such as CEBPB and

SPI-1/PU.1. In summary, this use case demonstrates

the scalability of RnBeads to large DNA methylation

datasets (which involves the distribution of analysis

a

d e

b c

Fig. 2 Analysis of a large DNA methylation dataset of blood samples profiled using Infinium 450k. a Scatterplot showing the correlation between epigenetic
age predicted from DNA methylation and reported chronological age for 729 healthy donors (three individuals were excluded because no chronological age
was reported). b Positioning of the samples in two-dimensional space for sex prediction. c Statistical association between principal components (columns) and
sample annotations (rows). Significant associations with p values below 0.01 are marked by filled circles, while non-significant values are represented as empty
circles. d Principal component analysis for 792 blood-based DNA methylation profiles, comprising 732 peripheral blood samples and 60 sorted blood cell
populations, using the same principal components as in panel c. Immune cell content was estimated using the LUMP algorithm. e Scatterplot showing the
negative correlation between chronological age and the estimated fraction of CD4+ T cells
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jobs across an HPC cluster for efficient parallelized cal-

culation), region-based analysis of DNA methylation,

and biological interpretation by region set enrichment

analysis.

Use case 3: Quantifying DNA methylation heterogeneity

in a childhood cancer cohort

Epigenetic heterogeneity has recently emerged as a

key property of tumor samples [34]. To demonstrate

the utility of RnBeads for cancer research, we

re-analyzed 188 recently published RRBS profiles of

Ewing sarcoma tumors, cell lines, and mesenchymal

stem cells [7]. Ewing sarcoma is a pediatric bone can-

cer characterized by low genetic heterogeneity but

striking changes in the epigenome [7, 35]. Data pro-

cessing and quality control resulted in 2,217,186

unique CpG sites that were covered by at least five

sequencing reads in more than 50% of the samples.

Based on these CpGs, we aggregated DNA methyla-

tion values in each sample across annotated genomic

regions, including putative regulatory elements de-

fined in the Ensembl Regulatory Build [33]. Principal

component analysis showed the expected separation

between tumors, cell lines, and mesenchymal stem

cells, with higher sample-to-sample heterogeneity

among the tumors and cell lines compared to mesen-

chymal stem cells (Fig. 4a). We compared the primary

tumors with the cell lines using the differential DNA

methylation module of RnBeads, and we found that most

of the differentially methylated regions were hypermethy-

lated in the cell lines (Fig. 4b). We also observed increased

variance in the cell lines (Fig. 4c). LOLA analysis detected

markedly different enrichments among differentially

methylated regions (DMRs) and differentially variable
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regions (DVRs), indicating that the two measures provide

complementary information about the DNA methylation

landscape (Fig. 4d–f ). Regions hypermethylated in Ewing

sarcoma cell lines were enriched for DNase hypersensitive

sites in various healthy tissue samples (Fig. 4d), consistent

with the widespread hypermethylation and silencing

of non-essential regulatory regions in cell lines. In

contrast, hypervariable regions were enriched for

transcription factor binding and histone modifications

in cancer cell lines and embryonic stem cells (Fig. 4f ),

indicative of increased regulatory plasticity of the

Ewing sarcoma cell lines compared to the primary

tumors. In summary, this use case describes the

analysis of an RRBS-based dataset (which benefits

from region-based analysis due to fluctuations in

single-CpG coverage), and it demonstrates the utility

of RRBS and RnBeads for investigating DNA methyla-

tion heterogeneity in tumor samples.

Use case 4: Analyzing DNA methylation data across

different assay platforms

Several generations of Infinium DNA methylation mi-

croarrays have been used over the years, and it can

be necessary to combine multiple datasets in an inte-

grative analysis. RnBeads now provides dedicated

methods for cross-platform analysis, making it
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possible to combine RnBeads data objects across the

different versions of the Infinium microarray (27k,

450k, EPIC) and with bisulfite sequencing data (RRBS,

WGBS). To demonstrate this feature, we analyzed a

benchmarking dataset comprising three different assay

platforms: Infinium 450k microarrays, Infinium EPIC

microarrays, and WGBS [36]. All three datasets were

loaded and preprocessed separately using RnBeads,

which resulted in data objects with 443,053 (450k),

801,716 (EPIC), and 25,918,426 (WGBS) unique CpG

sites, respectively. Applying the RnBeads method for

combining datasets with the option of including only

CpGs covered by all three platforms, these objects

were merged into a combined dataset comprising

408,621 shared CpGs. This combined dataset was

processed using the RnBeads analysis modules. We

observed differences in the global distribution of

DNA methylation levels between assays (Fig. 5a).

Nevertheless, the principal component analysis

showed that the biological differences between sam-

ples dominated over the technical differences between

platforms (Fig. 5b). Focusing specifically on the com-

parison between a prostate cancer cell line (LNCaP)

and prostate epithelial cells (PrECs), we observed the

highest correlation between replicates for the same

assay in the same cell type (Pearson’s r = 0.9979,

Fig. 5c). Nevertheless, the correlation between differ-

ent assays in the same cell type (Pearson’s r = 0.9655,

Fig. 5d) was still high and much stronger than the

correlation between different cell types for the same

assay (Pearson’s r = 0.6471, Fig. 5e). In summary, this

use case highlights the feasibility and practical utility

of cross-platform analysis of DNA methylation using

RnBeads.
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Comparison to other software tools for DNA methylation

analysis

To assess the computational efficiency of RnBeads, we

compared its performance to that of other software

packages for DNA methylation analysis [37–40], separ-

ately for DNA methylation microarray data, RRBS data,

and WGBS data (see the “Methods” section for details

and Additional file 2: Table S2 for tool configurations).

Given that the different tools provide vastly different fea-

ture sets, we considered three scenarios: (i) data import

only, (ii) core modules, and (iii) comprehensive analysis

with most features activated (Additional file 3: Figure S1).

RnBeads was the only tool that supported both

microarray-based and bisulfite sequencing-based analysis.

For microarray-based analysis, the low-level data process-

ing packages minfi, methylumi, and wateRmelon were fas-

ter than ChAMP and RnBeads (which need to prepare the

dataset for their more extensive downstream analyses).

Compared to ChAMP, RnBeads was more memory-effi-

cient and faster in the comprehensive setting. For bisulfite

sequencing-based analysis, RnBeads showed better

performance than methylKit on the WGBS dataset in the

core module setting, but somewhat longer runtime and

higher memory usage on the RRBS dataset. These differ-

ences can be attributed to the reformatting into

memory-efficient data structures that RnBeads performs

during data import. In summary, the runtime performance

of RnBeads was similar to that of other tools with more

limited functionality, suggesting that the choice of the most

suitable tool for DNA methylation analysis depends mainly

on the desired features and analysis modes. To assist with

an informed selection, we thus surveyed a broad range of

tools for DNA methylation analysis and assembled a de-

tailed feature table based on the tool documentations

(Additional file 1: Table S1). RnBeads emerged from this

comparison as the software that implements the most

comprehensive workflow for analyzing DNA methylation

data, while also providing a user-friendly interface and

extensive options for reporting and reproducibility.

Conclusions

RnBeads is an integrated software package for the ana-

lysis and interpretation of DNA methylation data. Due

to its modular design and optional graphical user inter-

face, the software is well suited for both beginners and

experts in the field of DNA methylation analysis. Inter-

active reports provide a comprehensive overview of

DNA methylation datasets while also fostering reprodu-

cibility (by documenting parameter settings) and robust-

ness (by making it easy to evaluate different parameter

settings). RnBeads 2.0 implements various new features

that arose from technological advances and valuable user

feedback. For example, support for the Infinium EPIC

assay and for cross-platform data integration broaden the

scope of RnBeads analyses; new and improved methods

for the DNA methylation-based prediction of age and sex

are useful for large cohort studies; a graphical user inter-

face makes many RnBeads features more easily accessible;

the analysis of DNA methylation variability adds a new

dimension to epigenome-wide association studies; and

LOLA-based region set enrichment analysis facilitates the

biological interpretation of DNA methylation differences.

RnBeads also establishes a convenient way of interfacing

with reference epigenome datasets and integrating them

into custom analyses, as demonstrated by the integration of

sorted blood cell profiles in our first use case. We processed

several such datasets and provide re-runnable analyses on

the website (https://rnbeads.org/methylomes.html). The

presented use cases provide concrete examples for RnBeads

analysis of DNA methylation and illustrate some of the

tool’s key features. Typical applications of RnBeads include

epigenome-wide association studies, reference epigenome

analysis, investigation of cancer heterogeneity, and epigen-

etic biomarker development.

Methods
Installing RnBeads

RnBeads is implemented in R/Bioconductor and can be in-

stalled in the usual way for Bioconductor packages [41].

Furthermore, the “Installation” section on the RnBeads

website (https://rnbeads.org/installation.html) provides an

RnBeads installation script, which validates that all package

dependencies are installed and up to date. The FAQ page

on the RnBeads website (https://rnbeads.org/faq.html) ad-

dresses typical problems and answers common questions.

Finally, users can contact the RnBeads developers

(team@rnbeads.org) for further information and assistance.

Running RnBeads

RnBeads supports any genome-wide or genome-scale

assay that provides quantitative DNA methylation data

at single-CpG resolution. This includes Infinium DNA

methylation microarrays (27k, 450k, EPIC) and bisulfite

sequencing protocols (WGBS, RRBS, etc.). Data obtained

using enrichment-based assays (e.g., MeDIP-seq,

MBD-seq, MRE-seq) can also be processed after their

read-count output has been converted to single-CpG

methylation levels using bioinformatic inference tools

[42–45]. We currently provide RnBeads annotation pack-

ages for the human, mouse, and rat genomes. In addition,

users can prepare customized annotation packages for

their species of interest, using the RnBeadsAnnotation-

Creator package (https://rnbeads.org/tutorial.html). To

start an RnBeads analysis, the user provides a sample an-

notation table as well as the DNA methylation data. For

microarray-based analyses, RnBeads accepts raw signal

intensity files (IDAT) as well as preprocessed DNA methy-

lation data in tabular form. Bisulfite sequencing data are
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imported directly from the output of DNA methylation

calling software such as Bis-SNP or Bismark [46, 47], or as

tabular text files providing genomic coordinates of indi-

vidual CpGs together with their DNA methylation levels

and read coverage. Finally, RnBeads can import DNA

methylation data directly from the Gene Expression

Omnibus (GEO) data portal.

Graphical user interface

A key feature of RnBeads is its self-configuring workflow,

which supports launching of a full DNA methylation

analysis with a single command (rnb.run.analysis(…)) on

the R command line [21]. However, some types of analysis

may require more extensive configuration, for which

RnBeads includes an extensive set of customizable param-

eters (which can be specified in R or imported from XML

configuration files). Moreover, RnBeads provides various R

functions for operating directly on the RnBSet R data

objects used to store and process DNA methylation data

and associated sample annotations in RnBeads. To make

customized RnBeads analysis easier to configure, we have

developed RnBeadsDJ, a graphical user interface for

RnBeads that is based on the R Shiny toolkit (http://shi-

ny.rstudio.com/). This interface allows the user to launch

RnBeads through a web browser and interactively specify

the input data and analysis options. The user can either

launch the complete analysis pipeline or execute modules

individually. A detailed tutorial for RnBeadsDJ is available

on the RnBeads website (https://rnbeads.org/tutorial.html).

Age prediction

DNA methylation patterns have been linked to human

aging and can be used to infer the chronological age of

healthy individuals [23, 48]. Furthermore, the difference

between (predicted) epigenetic age and (known)

chronological age appears to reflect the speed of bio-

logical aging in a way that is predictive of various

health issues [49]. We have incorporated the DNA

methylated-based prediction of epigenetic age into

RnBeads, using elastic net regression at the single-CpG

level (https://rnbeads.org/ageprediction.html). RnBeads

includes pre-trained models for age prediction as well

as the option for users to provide their own training

data. It supports age inference based on both DNA

methylation microarrays and bisulfite sequencing

datasets.

Sex prediction

RnBeads uses differences in copy number of genomic re-

gions located on the sex chromosomes to predict the sex

of sample donors, in order to infer missing annotation

information or to detect sample mix-ups. For microarray

data, sex prediction is based on the comparison of the

average signal intensities for the sex chromosomes with

those on the autosomes, calculating a predicted sex

probability by logistic regression. For bisulfite sequen-

cing data, RnBeads compares the sequencing coverage

for the sex chromosomes with those for the autosomes,

followed by logistic regression trained on datasets with

known sex information.

Region-based analysis

In addition to analysis based on individual CpGs, RnBeads

aggregates and compares DNA methylation levels across

genomic regions of interest, which can enhance statistical

power and interpretability [17]. Extending the default re-

gion sets available in RnBeads (genes and gene promoters,

CpG islands, and genomic tiling regions), the RnBeads

website now provides a collection of additional region sets

for automatic import (https://rnbeads.org/regions.html).

This collection includes region sets defined based on con-

sensus epigenome profiles such as putative regulatory

regions in the Ensembl Regulatory Build [33] and regions

associated with DNA methylation variability [50].

Missing values

The presence of missing values in DNA methylation

datasets constitutes an important analytical challenge,

for which RnBeads implements several alternative solu-

tions, namely: Sample-wise means and medians,

CpG-wise means and medians, random replacement

from other samples in the dataset, and k-nearest neigh-

bor (KNN) imputation. KNN imputation tends to

provide adequate estimates of missing values when

enough nearby data points are available. It has been used

extensively for gene expression microarray data [51], and

it has also been applied to DNA methylation data [8].

For those cases in which the model assumptions of

KNN imputation are not met due to disproportionally

high numbers of missing values (which is not uncom-

mon for bisulfite sequencing datasets), we implemented

the mean and median imputation approaches.

Genetic purity

For the Infinium microarrays, RnBeads implements a

new metric of sample quality that we call “genetic noise”.

This metric quantifies the deviation of the signals of

autosomal single nucleotide polymorphism probes on

the microarray from the expected values of 0 and 1

(homozygosity) as well as 0.5 (heterozygosity) of a

diploid cell. Such deviations can indicate technical prob-

lems of the microarray-based analysis, contamination

with DNA samples from other individuals, or deviations

from the diploid case (e.g., aneuploid cancer samples).
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Cell type heterogeneity

RnBeads implements reference-based and reference-free

methods for estimating intra-sample heterogeneity [21,

30, 52, 53]. This includes reference-based estimation of

immune cell content [30] based on the DNA methyla-

tion profiles of purified blood cell populations [29] as

well as the LUMP algorithm [22] for estimating immune

cell invasion in bulk tumor samples based on a prese-

lected set of CpGs that are exclusively unmethylated in

blood cells. While this algorithm was developed specific-

ally for the Infinium 450k assay, its implementation in

RnBeads supports both microarray-based and bisulfite

sequencing-based assays.

Differential variability

CpGs and genomic regions can differ between cases and

controls not only in terms of their average DNA methy-

lation levels, but also in terms of the variability of DNA

methylation levels; for example, epigenetic variability

may be higher or lower in tumors than in healthy tissue.

In RnBeads, users can choose between two algorithms to

quantify differential variability: diffVar [25] and iEVORA

[26]. DiffVar uses an empirical Bayes framework, while

iEVORA is based on the Bartlett test, which tests for dif-

ferences in variance (heteroscedasticity) across samples.

Striking the right balance between reporting too few and

too many differentially variable cytosines (DVCs) and

differentially variable regions (DVRs) represents an un-

solved statistical challenge, especially when the data do

not follow a normal distribution. Therefore, we imple-

mented a strategy analogous to the identification of

differentially methylated cytosines (DMCs) and differen-

tially methylated regions (DMRs) between sample

groups in RnBeads: DVCs and DVRs are ranked by the

worst (highest) rank of the following criteria: (i) the ad-

justed p value of the statistical test (either diffVar or

iEVORA), (ii) the difference in variance between the

groups, and (iii) the log-ratio of the two group-wise vari-

ances. RnBeads produces summary plots comparing

group-wise variances, p values, and ranks, while also

exporting detailed tables of DVCs and DVRs.

Enrichment analysis

To investigate the biological processes relevant to

observed DNA methylation differences, RnBeads im-

plements region set enrichment analysis using LOLA

[27], in addition to gene set analysis based on Gene

Ontology terms. The LOLA tool compares a set of

genomic regions of interest (i.e., DMRs and/or DVRs)

to a potentially large reference catalogue of region

sets using Fisher’s exact test and derives a ranked list

of significantly enriched region sets. By default,

RnBeads uses the LOLA Core database as a reference,

which includes transcription factor binding sites,

tissue-specific enhancer elements, and genome anno-

tations such as CpG islands and repetitive elements.

Moreover, other LOLA databases such as the LOLA

Extended database (http://databio.org/regiondb) or

user-created databases can be included via RnBeads

option settings. Plots showing enrichment p values

and log-odds ratios visualize the most enriched region

sets in the RnBeads report.

Computational scalability

We have successfully processed datasets comprising

hundreds of RRBS and WGBS samples and thousands of

Infinium microarrays with RnBeads. To handle large

memory requirements, RnBeads uses disk-based matrices

implemented in the ff R package (https://CRAN.R-projec-

t.org/package=ff). Tasks are parallelized using the foreach

(https://CRAN.R-project.org/package=foreach) and

doParallel R packages (https://CRAN.R-project.org/packa-

ge=doParallel). We have also developed an interface that

facilitates the automatic distribution of RnBeads analysis

runs across an HPC cluster (e.g., managed through a “grid

engine” or “slurm” job scheduler). Finally, to facilitate

DNA methylation analysis on small computers including

personal laptops, RnBeads provides options that disable

the most resource-intensive steps; these configurations are

available as pre-defined option profiles for low-, medium-,

and high-resource settings.

Tool comparison

We compared RnBeads in terms of its runtime perform-

ance and peak memory consumption with other software

packages for DNA methylation microarray analysis

highlighted in a recent review paper [54], namely minfi

[37], methylumi (http://bioconductor.org/packages/re-

lease/bioc/html/methylumi.html), watermelon [38], and

ChAMP [39], and with the methyKit [40] package for ana-

lyzing bisulfite sequencing data. The microarray-based

tools were benchmarked on the first use case (732 blood

samples), while the bisulfite sequencing tools were bench-

marked on a mouse RRBS dataset (GSE45361, 6 adrenal

gland and 11 liver samples) and on a human WGBS data-

set (12 hepatocyte samples) from the DEEP project

(http://www.deutsches-epigenom-programm.de/), thus

covering a broad range of different scenarios for DNA

methylation analysis. The benchmarking was performed

on a Debian Wheezy machine with 32 cores (1.2 GHz)

and 126 GB RAM using R-3.5.0. Three different tool

configurations with different depths of analysis were eval-

uated (Additional file 2: Table S2): (i) data import only, (ii)

core modules enabled, and (iii) comprehensive analysis

with most features enabled. Furthermore, to complement

the performance-oriented benchmarking with a feature-

oriented comparison, we conducted a comprehensive
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survey of popular software tools for DNA methylation

analysis in comparison to RnBeads (Additional file 1:

Table S1). To that end, we manually reviewed the docu-

mentation of all Bioconductor packages for DNA methyla-

tion analysis that had a popularity ranking of 900 or better

(https://www.bioconductor.org/packages/release/Bioc-

Views.html#___DNAMethylation). We considered only

packages that support DNA methylation microarrays and/

or bisulfite sequencing data, while discarding data broker

packages and packages for single, specialized tasks. We

also considered selected DNA methylation analysis tools

outside Bioconductor based on the literature review.

Additional files

Additional file 1: Table S1. Feature comparison table of software tools
for DNA methylation analysis. (XLSX 30 kb)

Additional file 2: Table S2. Parameter settings for the benchmarking of
DNA methylation analysis tools. (XLSX 12 kb)

Additional file 3: Figure S1. Performance of RnBeads and other DNA
methylation analysis tools. (PDF 149 kb)
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