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RNN With A Recurrent Output Layer For
Learning Of Naturalness

Jan Dolinsky and Hideyuki Takagi

Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540 JAPAN

Abstract. The behaviour of recurrent neural networks with a recurrent
output layer (ROL) is described mathematically and it is shown that
using ROL is not only advantageous, but is in fact crucial to obtaining
satisfactory performance for the proposed naturalness learning. Conven-
tional belief holds that employing ROL often substantially decreases the
performance of a network or renders the network unstable, and ROL is
consequently rarely used. The objective of this paper is to demonstrate
that there are cases where it is necessary to use ROL. The concrete
example shown models naturalness in handwritten letters.

1 Introduction

In engineering, recurrent neural networks (RNN) have not been often proposed
as a promising solution. The difficulties with training a RNN have been over-
come, and recent theoretical advances in the field have made training a RNN
quicker and easier [4]. Recurrent connections have not been found to increase
the approximational capabalities of the network [7]. Nevertheless, we may obtain
decreased complexity, network size, etc. while solving the same problem.

In some applications - such as speech recognition or object detection or pre-
diction - our classification / prediction at time t should be more accurate if we
can account for what we saw at earlier times. The most common approach to
model such systems is to use a suitably powerful feed-forward network and feed
it with a finite history of the inputs and optionally the outputs throught a slid-
ing window. Early attempts to improve this, often tedious, technique resulted in
various network architectures based on the feed-forward topology with the re-
current connections being set to fixed values to ensure that the backpropagation
rule can be used [1][6]. Many works have been done on autonomous Hopfield
networks as well as on training algorithms that can be applied to a RNN in
a feed-forward fashion (i.e. BPTT). Recent theorethical advances in RNN re-
search such as Echo State Networks (ESN) afford the modelling of fully general
topologies, which were difficult to train directly with the former techniques.

An interesting example is a topology where output units have connections
from not only the internal units but also the input units and output units,
yielding a recurrent output layer - ROL. Althought connections from the input
units are often used, connections from the output layer are rare. In the following
chapters, we explain what behaviour ROL implies, introduce the concept of our
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proposed naturalness learning, and show that using ROL not only increases the
performance but is actually an intrinsic part of modelling with the proposed
naturalness learning.

One of the earliest RNN, where the output activation values from the previous
step were used to compute the output activation values in the next step, was the
Jordan network [6][5]. In the Jordan network, the activation values of the output
units are fed back into the input layer through a set of extra input units called
the state units. This type of network is called output-recurrent network. Various
modifications to output-recurrent networks have been proposed and successfully
used for modelling difficult non-linear tasks [8]. RNN with ROL, in contrast to
output-recurrent network, uses the output activation values of the previous step
directly to compute the output in the next step. The output activation values
of the previous step can be thought of as a extra hidden units. We are aware of
no papers discussing applications of RNN with ROL.

2 Dynamics of RNN With a Recurrent Output Layer

Adopting a standard perspective of system theory, we view a deterministic and
discrete-time dynamical system as a function G which yields the next system
output, given an input and the output history:

y(n + 1) = G(...,u(n),u(n + 1); ...y(n− 1),y(n)) (1)

where u(n) is the input vector and y(n) is the output vector for the time step
n.

The echo-state approach enables us to approximate systems represented by G
directly, without the necessity to convert a time series into static input patterns
by the sliding window technique [2].

Consider a discrete-time ESN [4] consisting of K input units with an acti-
vation vector u(n) = (u1(n), ..., uK(n))t, N internal units with an activation
vector x(n) = (x1(n), ..., xN (n))t, and L output units with an activation vector
y(n) = (y1(n), ..., yL(n))t, where t denotes the transpose. The corresponding in-
put, internal and output connection weights are collected in the N ×K, N ×N ,
L×(K+N+L) weight matrices Win, W, Wout respectively. Optionally, a N×L
matrix Wback may be used to project the output units back to the internal units.

The internal units’ activation is computed according to

x(n + 1) = f(Winu(n + 1) + Wx(n) + Wbacky(n)) (2)

where f denotes the component-wise application of the transfer (activation) func-
tion to each internal unit. The output is computed as

y(n + 1) = fout(Wout(u(n + 1),x(n + 1),y(n)) (3)

where (u(n + 1),x(n + 1),y(n)) represents the concatenated vector consisting
of input, internal and output activation vectors. The concatenated vector often
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Fig. 1. Echo-state network: the dotted lines plot connections which can be trained, the
gray lines plot connections which are optional.

consits only of input and internal activations or internal activation only. Fig. 1
shows the architecture of an ESN. See [4] for further details concerning the
training of ESN.

A closer look at Eq. (3) reveals that a system output y(n + 1) is constructed
from the given input and output history via two distinct mechanisms: from the
activation vectors of the internal units x(n) indirectly (by computing x(n + 1)
via Eq. (2)) and optionally from the activation vectors of the input units u(n+1)
and/or output units y(n) directly.

The internal units’ activation x(n + 1) is computed using the input and
output activation u(n + 1),y(n) and the activation x(n) of the internal units
from the previous step which recursively reflects the influence of input and output
activations from previous steps. We can therefore rewrite Eq. (2) as

x(n + 1) = E(...,u(n),u(n + 1); ...,y(n− 1),y(n)) (4)

where E depends on the history of input signal u and the history of desired
output signal y itself, thus in each particular task, E shares certain properties
with the desired output and/or given input. How strongly the internal activation
x(n+1) is influenced by the activations u(n+1), y(n) and x(n) (which recursively
consist of previous input/output activations) is controlled by the size of the
weights in matrices Win,Wback and W respectively. Algebraic properties of the
matrix W are particulary important for the short-term memory property of an
ESN [3].

Besides using the activations of internal units, sometimes it is advantageous
to use also the activations of input and output units directly. Althought the
activation vector x(n) reflects the history of the desired output and/or given
input, the activation vectors u(n + 1),y(n) in Eq. 3 are used merely as another
form of input. This usage corresponds to connecting the input units to the output
units and output units to output units themselves directly. Direct connection of
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input units to output units is often used whereas direct connection of output
units to output units is rare. It is the connecting of output units to each other
what makes the output layer recurrent.

ROL implies a substantial influence of the previously generated output y(n)
on the successive output y(n+1). The activation y(n) is only an approximation
of a system output at the step n and, thus, it is always generated with a certain
error. This error is included in the computation of the successive output acti-
vation y(n + 1) and can easily accumulate with each update step. It is for this
reason that computation using ROL has been rare.

3 RNN With a Recurrent Output Layer for Naturalness
Learning

In this section, we will demonstrate the principles of naturalness learning by
showing how to express and model the unique quality of hand-written letters.
We also explain why ROL works well with the naturalness learning.

The style of writing of any given person is very much individual and can be
distinguished easily from mechanically or electronically printed text. Moreover,
we can distinguish between the writing of different people. Everybody learns their
alphabet in a school, and while writing in one’s own individual way, a person is
trying to approximate the shapes of the letters as they learned them in school.
We can therefore understand handwriting as turning the basic shape of a letter
as learned in a school into the writer’s particular, unique, handwritten form. A
human then can be seen as a ‘filter’ which adds his or her own characteristics to
the shapes of those basic letters.

To explain the term of naturalness, first we must define our terminology. Let
us refer to the letters used in textbooks (either printed or cursive) as the font
letters (fontL). We view handwriting as the process of turning a fontL into its
handwritten form. The unique quality of the handwritten letter (handL) can
be then understood as the difference between the handL and the fontL and
expressed as a 2-D displacement vector field of evenly spaced points along the
strokes of the font and its respective handwritten version (see Fig. 2) 1. We refer
to this difference as naturalness. In other words, adding the naturalness to the
fontL will result in a handL of a unique form. We can thus, assume a relation
between the fontL and the naturalness. This assumption enables us to model
naturalness by a system which employs certain characteristics of the fontL as its
input.

The task of naturalness learning is to find and learn the relation between font
letters and naturalness. Speaking in the terms of naturalness learning, the target
system (handwritten letters) resembles the basic system (font letters) with its
behaviour (shape of handwritten letters) deviating from the basic system to a
certain extent.
1 a displacement vector is not the only mean of expressing naturalness, it can be

expressed using an arbitrary mechanism
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Fig. 2. Hiragana letter /ka/. Naturalness expressed by 2-D displacement vector field.
Font letter strokes shown in black, handwritten strokes shown in blue.

Learning and modelling naturalness using a RNN with ROL produced in-
teresting results. As mentioned in section 2., computing with ROL is prone to
the accumulation of error from previous steps. This phenomena has been found
harmful in many tasks. With naturalness learning, however, ROL performs well.

In the handwriting task, we found that introducing an activation y(n) into
play via update Eq. (3) always helped network to generate y(n+1) with a greater
accuracy. An intuitive explanation is as follows. The way a person writes the first
half of a handwritten stroke influences, to a certain extent, how the second part
is going to look, i.e. distortion of a certain part of a stroke usually implies some
other distortion to a successive part of the stroke. It is therefore reasonable to
assume that a short sequence of points on a handwritten stroke influences where
the next point will appear, with the very last point of a sequence having the
greatest influence. The same holds for the naturalness extracted as a difference
between handL and fontL. On the other hand, it is not only the very last point
which influences the position of the next point of a stroke, but a short sequence
of the previous points. Thus, a backprojection matrix Wback was used so as
to ensure recent short sequence of generated output ...,y(n − 1),y(n) is also
reflected in y(n + 1) via the activation x(n + 1) (see Eq. (2) and Eq. (3)).

The same principle holds for the input activations u(n + 1) extracted from
fontL strokes. Update Eq. (2) ensures that a short sequence ...,u(n),u(n + 1) is
reflected in the activation x(n + 1) which is in turn used to compute y(n + 1)
via update Eq. (3). The activation u(n + 1) is also used directly in Eq. (3) to
ensure that the very last point of the input sequence has significant influence in
the compututation of y(n + 1).

The fact that naturalness is being modeled, instead of the target system,
allows us to control the amount of the naturalness being added to the font
letters. A weight of value 1 will render generated letters as close to a person’s
handwriting as possible. The value of, say, 0.6 will reduce the naturalness to
60%, providing us with a neat handwritten letters. Values close to 0 will render
generated letters very close to the font letters. It is also possible to combine
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several individual’s naturalness (e.g. 40% of person A’s naturalness with 60% of
person B’s naturalness).

The naturalness learning approach is not limited to the handwriting task
only. We believe, one can generate natural looking movements for parts of the
human body with the inverse kinematics algorithm being employed as the basic
system. Generating emotional human speech with synthesized speech being used
as the basic system might be another interesting application of the naturalness
learning approach.

4 Experiments

In this chapter, we demonstrate how the naturalness learning approach copes
with the handwriting task. The letters used in the experiments are symbols of
Japanese syllabary - hiragana.

The fontL were extracted from the Bitstream Vera Sans font onto 250x250
pixel canvas. Every stroke of a given letter was turned into a set of bezier curves
- a path. Every path was then evenly spaced into a set of points. Let each Pfl

ij

be the set of points represented by nij × 2 matrix where i denotes the index of
the letter, j the index of the stroke within the letter and nij is the number of
points. Pfl

ij (k) = (xk, yk) therefore represents the k-th point of the j-th stroke
of the i-th letter (k-th row of the matrix Pfl

ij ).
The handL were first scanned and then appropriately scaled so as to ensure

they fit the canvas. Every handL stroke was then aligned to its fontL stroke
counterpart. This aligment ensures that the displacement vector field expresses
only a shape transformation between a pair of fontL and handL strokes. In order
to split strokes of handL, the same procedure was applied as with the fontL,
saving the points for each stroke into Phl

ij . The spacing interval along each stroke
(path) of a handL was, however, also adjusted so that number of points matched
those in the corresponding fontL stroke.

4.1 Data specification

The input signals were extracted from the points of fontL’s strokes as follows.
Let Dfl

ij (k) be the difference vector Pfl
ij (k +1)−Pfl

ij (k). Then the inertia for the
k-th point of the j-th stroke of the i-th letter is given by

inertiaij(k) = Dfl
ij (k) (5)

with each inertiaij(k) being the k-th row of the (nij − 1)× 2 matrix inertiaij .
The inertia can be thought of as a representation of the movement of an imag-
inary pen which ’wrote’ the font letter. The curvature for the k-th point of the
j-th stroke of the i-th letter is given by

curvij(k) =
Dfl

ij (k)
(

0
1

)
√

Dfl
ij (k)Dfl

ij (k)t
(6)
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Fig. 3. Geometrical meaning of the input data. inertiaij(k) represents difference vector
between two successive points P fl

ij (k + 1), P fl
ij (k). curvij(k) is the sine of angle φ.

with each curvij(k) being the k-th row of the (nij − 1) × 1 matrix curvij .
Figure 3 illustrates the geometrical meaning of (5) and (6). Each matrix curvij

and inertiaij was merged into a single (nij − 1) × 3 matrix Uij with each
column being normalized into the interval (−1, 1). In order to partially erase the
transient dynamics from the previous stroke, a zero sequence of size ngap×3 was
inserted before every Uij , resulting in the final input matrix U.

Naturalness, which serves as the (2 dimensional) output signal, is represented
by 2-D displacement vector field. The 2-D displacement vector field for the j-th
stroke of the i-th letter is given by

Yij = Phl
ij −Pfl

ij (7)

with Yij , Phl
ij and Pfl

ij each being nij × 2 matrices. The last row of every Yij

was dropped to ensure each pair of YijandUij have the same length of nij − 1.
Each column of Yij was scaled down to the interval (−1, 1). A zero sequence of
size ngap × 2 was inserted before every Yij , resulting in the final output matrix
Y.

4.2 Network parameters

A 300 unit network was used with activation function f = RBF . Internal con-
nection weights in the matrix W were randomly assigned values of 0, 0.31, -0.31
with probabilities 0.98, 0.01, 0.01. For a 300 × 300 matrix W, this implies a
spectral radius of ≈ 0.8, providing for a relatively long short-term memory [4]. 3
input and 2 output units were attached. Input connection weights were randomly
drawn from a uniform distribution over (−1, 1). With such an input matrix, the
network is strongly driven by the input activations because many elements of the
matrix Win are non-zero values. The network had output feedback connections,
which were randomly set to one of the three values of 0, 0.1, -0.1 with proba-
bilities 0.9, 0.05, 0.05. Such a setup of feedback connections makes the network
excited only marginally by previous output activations. The activation function
for the output units was identity fout(x) = x.
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4.3 Training and testing

The training data was made from the letters shown in Fig. 4, resulting in a
3027×3 input matrix for Utrain and a 3027×2 output matrix for Ytrain, which
were prepared according to the data specification with ngap = 16 being used.
Eq. (2) was used for updating with u(n),y(n) being the transposed n-th rows
of matrices Utrain and Ytrain respectively. The first 300 steps were discarded
and the network internal states with input unit states x(n),u(n) were collected
from n = 301 through n = 3355. The output weights Wout were computed using
the internal states and input unit states only. The training errors of first and
second output units were msetrain,1 ≈ 9.5 × 10−4 and msetrain,2 ≈ 2.8 × 10−3

respectively. Making the output layer recurrent (ROL) and computing Wout

using not only internal/input states x(n),u(n) but also output activation values
y(n−1) reduced the training errors msetrain,1 and msetest,2 down to ≈ 6×10−4

and ≈ 2.0× 10−3 respectively. A visual comparison is shown in Fig. (4).

Fig. 4. Testing with the training data: Letters produced by RNN with/out ROL with
teacher-forcing switched off from n = 301.

The testing data was made from letters shown in Fig. 5, resulting in a 6045×3
input matrix Utest and a 6045×2 output matrix Ytest with ngap = 16 being
used. For non-ROL topology the test errors were found to be msetest,1 ≈ 1.2×
10−2,msetest,2 ≈ 3.5× 10−2. Using ROL reduced the test errors to msetest,1 ≈
0.9 × 10−3,msetest,2 ≈ 3.0 × 10−2. The errors msetest,i provide only a rough
indication of network performance. A visual comparison between these two trials
is shown in Fig. 5. We can observe that the network also produces appropriate
naturalness for letters on which it had not been trained.

5 Discussion

5.1 Network

Here we try to provide an insight into why the setup from section 4. works
the best. The network has information concerning the shape of the strokes in
fontL and handL via its history of input and output activations. The matrices
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Fig. 5. Testing with the testing data: Letters produced by RNN with/out ROL

Win and W from the setup in sec. 4. make the network strongly driven by
the (finite) history of input. Moreover, using the most recent input activation
u(n + 1) in Eq. (3) directly makes the impact even stronger. It is most likely
the case that the last several points of the path from where a fontL stroke is
coming has a substantial impact on the naturalness and thus also on where
the handL stroke is going to continue. An intuitive explanation is that a human,
while writing in one’s own individual way, is trying to ’approximate’ a font letter
shape as memorized in a school. This finding is in line with the basic idea of
the naturalness learning: to model a target system (handL) by means of a basic
system (fontL) and its difference (naturalness) with the target system.

The feedback weights Wback from the setup in section 4. only slightly excite
the network with the output history. Surpisingly, use of most recent output
activation y(n) in Eq. (3) directly (= ROL) always improved the performance. A
plausible explanation is that the already written part of a handL stroke influences
how the going to be written part will look like with the naturalness of the the
previous step having highest relevance to the naturalness generated in the next
step. (i.e. distortion of a certain part of a stroke usually implies some other
distortion to a successive part of the stroke).

Feedback connections with larger weights (up to +1) and no ROL were also
tested. With this setup the network training error was about the same as in
sec. 4 but driving the network with the testing data rendered worse performance
or made the network unstable.
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5.2 Data structure

The naturalness in this paper is represented as a 2-D displacement vector field
(Fig. 2). We are, however, not strictly bound to this representation. The natural-
ness can be also represented as a set of parameters in a system which represents
a difference between the target (handL) and the basic (fontL) system. The input
data characterizing the basic system (handL) was made position independent so
as to ensure the same stroke will be represented by the same data regardless of
its starting position. This reduces significantly the complexity of the handwrit-
ing task because while separate strokes are substantialy different in shape, some
of their small parts are often similar. The short-term memory of a RNN makes
distinction between a identical/similar short stroke sequences possible because
the RNN accounts also for points before the identical/similar stroke part.

6 Conclusion

In the handwriting task we showed that by modelling the target system by
means of a basic system and its difference from the target system, a substantial
relevance is revealed in the difference produced in step n and step n+1. In such
a case the usage of a ROL turned out to be advantageous.

We would like to confirm these findings by applying naturalness learning to
other tasks as well. Modelling the unique individualistic quality of human motion
is the next step in confirming the feasibility of both naturalness learning and the
usability of a ROL for tasks formulated in terms of naturalness learning.
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