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ABSTRACT Medical imaging using different modalities has many problems. The main ones are low infor-
mativeness, various distortion noises, and a large amount of information. Fusion, denoising, and visual data
compression are used to solve them in practice. Discrete wavelet transform is one way to implement various
fusion, denoising, and compression methods for 2D and 3D medical image processing. Medical imaging
systems produce increasingly accurate images with scanning technology and digital devices development.
These images have improved quality using both higher spatial resolutions and color bit-depth. Processing
a large volume of medical imaging data requires considerable resources and processing time. Modern
wavelet-based devices for medical image processing do not meet the current performance demand. Hardware
accelerators are being designed to solve this problem. This paper proposes new (field-programmable gate
array) FPGA accelerators using wavelet processing (WP) with scaled filter coefficients (SFC) and parallel
computing in residue number system (RNS) to improve the performance of high-quality 3D medical image
WP systems. The computational complexity is reduced using the developed WP method with SFC and
the proposed wavelet filter coefficients scaling algorithm. Parallel computing is organized in RNS using
moduli sets of a particular type. Hardware implementation of 3D medical image WP using the proposed
FPGA accelerators increases device performance by 2.89-3.59 times, increasing the hardware resources by
1.18-3.29 times compared to state-of-the-art solutions. The device performance improvement is achieved
while maintaining high-quality 3D medical image processing in peak signal-to-noise ratio terms.

INDEX TERMS Medical image processing, discrete wavelet transform, scaled filter coefficients, residue
number system, high-performance computing, hardware accelerator, field-programmable gate arrays.

I. INTRODUCTION
Various medical imaging modalities are used for diagno-
sis purposes and treatments. Magnetic resonance imaging
(MRI) [1], X-ray [2], ultrasound [3], radionuclide [4], and
optical [5] are the most common of them. Modern medi-
cal imaging systems have many problems associated with
visual data processing. Low informativeness of 2D and 3D
images often does not contain enough information for high-
quality diagnosis is one of them. Multiple views combining
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the same organ solve this problem in practice [6], [7]. The
resulting image is more informative and facilitates perception
by both humans and machines, increasing diagnostics’ accu-
racy. Modalities MRI, computed tomography (CT), positron
emission tomography (PET), single-photon emission com-
puted tomography (SPECT), and their hybrids CT/PET,
CT/SPECT, CT/MRI, MRI/PET, MRI/SPECT are used for
brain diseases diagnosis [8], for example. Such combinations
provide the complete description of the organ anatomical
structure and follow up the organ cell behavior.

Medical image denoising is also an urgent problem for
many imaging modalities [9]–[11]. Images are subject to
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FIGURE 1. Medical image wavelet processing scheme.

noise that distorts information and interferes with medi-
cal diagnosis and disease treatment. Ultrasound imaging
presents low-resolution images usually degraded by speckle
noise requiring imaging techniques to improve image qual-
ity and proper medical diagnosis [12]. Noise affects the
anatomical structure’s analysis using CT or related mor-
phological imaging modalities and impedes diagnosis [13].
MR images are inherently noisy, and thus, filtering meth-
ods are required to image quality improvement [14]. The
PET reconstruction process includes inherent multiplicative
noise, preventing visual data analysis [15]. Optical coherence
tomography (OCT) noise in retinal imaging limits the human
eye’s structural features, such as retinal layer properties [16].

Scanning technologies are evolving. Digital devices are
constantly improving. Medical imaging systems produce
increasingly accurate images with improved quality using
higher spatial resolutions and color bit-depth. Such improve-
ments increase the amount of information that needs to be
stored, processed, and transmitted. This process is signifi-
cant for 3D scanning technology [17]. Medical imaging sets
of 10-30 TB per patient are not unusual. Tomograph that
registers images of 1196 by 500 pixels, 24 bits per pixel,
and 20 frames per second creates a tomogram of about 20 GB
in 10 minutes [18]. The retina OCT results may require more
than 40 GB [19]. Virtual microscopy color image sets can
often have a size exceeding 50 GB [20]. The medical system
can generate data at speeds of up to 4 GB per second for sev-
eral days with selective plane illumination microscopy [21].
Enormous computing resources are needed to process such
massive amounts of data. A significant part of space is
required to store them. High throughput is needed to transfer
them. Thus, effective 3D image compression is an urgent
problem of modern medical imaging systems [22]–[24].

In practice, various transforms are used for medical image
fusion, denoising, and compression. Discrete Fourier trans-
form (DFT) [25], [26], Hadamard transform (HT) [27], and
discrete wavelet transform (DWT) [28], [29] are the most
common of them. Both DFT and HT are widely used in
the frequency domain, but the time domain characteristics
disappear. The time and intensity levels after signal DFT
or HT cannot be determined. The local properties of the
signal become impossible. DWT solves these problems since

it obtains both signal frequency and time information [30].
Furthermore, DWT is the only one of the listed transforms
that can solve any of the three outlined problems: low infor-
mation content, noisiness, excessive storage space. DWT is
a signal transform using a filter bank that convolutions the
input data with wavelet filters. DWT translates the signal
from a time representation into a time-frequency domain.
Image DWT is performed by convolution with a pair of
lowpass and highpass wavelet filters of the filter bank. These
filters highlight main and detailed information, respectively.
Images’ wavelet processing (WP) is carried out in three main
stages (Fig. 1). DWT extracts both main and detailed infor-
mation from the input medical image. Manipulations over the
main and detail coefficients allow solving denoising, com-
pression, and fusion problems. Inverse DWT forms the output
medical image from the processed main and detailed infor-
mation. Image fusion is performed by basically combining
main image information from different modalities [26]. Both
denoising and image compression are primarily performed by
detailed information manipulating [31], [32]. The first and
third stages of medical image WP have high computational
complexity. They are analyzed in this paper. WP means the
sequence of DWT and inverse DWT in the rest of the paper.
Processing a large volume of medical imaging data requires
many resources and processing time. Modern wavelet-based
devices of medical image processing do not meet the cur-
rent performance demand [20], [21], [33]. The new medical
visual data processing methods are being developed and
implemented on modern high-performance hardware accel-
erators. The field-programmable gate array (FPGA) [34] and
application-specific integrated circuit (ASIC) [35] are some
of the main. These accelerators improve the speed and quality
of the solution to the problems designated.

Data representation accuracy significantly impacts com-
putational complexity. It is an important problem in modern
hardware accelerator design [37]. Computational complexity
is the main factor affecting device performance, hardware
costs, and power consumption. The data representation accu-
racy does not receive significant attention when medical
imageWP is implemented in modern software packages. The
wavelet filter coefficients have a bit-width of 16 or 32 due
to peculiar modern general-purpose processor architecture.
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The question of the data representation effective accuracy in
wavelet image processing on modern hardware accelerators
with a more flexible architecture is relevant. The accuracy
selected directly affects operations complexity and compu-
tational speed [38]. Thus, the choice of the bitness of data
representation in the memory of hardware devices is impor-
tant. It should reduce computational complexity. The quality
of image processing should remain high at the same time.

Parallel computing is the primary approach to the per-
formance improvement of software and hardware devices
today. However, positional number systems are traditionally
used for computations organizing in microprocessor systems
development. They do not allow its effective implementation
because there are many inter-digit carries when arithmetic
operations perform. The residue number system (RNS) is
one of the most famous alternative numeric systems capable
of parallel arithmetic operations [39]. RNS is a direct sum
of finite rings. It operates with small residues instead of
large-digit numbers processing in positional number systems,
which opens up opportunities for high-speed parallel data
processing at the arithmetic-logic level on modern microelec-
tronic devices [40]. Furthermore, RNS uses arbitrary bitness
calculations and opens up the possibility of image processing
device detailed customization.

The goal of this paper is to increase the hardware device
performance for 3D medical imageWP. We scale wavelet fil-
ters coefficients to reduce the digital filtering computational
complexity and use RNS for parallelizing the computations.
The main contributions of this paper are as follows:

1. We develop the WP method with scaled filter coef-
ficients (SFC), which reduces computational complexity,
simplifies rounding operations, and uses integer calculations
in fixed-point format for high-performance and area-efficient
modern hardware accelerators implementation.

2. We propose the wavelet filter coefficients scaling
algorithm that reduce the digital filtering computational
complexity while maintaining high-quality medical image
WP in terms of peak signal-to-noise ratio (PSNR).

3. We propose the 3D medical image WP implementation
using RNS-based parallel computing with moduli sets of a
particular type. Use special techniques for arithmetic opera-
tions performing in adders and significantly reduce latency
across all hardware device calculation channels.

4. We propose the implementation of 3D medical image
WP on FPGAs and a comparison with state-of-the-art solu-
tions. We prove that the SFC reduces the hardware resources
and processing time while maintaining high processing qual-
ity in PSNR terms, and parallel computing in RNS can
increase hardware device performance.

The rest of the paper is organized as follows. Section II
contains related work on 4 points: medical image process-
ing using wavelets; hardware accelerators for medical image
processing; wavelets accuracy in hardware devices; hardware
digital filtering in the residue number system. Section III pro-
vides the proposed approach description to high-performance
hardware WP of 3D medical images on 2 points: 3D images

WP method with SFC and wavelet filter coefficients scaling
algorithm; RNS parallel computing and hardware architec-
ture features. Section IV describes the software and hardware
implementation of the proposed WP method and algorithm
with SFC for 3D medical image processing using RNS
parallel computing. Section V includes results, discussion,
and future work. Section 6 presents the conclusion. The
Application contains a numerical method for evaluating the
calculation error of WP using SFC.

II. RELATED WORK
This section is divided into 4 subsections. In subsection IIA,
an overview of the wavelets used for image processing in
medicine is provided. In subsection IIB, specialized hard-
ware accelerator developments for medical image processing
are described. Subsection IIC is devoted to works in which
the wavelet accuracy representation in the hardware device
memory is raised. Subsection IID presents a brief analysis
of approaches to digital filtering hardware implementation
methods in RNS.

A. MEDICAL IMAGE PROCESSING USING WAVELETS
Medical imaging mainly uses wavelets to solve three
important problems: fusion, denoising, and compression of
medical images. The authors [26] proposed an efficient
colorful Fourier ptychographic microscopy reconstruction
method usingmulti-resolution wavelet-based fusion.Wavelet
fusion method and algorithm for the fusion of intravascu-
lar ultrasound and OCT pullbacks to improve the use of
those two types of medical images are proposed in [5].
Banik et al. [7] proposed a fusion-based polyp segmenta-
tion network using dual-tree wavelet transform. A feature
extraction-based method using the improved Haar wavelet
for grading cataract severity on retinal images is proposed
in [28]. Rodrigues et al. [12] offered new wavelet and bilat-
eral filtering methods for speckle noise reduction in medical
ultrasound images. DWT-based deconvolution method for
quantitative oncologic PET imaging was implemented by
Rezaei et al. [4]. The authors [29] presented an iterative image
reconstruction algorithm using undecimated wavelet trans-
form for MRI denoising. An objective method for computing
the optimum threshold value in the dual-tree complex WP
based on real-time MR images denoising is proposed in [31].
Krishnaswamy [41] proposed an efficient image codec based
on frequency domain transformation using lifting wavelet
transform for efficient MRI compression. An algorithm
for perceptually lossless volumetric CT image compression
using fractional wavelet filtering is presented in [23]. A new
enhanced embedded zerotree wavelet algorithm for medical
image compression applications is presented in [32]. The
authors [24] proposed a new compression strategy of MRI
brain datasets using a DWT-based coder.

We can conclude that wavelets are widely used in medicine
to process images of various modalities. However, medi-
cal imaging devices produce increasingly accurate images
with improved quality, higher resolution, and increased color
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depth. The need to modify existing and develop new meth-
ods and algorithms to improve existing and create new
high-performance medical image processing systems is con-
stantly growing. Specialized hardware accelerator designing
discussed further is one approach to solving this problem.

B. HARDWARE ACCELERATORS FOR MEDICAL
IMAGE PROCESSING
The world scientific community develops and improves med-
ical imaging methods to increase the speed of various prob-
lems solving. These methods are implemented on modern
high-performance hardware microelectronic devices such as
FPGA and ASIC. FPGAs are most common because they
have a low manufacturing cost and can be reprogrammed.
Ravi et al. [34] used FPGA accelerators to increase the
maximum-likelihood expectation-maximization algorithm’s
speed for tomographic image reconstruction. The prototype
of the first portable 3D digital ultrasonic back-end system
implemented in FPGA is designed in [42]. The authors [43]
presented the Gabor filter design on the FPGA accelerator
for power-efficient and high-performance medical imaging
applications. FPGA-based emulation of minimum variance
distortionless response beamformer architecture for ultra-
sound imaging is proposed in [44]. A novel method for the
urinary bladder non-invasively volume measuring based on
the electrical impedance tomography principles and imple-
mented on FPGA is presented in [25]. The authors [45]
designed a novel OCT imaging portable processor imple-
mented on energy-efficient and calibration-aware FPGA.
ASICs consume less power and are faster than FPGAs but
cannot be reprogrammed and are expensive to manufacture.
A reconfigurable ultrasound transceiver ASIC for 3D carotid
artery imaging is presented in [46]. Nadig et al. [47] described
the investigation of the ASIC power consumption in PET
systems. The authors [48] designed the Anger camera based
on the silicon photomultiplier and custom ASIC for MRI
scanners. Trigilio et al. [49] developed the ASIC for silicon
photomultiplier readout targeting SPECT applications based
on Angertype detectors. A 2D X-ray detector using ASIC for
fine pitch and high-energy resolution imaging spectroscopy
is developed in [50].

We can conclude that the development and implementation
of various methods for the performance of medical visual
data processing devices are increasing based on hardware
accelerators FPGA and ASIC. This paper proposes two new
ideas: the data representation accuracy decreasing in the hard-
ware devices memory, which does not lead to an image WP
quality deterioration; a parallel computing organization in
RNS. An analysis of related work on these ideas is presented
in the following 2 subsections.

C. WAVELETS ACCURACY IN HARDWARE DEVICES
The accuracy of the digital filters coefficients representation
significantly impacts image processing quality and the digital
filtering computational complexity. Computational complex-
ity affects the time, hardware, and energy resources in the

hardware implementation of signal and image WP methods.
Thus, the representation accuracy of the digital filter coef-
ficients in the modern microelectronic devices memory is
one of the important problems in the computer technology
devices design. Few works address this problem. Experimen-
tal results from [51] suggested that 16-bit integers provide an
acceptable computational range for representing the wavelet
coefficients for integer-to-integer transforms at the 8-bit
images processing. Larrotta et al. [52] proposed an FPGA
architecture designedwith the requirements of the biomedical
signals compression model based on wavelet transform and
run-length encoding using 16-bit wavelet filter coefficients.
The authors [53] presented a new high-performance and
low-area hardware configurable architecture for DWT using
16-bit wavelet filter coefficients. A new high-performance
FPGA-based parallel architecture of inverse DWTwith 16-bit
wavelet coefficients is presented in [54]. The authors [38]
investigated the design and implementation aspects of a
multiplier-free 2-level WP using Daubechies wavelet with
12-bit coefficients and parallelized computations in the
3-modulo RNS for high-speed signal processing applica-
tions. The PSNR dependence of 2D images direct multilevel
wavelet transform on the wavelet used, coefficients bit-width,
and the processing levels number is revealed in [55].

The wavelet representation accuracy is determined empir-
ically without any theoretical justification and only for
specific cases in the analyzed works. The theoretical anal-
ysis of the calculation error dependence on the hardware
device memory’s wavelet representation accuracy is absent.
The authors use various tools to organize computations
when image WP methods are implemented. We propose
using RNS-based calculations since it allows arbitrary bit-
ness calculations and opens up the possibility of detailed
image processing device customization. A brief analysis of
approaches to the digital filtering methods hardware imple-
mentation in RNS is presented further.

D. HARDWARE DIGITAL FILTERING IN THE RESIDUE
NUMBER SYSTEM
RNS is a non-positional number system that represents num-
bers as a tuple of remainders after division by pairwise
coprime moduli {m1,m2, . . . ,mj}, whereGCD(mj1 ,mj2 ) = 1
for j1 6= j2 and j is the number of RNS moduli. Any number
A satisfying the condition 0 ≤ A < D can be uniquely
represented in RNS as a set A =

(
a1, a2, . . . , aj

)
RNS , where

aj = |A|mj and D =
∏j

i=1mi is the dynamic range [56].
RNS dynamic range is divided into two roughly equal parts
representing negative numbers. Therefore, any integer can be
represented in RNS if it satisfies one of the two relations [57]:

−(D− 1)/2 ≤ A ≤ (D− 1)/2 for odd D,

−D/2 ≤ A ≤ D/2− 1 for even D.

Modular operations are defined as follows:

A ∗ B =
(
|a1 ∗ b1|m1 , |a2 ∗ b2|m2 , . . . ,

∣∣aj ∗ bj∣∣mj)RNS ,
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FIGURE 2. Wavelet processing of visual data in the residue number system.

where ‘‘∗’’ is the addition, subtraction, or multiplication
operation. Number A =

(
a1, a2, . . . , aj

)
RNS conversion from

RNS to BNS is based on the Chinese remainder theorem [57]:

A =

∣∣∣∣∣∣
j∑

i=1

(∣∣∣∣∣∣∣D−1i ∣∣∣
mi
ai

∣∣∣∣Di)
∣∣∣∣∣∣
D

,

where: Di = D/mi; |D
−1
i |mi is the Di. multiplicative inverse.

Example. Let us have RNS with a set of j pairwise
coprime moduli {2, 3, 5, 7}. GCD(2, 3) = GCD(2, 5) =
= GCD(2, 7) = GCD(3, 5) = GCD(3, 7) =

GCD(5, 7) = 1. Then D = 2 · 3 · 5 · 7 = 210.
Let us have numbers A = 53 and B = 131. Then
A = (1, 2, 3, 4)RNS and B = (1, 2, 1, 5)RNS . Their sum
A + B = (|1+ 1|2 , |2+ 2|3 , |3+ 1|5 , |4+ 5|7)RNS = =
(0, 0, 4, 2)RNS . At the same time, A + B = 53 + 131 =
184 == (0, 0, 4, 2)RNS if we use RNS for positive numbers.

Thus, BNS operations with a large capacity are reduced
to RNS operations on numbers with a small capacity. The
computations organization in RNS opens up the possibility
for high-speed parallel data processing at the arithmetic-logic
level. RNS is used for the hardware accelerators develop-
ment in applications that mainly use addition, subtraction,
and multiplication operations. Digital filtering is one such
application widely used for various digital signal and image
processing problem-solving. Safari et al. [58] implemented
the power-performance enhancement of a 2D WP image
processor using RNS and the static voltage scaling scheme.
High-speed smoothing filter RNS-based architecture is pro-
posed in [59]. A low-power RNS-enhanced arithmetic unit
designing for constant-coefficient filtering is offered in [60].
The authors [61] investigated the design and implementation
of finite impulse response filters on the RNS-based FPGA.
A high-performance FPGA accelerator for the multiplier-
free two-level WP implementation using RNS is proposed
in [38]. Image filtering implementation method in RNS with
replacing the computationally complex division operation by
the multiplication and scaling is developed in [62]. A high-
performance hardware implementation of digital filtering
using truncated multiply-accumulate units in RNS is pre-
sented in [63]. FPGA simulation results show that the pro-
posed RNS-based approach increases the digital filtering
speed by about 4 times and reduces the hardware costs by 3
times compared to the binary number system (BNS). Hard-
ware devices using RNS-based wavelet transform, which
increase the performance of 3D image processing devices

by up to 2.70 times, are described in [64]. FPGA acceler-
ator for signal processing and machine learning algorithms
implementation with multiply-accumulate units in RNS is
developed in [65]. A convolutional neural network architec-
ture with RNS-based digital filters hardware implementation
is designed in [66]. The convolutional layer implementation
has shown that RNS calculations can reduce hardware costs
by up to 37.78% and the image recognition time by up to
41.17% compared to the two’s complement implementation.
RNS-based solution for the hardware cost reducing of digital
filtering in a neural network convolutional layer is developed
in [67]. RNS-based calculations in the neural network con-
volutional layer reduced device area by 32.6% compared to
BNS-based approach by the hardware simulation results on
FPGA. The approach scheme used in the analyzed works for
RNS-based visual dataWP is shown in Fig. 2. The processing
is performed in three stages: the input data is converted from
a BNS to an RNS with moduli set {m1,m2, . . . ,mj}; image
WP in RNS is performed; the processing results are converted
from RNS with moduli set {m1,m2, . . . ,mj} to BNS and
transmitted to the output. The RNS-based data transforming
and processing methods and algorithms are detailed in [40].

We can conclude that parallel computing in RNS can
improve the performance of the digital image processing
hardware device. The proposed approach to the hardware
FPGA accelerators development and implementation for 3D
medical image WP is presented further.

III. PROPOSED APPROACH
We propose a new approach to high-performance hardware
WP of 3D medical images based on SFC and RNS parallel
computing. A scheme of the proposed approach is shown
in Fig. 3. Apriori information about both the modality (or
modalities) of the 3D medical image (or images) formation
and image processing problems arising is used in the pro-
posed approach scheme (Fig. 3). This information includes
the input image, image color depth, and the image processing
quality criterion. Thewavelet is selected based on themedical
image processing problem (fusion, denoising, or compres-
sion). Preliminary calculations are carried out by wavelet
filter coefficients scaling using the proposed algorithm. The
algorithm is detailed in subsection IIIA. The obtained results
were converted into RNS with moduli set {m1,m2, . . . ,mj}.
WP of medical data in RNS is performed on FPGA
using the well-known approach described in subsection IID.
The high-performance WP method using SFC is presented
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FIGURE 3. The proposed approach to wavelet processing of medical data in the residue number system.

in subsection IIIA. RNS-based calculations and hardware
architecture features are represented in subsection IIIB.

A. 3D IMAGES WAVELET PROCESSING METHOD
AND ALGORITHM
WP is performed by 3D image processing using a filter
bank which transforms the input data into time-frequency
form, processing this data and performing the inverse trans-
form, as shown in Fig. 4. A set of lowpass and highpass
wavelet filters F for analysis (LD – lowpass decomposition;
HD – highpass decomposition) and synthesis (LR – lowpass
reconstruction; HR – highpass reconstruction) is a filter bank
main component [68]. These filters consist of coefficients
fF,i, where i = 1, . . . , k is the index number and k is
the number of coefficients. The greater the wavelet coef-
ficients number, the better it separates the low-frequency
and high-frequency signal components, but the higher the
computational complexity. Wavelets with a large coefficient
number are advisable when processing medical images with
high color depth. Filter bank also includes downsampling
↓ 2, upsampling ↑ 2, and summation ⊕ operators. We get
8 coefficients sets {LLL,LLH ,LHL,LHH ,HLL,HLH ,
HHL,HHH}. For example, LLH is a set of coefficients
obtained from three consecutive overlays of wavelet filters on
the image: lowpass L; again lowpass L; highpassH . They can
be divided into approximating {LLL} (low-frequency compo-
nent corresponding and image main information containing)
and detailing {LLH ,LHL,LHH ,HLL, HLH ,HHL,HHH}
(high-frequency component corresponding and image
detailed information containing) from the original image
analysis according to the scheme in Fig. 4.

The main WP computational complexity is to use the
repeated execution of a 3D image I (x, y, z) convolution with
wavelet filters F as follows

I ′ (x, y, z) =
k∑
i=1

I (x − i, y, z) · fF,i,

I ′′ (x, y, z) =
k∑
i=1

I ′ (x, y− i, z) · fF,i,

I ′′′ (x, y, z) =
k∑
i=1

I ′′ (x, y, z− i) · fF,i, (1)

where: 0 ≤ x ≤ X − 1, 0 ≤ y ≤ Y − 1 and 0 ≤ z ≤
Z−1 are the spatial coordinates of image I (x, y, z); I ′(x, y, z),
I ′′(x, y, z) and I ′′′(x, y, z) are the convolution results by rows,
columns, and frames, respectively. The accuracy choice of
wavelet filter coefficients representation is an important prob-
lem. This accuracy mainly affects the computational com-
plexity of WP. Bit-width of type r = 2γ (γ ∈ Z and γ > 0)
is used to represent the wavelet filter coefficients for medical
image WP in modern software packages due to the archi-
tecture peculiarities. Modern hardware accelerators have a
more flexible architecture. The accuracy choice of wavelet
filter coefficients representation at which low computational
complexity will be achieved due to an insignificant loss in the
3D medical image WP quality is essential. We propose a new
WP method using SFC. Bit-width r of SFC representation
in the device memory primarily depends on the scaling factor
(SF) n. Wavelet filter coefficients are converted to fixed-point
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FIGURE 4. 3D medical image wavelet processing scheme.

format as follows

f ∗F,i =
⌈
2nfF,i

⌉
. (2)

Bit-width r of SFC calculated as follows

r = max
1≤i≤k

{⌈
log2

(∣∣⌈2nfF,i⌉∣∣+ 1
)⌉
+ 1

}
= max

1≤i≤k

{⌈
log2

(∣∣f ∗F,i∣∣+ 1
)⌉
+ 1

}
. (3)

Wavelet filters SLD, SHD, SLR, SHR consist of SFC f ∗F,i and
are used for 3D medical image I WP by the scheme in Fig. 5.
For example, SLD is the LD (lowpass decomposition) filter
with scaled coefficients. The convolutions and summations
results normalization is performed as follows

Ĩ =
⌊
2−6nI∗

⌋
. (4)

The proposed method has the following advantages.
1. The use of SFC with low SF reduces the computational

complexity of 3D medical image WP and improves hardware
device performance.

2. Integer calculations open up the possibility of
time-efficient implementation on computing devices such
as FPGAs using a fixed-point format for data storing and
processing.

3. Integer calculations allow using RNS parallel computing
to increase their speed.

4. Multiplication and division by 2n in the number binary
notation corresponding to a comma shift by n bits to the right
or left, respectively, significantly simplifies their realization.

5. Rounding errors have different signs and partially com-
pensate for each other.

6. Rounding operations applying in a given order require
fewer hardware resources than rounding operations to the
nearest integer. Rounding up is performed beforehand.

All calculations performed by digital devices have an error
due to the digital data format. Calculation error of WP occurs
when wavelet filter coefficients are pre-scaling. It increases at
each stage of 3D medical image WP according to the scheme
in Fig. 5: when convolution with filters; when summing the
convolution results; when normalizing the obtained values.
The proposed method evaluates the 3D medical image WP
quality as follows

PSNR = 10 log10
(
M2/MSE

)
, (5)

where: M is the maximum image voxels brightness value;
MSE is the mean squared error, depends on SF and calcu-
lating by formula (A.1). The processing quality is considered
high if PSNR ≥ Q where Q is the medical image processing
high-quality threshold calculating as follows

Q = C · log2 (M + 1) , (6)

where C is the image processing quality factor. A threshold
Q = 40 dB is used for images with 8 bits per color (BPC)
and M = 255. He describes the difference between 2D [69]
or 3D [70] images that are not visible to the human eye.
The factor C = log2(255+ 1)/40 = 5 for images with
BPC = 8 by (6). Thus, Q = 5 log2(4095 + 1) = 60 [8] and
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FIGURE 5. The proposed method scheme of 3D medical image wavelet processing using scaled filter coefficients.

Q = 5 log2(65535+ 1) = 80 for images with BPC = 12 and
BPC = 16 respectively. Image parameters (BPC andM ), the
wavelet coefficients number k , and the accuracy parameters
of the SFC representation in the device memory (SF n and
SFC bit-width r) significantly affect the 3D medical image
WP. The wavelet type has a minor effect. Image parameters
are unchanged and depend on the medical image processing
system properties. The wavelet type and a specific wavelet
with the number k of the coefficients are selected depend-
ing on the processed image features and the conditions of
a particular problem being solved. Thus, the accuracy of
the SFC representation is the last important question that
needs to be answered for high-performance and high-quality
3D medical image WP implementation on modern hardware
accelerators.

The proposedAlgorithm 1 calculates SFC f ∗F,i and their bit-
width r with known quality criteria and parameters of both
input image and wavelet used. This algorithm is based on
the minimum SF n calculation that satisfies the established
image processing high-quality threshold Q. The initial SF is
calculated using an approximate formula and then changes
depending on the error. Wavelet filter coefficients scaling
is performed after the minimum SF calculates at which 3D
medical image has a high quality according to (6) after WP
with SFC.

The known SFC and their bit-width open up the possi-
bility of an efficient hardware implementation of the 3D
medical imageWPmethod in fixed-point format. The integer

calculations allow using RNS parallel computing to increase
their speed. RNS-based calculations are described further.

B. HARDWARE ACCELERATOR FEATURES WITH
PARALLELIZED CALCULATIONS IN THE
RESIDUE NUMBER SYSTEM FOR
MEDICAL IMAGE PROCESSING
RNS offers several advantages over the traditional positional
number system [39]. The representation of high bitness num-
bers as low bitness residues is their main. Thus, the compu-
tational complexity is reduced for each calculation channel.
Furthermore, modulo computations are performed indepen-
dently, and there is no propagation of carrying between the
channels. Thus, an error in one calculation channel does
not propagate to others. The operations of sign determining,
numbers comparing, and division called non-modular are
difficult to implement in RNS and require the number posi-
tional characteristic calculation. Therefore, calculations in
RNS are used to solve problems with a predominant amount
of addition, subtraction, and multiplication operations. The
digital filtering underlying WP is one such problem.

The RNS moduli type affects the computational speed,
so the moduli selection is a significant task in RNS-based
application devices. Moduli set must provide a sufficient
dynamic range to represent numbers in RNS uniquely.
Moduli must be balanced so that the operations execution
time for each channel is approximately the same. RNSmoduli
of particular types 2α and 2α ± 1(α ∈ N where N is the
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Algorithm 1Wavelet Filter Coefficients Scaling
Input: Maximum image voxels brightness value M , image pro-
cessing quality factor C , filter coefficients number k , filter
coefficients fF,i
Output: SFC f ∗F,i, SFC bit-width r
1: n← log2 (M + 1)+ C − 1F Calculate the initial SF
2: Q← C · log2 (M + 1) F Calculate the image processing

high-quality threshold by (6)
3: PSNR← 10log10

(
M2/MSE

)
F Calculate the image

processing quality by (5) where MSE depends on SF and
calculated by formula (A.1)

4: if PSNR ≥ Q then
5: do
6: n← n− 1
7: PSNR← 10log10

(
M2/MSE

)
8: while PSNR ≥ Q
9: n← n+ 1
10: else
11: do
12: n← n+ 1
13: PSNR← 10log10

(
M2/MSE

)
14: while PSNR < Q
15: end if
16: f ∗F,i ←

⌈
2nfF,i

⌉
F Calculate SFC by (2)

17: r = max
1≤i≤k

{⌈
log2

(∣∣∣f ∗F,i∣∣∣+ 1
)⌉
+ 1

}
F Calculate SFC

bit-width by (3)

natural numbers) are hardware-friendly and allow to avoid the
resource-intensive modulo division operation. The design of
arithmetic devices modulo type 2α is reduced to implement-
ing the α-bit devices in BNS. The moduli pairwise coprime
requirement allows us to use only one modulus of type 2α

since the other moduli must be odd. Moduli of types 2α and
2α±1 enable efficient modulo summing techniques are simi-
lar to those used in BNS [71]. The modulo 2α+1 calculation
channel requires introducing additional logic according to the
‘‘diminished-1’’ method to track the zero codewords. It is
undesirable for the system with minimal hardware resources
and processing time [72]. Thus, type 2α − 1 moduli are
preferable for use as odd RNS moduli.

3D medical image WP is performed using the opera-
tions of addition and multiplication by constants according
to (1). Partial products can be precomputed using the com-
pression technique [73] since the constants are known as
apriori. Next, partial product addition is performed using a
multi operand modular adder (MOMA) which consists of
a carry-save adder (CSA) tree [89] and Kogge-Stone adder
(KSA) [74]. α-bit adders are used for modulo 2α calculations.
α-bit adders with end-around-carry (EAC) technique [71] are
used for modulo 2α − 1 calculations. According to (1), the
convolution device scheme is shown in Fig. 6. The α-bit
adders bit-width shown in Fig. 6 is significantly less than
the full dynamic range bit-width. Thus, MOMAs reduce the
arithmetic operations computational complexity and increase
the RNS-based device speed. Experiments on software and
hardware implementation of the developed method and the
proposed algorithm for 3D medical image WP are presented
further.

FIGURE 6. The convolution device scheme for 3D image I(x, y, z) and
wavelet filter coefficients fF ,i using CSA tree and KSA: (a) modulo 2α ;
(b) modulo 2α − 1 with EAC technique.

IV. EXPERIMENTS
This section is divided into 2 subsections. Subsection IVA
presents the software implementation of 3D computed tomo-
gram WP with SFC using various scaling parameters and
its comparison with the proposed algorithm. Subsection IVB
describes the hardware implementations of WP for 3D med-
ical images with SFC and parallelized calculations in RNS
and their comparison with state-of-the-art solutions.

A. SOFTWARE IMPLEMENTATION OF MEDICAL
IMAGE WP WITH SFC
Medical image WP with SFC was implemented in the
MATLAB software version R2020b for the 3D computed
tomogram of the paranasal sinuses ‘‘CT_par_sin’’ is the
grayscale 12-bit image of size 390 × 390 × 390. Filters
coefficients fF,i of the Daubechies wavelets db(k/2)(k =
2, 4, 6, . . . , 20) were obtained, scaled using different 2n

by (2), and converted to the fixed-point format. Computed
tomogram WP with SFC implemented using (1) and (4)
according to the scheme in Fig. 5. An example of a 3D
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tomographic image ‘‘CT_par_sin’’ WP is shown in Fig. 7.
The results (PSNR, dB) of 3D grayscale 12-bit computed
tomogram ‘‘CT_par_sin’’ software WP using Daubechies
wavelets db(k/2) with the number k = 2, 8, 14, 20 of
the coefficients scaled by n = 1, 2, 3, . . . , 17 is shown in
Fig. 8. The minimum SFs for high-quality according to (6)
WP with SFC of 3D grayscale 12-bit computed tomogram
‘‘CT_par_sin’’ using Daubechies wavelets db(k/2) with the
number k = 2, 8, 14, 20 of the coefficients is shown in Fig. 9.
Hardware implementation of 3D medical image WP with
different color bit-depth using various SFC with bit-width r
on hardware FPGA accelerators is presented further.

B. HARDWARE IMPLEMENTATIONS OF MEDICAL
IMAGE WP WITH SFC AND PARALLELIZED
CALCULATIONS IN RNS
Medical image WP with SFC was implemented in
the Xilinx Vivado 2020.2 for the target device Kin-
tex UltraScale xcku115-flvf-1924-3-e. The run strategy is
‘‘Flow_PerfOptimized_high.’’ The higher the image color
depth, the greater the calculation accuracy needed for high-
quality processing, and the more bits must be allocated for
wavelet filter coefficients. Therefore, different wavelets are
selected to process 3D medical images with varying depths
of color. Hardware implementation was carried out for WP
with SFC using Daubechies wavelet db2 with 4 coefficients,
symlets sym6 with 12 coefficients, and coiflet coif 4 with 24
coefficients to process images with BPC = 8, 12, 16, respec-
tively. Filters coefficients fF,i were scaled using different 2n

by (2) and converted to fixed-point format with bit-widths r
calculated by (3). Various SFs and bit-widths r corresponding
to the known and proposed implementation methods are
used and are presented in Table 1. Hardware implementation
results of 3D medical image WP with SFC by various state-
of-the-art and proposed methods from Table 1 are shown
in Table 2.

Implementation of medical imageWPwith SFC and paral-
lelized calculations in RNS was carried out using Daubechies
wavelet db2. Various SFs and bit-widths r corresponding
to the known and proposed implementation methods pre-
sented in Table 1 were used. Both the RNS dynamic range

requirements [76] were calculated, and the moduli sets were
selected for each method of 8-bit image processing from
Table 1 (Table 3). Hardware implementation results of 3D
medical imageWP using different filter coefficients bit-width
r and RNS parallel computing and their comparison with
BNS from are presented in Table 4.

A description and discussion of all the software and hard-
ware implementation results obtained are presented further.

V. RESULTS AND DISCUSSION
This section is divided into 2 subsections corresponding to
the subsections with software and hardware implementations
from Section IV.

A. SOFTWARE IMPLEMENTATION RESULTS OF MEDICAL
IMAGE WP WITH SFC
Fig. 7 shows that the higher the SFC representation accuracy,
the lower the calculation error and its influence on the 3D
computed tomogram processing quality. The computed tomo-
gram in Fig. 7b processed using low precision SFC (n = 6)
has a low-quality (PSNR = 18.18 dB). It is heavily lighted.
Image distortions appear as lighting since the calculation
errors for each voxel have the same sign and are excessive
according to (2).WP calculation error leads to the distribution
of distortion over the entire image since each filter is used
to process all image voxels. The image seems to be divided
into squares at low processing quality. Upsampling leads
to this phenomenon, short brightness leaps, and the visible
boundaries appearance between fragments of size 2×2. These
fragments will have a size 2 × 2 × 2 in a full 3D tomogram
representation. This regularity can be used to image quality
assessment in lossy compression since similar distortions
appear [21], [32].

The computed tomogram in Fig. 7c processed using aver-
age precision SFC (n = 9) has an average quality (PSNR =
35.71 dB). Distortions are less pronounced than in Fig. 7b and
are most noticeable in image fragments with bone tissue since
their brightness is higher than in the other image fragments.
The higher the brightness, the greater the WP calculation
error, and the more noticeable the image processed distor-
tions. This regularity is important since medical diagnosis

FIGURE 7. Example of 3D tomogram ‘‘CT_par_sin’’ (120-th coronal frame) wavelet processing with SFC using Daubechies wavelet db7 and various SF n:
(a) original image; processed image: (b) n = 6, PSNR = 18.18 dB; (c) n = 9, PSNR = 35.71 dB; (d) n = 13, PSNR = 62.05 dB.
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FIGURE 8. Results of 3D grayscale 12-bit computed tomogram ‘‘CT_par_sin’’ wavelet processing with SFC
using Daubechies wavelets.

FIGURE 9. The minimum SF n at which the results of wavelet processing with
SFC of 3D grayscale 12-bit computed tomogram ‘‘CT_par_sin’’ using
Daubechies wavelets achieves high quality.

TABLE 1. Scaling factor values n used for hardware implementation.

TABLE 2. Hardware implementation results of 3D medical image wavelet
processing with scaled filter coefficients.

uses the brightest image fragments mainly. CT is used to
gain knowledge of high-density tissues primarily. Human

TABLE 3. Dynamic range requirements and moduli sets of residue
number system for hardware implementation.

TABLE 4. Hardware implementation results of 3D medical image wavelet
processing with SFC in RNS and BNS.

bones are this tissue in this case. Distortions introduced into
fragments of the ‘‘CT_par_sin’’ image with bone tissue are
the most noticeable and significant. Althoughmost images do
not contain visible distortions, the most important fragments
are distorted enough to influence the diagnosis.

The computed tomogram in Fig. 7d processed using high
precision SFC (n = 13) has a high-quality (PSNR = 62.05 >
Q = 60 dB) according to (6). This image does not contain
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visible distortions, indistinguishable by eye from the image
in Fig. 7a, and can be used for medical diagnosis. Never-
theless, the images obtained using different modalities are
very diverse. They have many parameters such as size and
color depth and features related to the imaging modality, the
organs being diagnosed, both properties and settings of the
diagnostic device, and others. A general approach to 3Dmed-
ical image WP quality evaluating is proposed in this paper.
However, the expert can determine the image processing
high-quality threshold based on the conditions and circum-
stances of the clinical diagnosis in each case. The developed
WP method with SFC and the proposed coefficient scaling
algorithm can be used in any approach to assessing the image
processing quality using the PSNR criterion. The diagnosis
can be carried out by both a medical expert and a machine.
Thus, the proposed approach shown in Fig. 3 can be used
in artificial intelligence systems using DWT-based convolu-
tional neural networks for various medical image computing
problem solving such as segmentation, classification, and
pattern recognition [1].

Experimental results of 3D grayscale 12-bit computed
tomogram ‘‘CT_par_sin’’ WP presented in Fig. 8 and 9
confirm the theoretical analysis results correctness from
Section 3. The more coefficients the wavelet filters contain,
the higher the accuracy of their representation in the device
memory for high-quality medical image processing should
be. Practical results have shown that filter coefficients can
be scaled 1-3 bits less than the theoretical analysis requires.
The theoretical analysis orientation explains this difference
to the worst-case identifying at which the calculation error
has the maximum impact on the image processing quality.
A probabilistic approach proposed in [30] based on statis-
tical methods can be used for the non-redundant SF cal-
culation and further computational complexity reduction.
However, using the SFC representation accuracy according
to the theoretical analysis results guarantees high-quality
3D medical image WP. WP-based methods development
for medical image fusion [5], denoising [9], and compres-
sion [22] based on the proposed approach is one of the further
research promising areas. Hardware implementation results
and discussion of 3D medical image WP with different color
bit-depth using various SFC with bit-width r on hardware
FPGA accelerators are presented further.

B. HARDWARE IMPLEMENTATIONS RESULTS OF MEDICAL
IMAGE WP WITH SFC AND PARALLELIZED
CALCULATIONS IN RNS
The higher the device performance, the better, as it can
process more information in the same amount of time. The
lower the hardware cost, the better. Lower hardware costs
result in lower power consumption and smaller device size
requirements. Hardware implementation results from Table 2
shows that:

1. All considered methods allow achieving high-quality
image processing. The quality of image processing using
different methods is approximately equal.

2. The use of the proposed approach (shown in Fig. 3)
for 3D 8-bit medical image WP with SFC: increased the
device performance by 13.91% compared to [38], by 23.80%
compared to [54], and by 41.90% compared to [75]; reduced
hardware resources by 14.68% compared to [38], 28.98%
compared to [54], and 69.47% compared to [75].

3. The proposed approach for 3D 12-bit medical imageWP
increased the device performance by 1.08% and reduced the
hardware resources by 62.24% compared to [75].

4. The proposed approach for 3D 16-bit medical imageWP
increased the device performance by 25.76% and reduced the
hardware resources by 51.70% compared to [75].

Thus, hardware implementation results of 3D medical
images WP using various color depths, proposed and known
state-of-the-art methods (Table 1) confirm that the SFC rep-
resentation accuracy correlates with the WP computational
complexity. Which directly affects the time, hardware, and
energy costs of medical image processing devices. Tomo-
graphic image WP with SFC does not lead to the visible
distortion appearance simultaneously. We conclude that the
proposed approach makes it possible to increase the device
performance and reduce the hardware resources while main-
taining high-quality WP of 3D medical images with different
color depths. Compared with the known methods in the hard-
ware resources, the proposed approach significantly exceeds
the device performance gain in percentage terms in each case.
SFC-basedWP using the lifting scheme further reduces hard-
ware resources for low-area device priority applications. The
lifting scheme called the second generationwavelet transform
has lower computational complexity than the classic wavelet
transforms but has disadvantages [22], [41]. Sequential data
processing in the lifting scheme increases the arithmetic
operations delay and decreases the transformation speed
compared to parallel data processing in the classic wavelet
transform. We assume that the lifting scheme will mostly
negate the performance gain of the medical imageWP device
obtained using the proposed approach but will lead to an even
more significant hardware resources reduction.

Hardware implementation results of 3D 8-bit medical
image WP are presented in Table 4 using proposed and state-
of-the-art methods (Table 3) and show that:

1. Parallel 3-modulo RNS calculations increased the device
performance by 1.78-2.53 times compared to using BNS,
increasing the hardware resources by 3.11-3.90 times.

2. Both SFC-based WP and RNS parallel computing com-
binations increased the device performance by 2.89-3.59
times, increasing the hardware resources by 1.18-3.29 times.

Moduli sets of a particular type made it possible to use
effective summation in CSA and KSA blocks with the
EAC technique, which led to a significant calculation speed
increase. However, RNS to BNS conversion operation is very
resource-intensive, partially neutralizes the device perfor-
mance gain, and greatly affects the hardware resources. This
approach is advisable for medical imaging applications with
performance-priority devices [43]. The developed FPGA
accelerators are cheap, practical, and can be introduced into
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the mass market. However, the proposed approach implemen-
tation on FPGA does not fully realize the RNS arithmetic
potential. FPGAs contain a finite set of elements, and con-
nections between them are programmed only. The developed
method and the proposed algorithm implementation on ASIC
devices allow the significantly higher performance improve-
ment of 3D medical image WP with a considerably smaller
hardware resources increase. ASIC has more fine-tuning
possibility for a specific task is one of the further research
promising directions [35].

VI. CONCLUSION
In this paper, we proposed an approach to the 3D medi-
cal image WP device performance improvements based on
SFC using and RNS parallel computing. The developed
SFC-based WP method has reduced the computational
complexity. The proposed method of the 3D imageWP accu-
racy evaluation estimated the SF influence on the medical
image processing quality. Proven that SFC for 3D med-
ical image high-quality WP with reduced computational
complexity can be calculated using the proposed algorithm.
Software implementation of the proposed approach has
achieved high-quality WP of 3D 12-bit computed tomogram.
Hardware implementation of 3D medical image WP using
the proposed FPGA accelerators and comparison with state-
of-the-art solutions have shown: the use of SFC-based WP
increases the device performance up to 41.90% and reduces
the hardware resources up to 69.47%; the use of RNS parallel
computing increases the device performance by 1.78-2.53
times compared to using BNS with an increase in the hard-
ware resources by 3.11-3.90 times; the both SFC-based
WP and RNS parallel computing combination increases the
device performance by 2.89-3.59 times with an increase in
the hardware resources by 1.18-3.29 times. The improvement
of device performance is achieved while maintaining high-
quality medical image WP in PSNR.

In further work, we plan to apply the proposed approach
for: performance improvement of the non-medical image
processing systems; DWT-based neural networks developing
for medical image segmentation, classification, and pattern
recognition; developed methods modification by a proba-
bilistic approach using based on statistical methods to fur-
ther computational complexity reducing; WP-based methods
development for medical image fusion, denoising, and com-
pression; wavelet methods development based on the lifting
scheme to the hardware resources further reduce; developed
methods implementation on ASIC to the device performance
further improve.

APPENDIX
Calculation error of WP occurs when wavelet filter coeffi-
cients are pre-scaling. It increases at each stage of 3Dmedical
image WP according to the scheme in Figure 5: when con-
volution with filters; when summing the convolution results;
when normalizing the obtained values. Analyzing and syn-
thesizing filters contain the same coefficients set according

to formula (1). Thus, the errors of filters SLD and SLR will
be equal and the errors of filters SHD and SHR. Therefore,
filters SLD and SLR are denoted as L, and filters SHD and
SHR as H . The coefficient values will be divided into several
groups when calculations are performed. Even and odd filter
coefficients, for example. The symbol λ is added to denote
a group, and it means that calculations are carried out for λ
coefficients groups.
Stage 1. Wavelet Filter Coefficients Scaling

(Preprocessing):

T [L]
1 =

k∑
i=1

2nfL,i = 2n
k∑
i=1

fL,i = 2n ·
√
2 = 2n+1/2,

where T [L]
1 is the exact value of the filter L coefficients sum;

T [H ]
1 =

k∑
i=1

2nfH ,i = 2n
k∑
i=1

fH ,i = 2n · 0 = 0,

T [L]
1,1 =

k/2∑
i=1

2nfL,2i−1;

T [L]
1,2 =

k/2∑
i=1

2nfL,2i, T [H ]
1,1 =

k/2∑
i=1

2nfH ,2i−1,

T [H ]
1,2 =

k/2∑
i=1

2nfH ,2i;

E [L]
1 =

k∑
i=1

(⌈
2nfL,i

⌉
− 2nfL,i

)
,

where E [L]
1 is the absolute rounding errors sum of filter L

coefficients;

E [H ]
1 =

k∑
i=1

(⌈
2nfH ,i

⌉
− 2nfH ,i

)
;

E [L]
1,1 =

k/2∑
i=1

(⌈
2nfL,2i−1

⌉
− 2nfL,2i−1)

)
;

E [L]
1,2 =

k/2∑
i=1

(⌈
2nfL,2i

⌉
− 2nfL,2i

)
;

E [H ]
1,1 =

k/2∑
i=1

(⌈
2nfH ,2i−1

⌉
− 2nfH ,2i−1

)
;

E [H ]
1,2 =

k/2∑
i=1

(⌈
2nfH ,2i

⌉
− 2nfH ,2i

)
.

Stage 2. Rows Convolution (Analysis):

T [L]
2 = T [L]

1 ·M ,

where: T [L]
2 is the calculations exact value at the 2nd stage

obtained after image convolution by filter L; M is the maxi-
mum image voxels brightness value;

E [L]
2 = E [L]

1 ·M ,
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where E [L]
2 is the maximum absolute error at the 2nd stage

obtained after image convolution by filter L;

E [H ]
2 = E [H ]

1 ·M .

All T [F]
l = 0 (l > 1), where F an image convolution filter

sequence containing H since T [H ]
1 = 0.

Stage 3. Columns Convolution (Analysis):

T [LL]
3 = T [LL]

2 · T [L]
1 ,

where T [LL]
3 is the calculations exact value at the 3rd stage

obtained after double sequential image convolution by L;

E [LL]
3 =

(
T [L]
2 + E

[L]
2

) (
T [L]
1 + E

[L]
1

)
− T [LL]

3 ,

where E [LL]
3 is the maximum absolute error at the 3rd stage

obtained after double sequential image convolution by L;

E [LH ]
3 =

(
T [L]
2 + E

[L]
2

)
E [H ]
1 , E [HL]

3 =E [H ]
2

(
T [L]
1 +E

[L]
1

)
;

E [HH ]
3 = E [H ]

2 · E [H ]
1 .

Stage 4. Frames Convolution (Analysis):

T [LLL]
4 = T [LL]

3 · T [L]
1 , E [LLL]

4

=

(
T [LL]
3 + E [LL]

3

) (
T [L]
1 + E

[L]
1

)
− T [LLL]

4 ;

E [LLH ]
4 =

(
T [LL]
3 + E [LL]

3

)
E [H ]
1 ,

E [LHL]
4 = E [LH ]

3

(
T [L]
1 + E

[L]
1

)
;

E [LHH ]
4 = E [LH ]

3 · E [H ]
1 , E [HLL]

4 = E [HL]
3

(
T [L]
1 + E

[L]
1

)
;

E [HLH ]
4 = E [HL]

3 · EE [H ]
1 , E [HHL]

4 = E [HH ]
3

(
T [L]
1 + E

[L]
1

)
;

E [HHH ]
4 = E [HH ]

3 · E [H ]
1 .

Stage 5. Frames Convolution (Synthesis): (λ = 1, 2)

T [LLLL]
5,λ = T [LLL]

4 · T [L]
1,λ ;

E [LLLL]
5,λ =

(
T [LLL]
4 + E [LLL]

4

) (
T [L]
1,λ + E

[L]
1,λ

)
− T [LLLL]

5,λ ;

E [LLHH ]
5,λ = E [LLH ]

4

(
T [H ]
1,λ + E

[H ]
1,λ

)
,

E [LHLL]
5,λ = E [LHL]

4

(
T [L]
1,λ + E

[L]
1,λ

)
;

E [LHHH ]
5,λ = E [LHH ]

4

(
T [H ]
1,λ + E

[H ]
1,λ

)
,

E [HLLL]
5,λ = E [HLL]

4

(
T [L]
1,λ + E

[L]
1,λ

)
;

E [HLHH ]
5,λ = E [HLH ]

4

(
T [H ]
1,λ + E

[H ]
1,λ

)
,

E [HHLL]
5,λ = E [HHL]

4

(
T [L]
1,λ + E

[L]
1,λ

)
;

E [HHHH ]
5,λ = E [HHH ]

4

(
T [H ]
1,λ + E

[H ]
1,λ

)
.

Stage 6. Frames Summation: (λ = 1, 2)

E [LL]
6,λ = E [LLLL]

5,λ +E [LLHH ]
5,λ , EH6,λ = E [LHLL]

5,λ +E [LHHH ]
5,λ ;

E [HL]
6,λ = E [HLLL]

5,λ +E [HLHH ]
5,λ , E [HH ]

6,λ =E
[HHLL]
5,λ + E [HHHH ]

5,λ .

Stage 7. Columns Convolution (Synthesis):

T [LL]
7,1 = T [LLLL]

5,1 · T [L]
1,1 , T [LL]

7,2 = T [LLLL]
5,2 · T [L]

1,1 ,

T [LL]
7,3 = T [LLLL]

5,1 · T [L]
1,2 ;

T [LL]
7,4 = T [LLLL]

5,1 · T [L]
1,2 ,

E [LL]
7,1 =

(
T [LLLL]
5,1 + E [LL]

6,1

) (
T [L]
1,1 + E

[L]
1,1

)
− T [LL]

7,1 ;

E [LL]
7,2 =

(
T [LLLL]
5,2 + E [LL]

6,2

) (
T [L]
1,1 + E

[L]
1,1

)
− T [LL]

7,2 ;

E [LL]
7,3 =

(
T [LLLL]
5,1 + E [LL]

6,1

) (
T [L]
1,2 + E

[L]
1,2

)
− T [LL]

7,3 ;

E [LL]
7,4 =

(
T [LLLL]
5,2 + E [LL]

6,2

) (
T [L]
1,2 + E

[L]
1,2

)
− T [LL]

7,4 ;

E [LH ]
7,1 = E [LH ]

6,1

(
T [H ]
1,1 + E

[H ]
1,1

)
,

E [LH ]
7,2 = E [LH ]

6,2

(
T [H ]
1,1 + E

[H ]
1,1

)
;

E [LH ]
7,3 = E [LH ]

6,1

(
T [H ]
1,2 + E

[H ]
1,2

)
,

E [LH ]
7,4 = E [LH ]

6,2

(
T [H ]
1,2 + E

[H ]
1,2

)
;

E [HL]
7,1 = E [HL]

6,1

(
T [L]
1,1 + E

[L]
1,1

)
,

E [HL]
7,2 = E [HL]

6,2

(
T [L]
1,1 + E

[L]
1,1

)
;

E [HL]
7,3 = E [HL]

6,1

(
T [L]
1,2 + E

[L]
1,2

)
,

E [HL]
7,4 = E [HL]

6,2

(
T [L]
1,2 + E

[L]
1,2

)
;

E [HH ]
7,1 = E [HH ]

6,1

(
T [H ]
1,1 + E

[H ]
1,1

)
,

E [HH ]
7,2 = E [HH ]

6,2

(
T [H ]
1,1 + E

[H ]
1,1

)
;

E [HH ]
7,3 = E [HH ]

6,1

(
T [H ]
1,2 + E

[H ]
1,2

)
,

E [HH ]
7,4 = E [HH ]

6,2

(
T [H ]
1,2 + E

[H ]
1,2

)
.

Stage 8. Columns Summation:
(
λ = 1, 4

)
E [L]
8,λ = E [LL]

7,λ + E
[LH ]
7,λ , E [H ]

8,λ = E [HL]
7,λ + E

[HH ]
7,λ .

Stage 9. Rows Convolution (Synthesis):

T9,1 = T [LL]
7,1 · T

[L]
1,1 , T9,2 = T [LL]

7,2 · T
[L]
1,1 ,

T9,3 = T [LL]
7,3 · T

[L]
1,1 ;

T9,4 = T [LL]
7,4 · T

[L]
1,1 , T9,5 = T [LL]

7,1 · T
[L]
1,2 ,

T9,6 = T [LL]
7,2 · T

[L]
1,2 ;

T9,7 = T [LL]
7,3 · T

[L]
1,2 , T9,8 = T [LL]

7,4 · T
[L]
1,2 ;

E [L]
9,1 =

(
T7,LL,1 + E

[L]
8,1

) (
T [L]
1,1 + E

[L]
1,1

)
− T9,1;

E [L]
9,2 =

(
T7,LL,2 + E

[L]
8,2

) (
T [L]
1,1 + E

[L]
1,1

)
− T9,2;

E [L]
9,3 =

(
T7,LL,3 + E

[L]
8,3

) (
T [L]
1,1 + E

[L]
1,1

)
− T9,3;

E [L]
9,4 =

(
T7,LL,4 + E

[L]
8,4

) (
T [L]
1,1 + E

[L]
1,1

)
− T9,4;

E [L]
9,5 =

(
T7,LL,1 + E

[L]
8,1

) (
T [L]
1,2 + E

[L]
1,2

)
− T9,5;

E [L]
9,6 =

(
T7,LL,2 + E

[L]
8,2

) (
T [L]
1,2 + E

[L]
1,2

)
− T9,6;
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E [L]
9,7 =

(
T7,LL,3 + E

[L]
8,3

) (
T [L]
1,2 + E

[L]
1,2

)
− T9,7;

E [L]
9,8 =

(
T7,LL,4+E

[L]
8,4

) (
T [L]
1,2+E

[L]
1,2

)
− T9,8;

E [H ]
9,1 = E [H ]

8,1

(
T [H ]
1,1 + E

[H ]
1,1

)
, E [H ]

9,2 =E
[H ]
8,2

(
T [H ]
1,1 +E

[H ]
1,1

)
;

E [H ]
9,3 = E [H ]

8,3

(
T [H ]
1,1 + E

[H ]
1,1

)
, E [H ]

9,4 =E
[H ]
8,4

(
T [H ]
1,1 +E

[H ]
1,1

)
;

E [H ]
9,5 = E [H ]

8,1

(
T [H ]
1,2 + E

[H ]
1,2

)
, E [H ]

9,6 =E
[H ]
8,2

(
T [H ]
1,2 +E

[H ]
1,2

)
;

E [H ]
9,7 = E [H ]

8,3

(
T [H ]
1,2 +E

[H ]
1,2

)
, E [H ]

9,8 =E
[H ]
8,4

(
T [H ]
1,2 +E

[H ]
1,2

)
.

Stage 10. Rows Summation:
(
λ = 1, 8

)
E10,λ = E [L]

9,λ + E
[H ]
9,λ .

Stage 11. Normalization:
(
λ = 1, 8

)
E11,λ =

⌊
2−6nE10,λ

⌋
.

Values E11,λ
(
λ = 1, 8

)
are the maximum resulting error of

3D medical image WP that calculateMSE by the formula

MSE = (1/8)
8∑
λ=1

E2
11,λ. (A.1)
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