
Journal of Cryptographic Engineering (2019) 9:313–331

https://doi.org/10.1007/s13389-018-0195-8

REGULAR PAPER

RNSMontgomery reduction algorithms using quadratic residuosity

Shinichi Kawamura1,2 · Yuichi Komano1 · Hideo Shimizu1 · Tomoko Yonemura1

Received: 10 September 2017 / Accepted: 22 August 2018 / Published online: 3 September 2018

© The Author(s) 2018

Abstract

The residue number system (RNS) is a method for representing an integer as an n-tuple of its residues with respect to a given

base. Since RNS has inherent parallelism, it is actively researched to implement a faster processing system for public-key

cryptography. This paper proposes new RNS Montgomery reduction algorithms, Q-RNSs, the main part of which is twice a

matrix multiplication. Letting n be the size of a base set, the number of unit modular multiplications in the proposed algorithms

is evaluated as (2n2 + n). This is achieved by posing a new restriction on the RNS base, namely, that its elements should have

a certain quadratic residuosity. This makes it possible to remove some multiplication steps from conventional algorithms, and

thus the new algorithms are simpler and have higher regularity compared with conventional ones. From our experiments, it

is confirmed that there are sufficient candidates for RNS bases meeting the quadratic residuosity requirements.

Keywords Residue number system · Montgomery reduction · Quadratic residuosity · Cryptography

1 Introduction

The residue number system (RNS) is a method for represent-

ing an integer in which a given integer x is represented by

its residues divided by a base of integers, which are pairwise

co-prime. If we denote the base by B = {m1, m2, . . . , mn}

and the RNS representation of x as [x1, x2, . . . , xn], it holds

that xi = x mod mi . The main feature of RNS is that

addition, subtraction, and multiplication are carried out by

independent addition, subtraction, and multiplication with

respect to each base element. The operation flow at each

base element is called a channel. If each channel has a pro-

cessing unit, an n-fold speed increase can be achieved, as

Part of this paper is based on results obtained from a project

commissioned by the New Energy and Industrial Technology

Development Organization (NEDO).

B Shinichi Kawamura

shinichi2.kawamura@toshiba.co.jp; skwmr@ieee.org

Yuichi Komano

yuichi1.komano@toshiba.co.jp

Hideo Shimizu

hideo.shimizu@toshiba.co.jp

Tomoko Yonemura

tomoko.yonemura@toshiba.co.jp

1 Toshiba Corporation, Kawasaki, Japan

2 ECSEC Technical Research Association, Tokyo, Japan

compared with the case with a single processing unit. This

parallelism seems attractive in pursuing efficient computa-

tion of public-key cryptography, which is constructed by

integer operations of several hundred or several thousand

bits with a modular reduction. However, modular reduction

in RNS was not easy to carry out before it was replaced with

Montgomery reduction (M-red) in [1]. Following proposal

of the RNS M-red, promising results have been obtained

for the RSA algorithm [2–6], Elliptic Curve Cryptosys-

tem [7–14], Pairing-based Cryptosystem [15,16], modular

inversion [17], Lattice-based Cryptosystem [18], and an

architectural study[19]. In parallel with these applications,

improvements in the RNS M-red algorithm have been pro-

posed [3,5,6,9,13–15]. An overview of these researches is

presented in [20].

This paper proposes improved RNS M-red algorithms,

Q-RNS M-reds, which by posing quadratic residuosity con-

straints on the RNS base achieves the least number of

multiplications. Past improvements in RNS M-red algo-

rithms, with exceptions such as [6], were optimizations

within one round of M-red execution, whereas our opti-

mization for Q-RNS M-red is novel in that it transfers the

square root of a constant from the current round to the previ-

ous round. Q-RNS includes two concrete algorithms called

sQ-RNS and dQ-RNS, depending on the difference of the

multiplication unit used.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-018-0195-8&domain=pdf
http://orcid.org/0000-0003-1126-4645

314 Journal of Cryptographic Engineering (2019) 9:313–331

This paper is organized as follows. Section 2 introduces

used notation and some basic concepts. Section 3 explains

the conventional RNS M-red algorithms. In Sect. 4, we intro-

duce the new idea to use quadratic residuosity in order to

simplify the M-red algorithm. The first variant, sQ-RNS

M-red, is a direct combination of a new idea and a con-

ventional algorithm. The second variant, dQ-RNS M-red,

relaxes the constraint to RNS base choice by introducing the

double-level Montgomery technique from [13]. Other proce-

dures necessary to implement public-key cryptography, such

as Initialize, are discussed in Sect. 5. Section 6 compares

RNS M-red algorithms including FPGA implementations,

and Sect. 7 concludes this paper.

2 Basic concepts

2.1 Notation

The following definitions are applied in this paper.

w : Bit size of a word in a given computer.

〈x〉m = x mod m, where 〈x〉m ∈ [0, m).

〈x〉m ≡ x (modm) and 〈x〉m ∈ [0, 2m).

Base B = {m1, . . . , mn}, where gcd(mi , m j) = 1 for i �= j .

Base B ′ = {m′
1, . . . , m′

n}, where gcd(m′
i , m′

j) = 1 for i �= j .

|B| : Size of a set B.

M =

n∏

i=1

mi , M ′ =

n∏

i=1

m′
i , where gcd(M, M ′) = 1.

Mi = M/mi , M ′
i = M ′/m′

i .

〈
x−1

〉
m

: A multiplicative inverse of x if gcd(x, m) = 1.

{x}B =
[
〈x〉m1

, . . . , 〈x〉mn

]
.

{x}B′ =
[
〈x〉m′

1
, . . . , 〈x〉m′

n

]
.

{x}B B′ = [{x}B, {x}B′] .

Transpose T :

{x}T
B =

⎡
⎢⎣

〈x〉m1

...

〈x〉mn

⎤
⎥⎦ .

〈x〉m ⊗ 〈y〉m = 〈xy〉m .

{x}B ⊗ {y}B = {xy}B =
[
〈xy〉m1

, . . . , 〈xy〉mn

]
.

⊗M : Single-word Montgomery multiplication.

〈x〉m ⊗M 〈y〉m =
〈
xy2−w

〉
m

.

{x}B ⊗M {y}B = {xy2−w}B

=
[〈

xy2−w
〉
m1

, . . . ,
〈
xy2−w

〉
mn

]
.

In this paper, matrix expressions are used to describe parallel

processing using RNS. If the matrix is diagonal, no substan-

tive mixture of B and B ′ in an operation occurs. In such cases,

definitions above are sufficient to carry out the matrix opera-

tions. If different bases appear in an operation, which occurs

for the base extension operation or the ToBin transformation,

the following computation rules will apply.

[
〈a1〉m′

i
, . . . , 〈an〉m′

i

]
⊗ {x}T

B + L̂ ⊗ 〈a〉m′
i

=

〈
n∑

k=1

〈ak〉m′
i
〈x〉mk

+ L̂ 〈a〉m′
i

〉

m′
i

.

If the multiplication unit is the Montgomery one, then

[
〈a1〉m′

i
, . . . , 〈an〉m′

i

]
⊗M {x}T

B + L̂ ⊗M 〈a〉m′
i

=

〈
n∑

k=1

〈ak〉m′
i
〈x〉mk

2−w + L̂ 〈a〉m′
i
2−w

〉

m′
i

.

These definitions suffice to carry out the matrix computations

appearing in this paper. Note that the matrix computation in

this paper is different from standard matrix computation in

that the result in each line is reduced by a modulus unique to

that line. Therefore, no inverse matrix can be defined here.

However, this representation effectively simplifies the algo-

rithm representation and makes it easy to count the number

of operations.

2.2 Modular multiplication

Most public-key cryptosystems are implemented by repeti-

tion of a modular multiplication with a large modulus p, that

is,

z = xy mod p, (1)

where p < 2l . l ranges from several hundreds to several

thousands and p is usually a large prime or a product of two

large primes.

Suppose that we need to add the results of two modular

multiplications. If we run a modular multiplication twice,

at least two multiplications and two modular reductions are

necessary. If we instead use the equation

z = (x1 y1 + x2 y2) mod p, (2)

only a single reduction is sufficient to obtain the result after

the two multiplications and an addition. This technique is

called a lazy reduction, and it effectively reduces the number

123

Journal of Cryptographic Engineering (2019) 9:313–331 315

Fig. 1 Montgomery multiplication MM(x, y)

of reduction operations when summation of several modular

multiplications is to be computed. Such a case frequently

occurs in the implementation of Elliptic Curve Cryptography.

We define the number of terms ν as a degree of laziness. For

example, Eq. (2) has degree ν = 2.

2.3 Montgomery reduction

When implementing modular multiplication, one option

is to simply use Eq. (1), However, to avoid conditional

branches inherent to division operation, another popular

option is to implement it using the Montgomery multipli-

cation below [21].

v = xy R−1 mod p (3)

Figure 1 shows details of the procedure. Step 1 is a mul-

tiplication followed by Montgomery reduction in steps 2–5,

which here is called M-red. For correct results, it suffices that

gcd(R, p) = 1 and R > p. Since p is usually an odd number,

choosing R = 2l satisfies these conditions. In this setting,

step 4 is carried out simply by a shifting operation. Step 5

is called the final subtraction, which makes the computation

result less than p.

Let MM(x, y) be the right-hand side of Eq. (3). Using

MM(x, y), the procedure to compute a modular multiplica-

tion is described as follows.

Initialize:

x ′ = MM(x, R2) = x R2 R−1 mod p

= x R mod p

y′ = MM(y, R2) = y R2 R−1 mod p

= y R mod p

Main body:

z′ = MM(x ′, y′) = (x R)(y R)R−1 mod p

= xy R mod p

Finalize:

z = MM(z′, 1) = (xy R) · 1 · R−1 mod p

= xy mod p

If our goal is single execution of a modular multiplication,

calling MM(x, y) four times is not efficient. However, when

computing a modular multiplication many times, the over-

heads of Initialize and Finalize become negligible because

they are called once at the beginning and at the end, respec-

tively.

The goal of this paper is to propose an efficient algorithm

to compute the Montgomery reduction in RNS, that is, an

RNS M-red algorithm.

2.4 RNS

Let B = {m1, . . . , mn} be a base for RNS representation,

where gcd(mi , m j) = 1 holds for i �= j . RNS representation

of an integer x is given by

{x}B = [〈x〉m1
, . . . , 〈x〉mn

].

The symbol 〈x〉m is defined as 〈x〉m = x mod m, and thus

〈x〉m ∈ [0, m) holds. The n-tuple on the right is called the

RNS representation of x in base B. The representation is

unique if 0 ≤ x < M , where M =
∏n

i=1 mi . This represen-

tation allows fast arithmetic in Z/M Z since

{x}B ⊙ {y}B = [〈x ⊙ y〉m1
, . . . , 〈x ⊙ y〉mn

],

where ⊙ ∈ {+,−,×, /}. ‘/’ applies only if y is co-prime to

M .

In RNS, a large integer can be processed with indepen-

dent parallel operations in each channel. If we could use

small factors of public-key p as an RNS base, a very efficient

implementation would be realized. It is, however, difficult to

employ such an approach since the public-key p is usually a

large prime or a product of two large primes.

2.5 Chinese remainder theorem

According to the Chinese remainder theorem, the integer x

represented in RNS is recovered by

x =

n∑

i=1

〈x〉mi

〈
M−1

i

〉
mi

Mi mod M .

Let us consider a method avoiding the modulo M opera-

tion in evaluating the right-hand side. Since we can replace

〈x〉mi

〈
M−1

i

〉
mi

by ξi (x) =
〈
x M−1

i

〉
mi

without affecting the

equality, we can rewrite the equation with a new unknown

123

316 Journal of Cryptographic Engineering (2019) 9:313–331

integer L as

x =

n∑

i=1

ξi (x)Mi − L M .

Considering 0 ≤ x/M < 1, we obtain the following equa-

tion.

L =

⌊
n∑

i=1

ξi (x)

mi

⌋

An approximation L̂ of L is proposed in [3] for an appropriate

offset α ∈ [0, 1),

L̂ =

⌊
α +

n∑

i=1

trunc(t, ξi (x))

2w

⌋
.

trunc(t, x) is a function to force the lower w − t bits of x to

zero.

trunc(t, x) =
⌊

x2−(w−t)
⌋

· 2(w−t),

where 0 < t ≤ w. The difference between L̂ and L can be at

most 1 if appropriate t and α are selected. This approximation

is the most important part of the base extension process in

the computation of RNS M-red.

2.6 Special modulus for fast reduction

Usually, arbitrary moduli can be selected as RNS bases so

long as they are mutually prime. It is well-known that the

pseudo-Mersenne prime number mi = 2w − μi is useful for

fast reduction. Actually, if

μi < 2⌊w/2⌋ (4)

holds, x mod mi can be computed efficiently with the fol-

lowing procedure. First, repeat the operation below twice:

x ← (x mod 2w) + μi · ⌊x/2w⌋.

If x < 22w holds for the initial value, the result is in [0, 2w+1).

The final result is obtained by subtracting mi at most once. In

addition, if the Hamming weight ofμi is small, multiplication

by μi can be replaced by several additions.

Let μ̄ = (1/w) log2 μi . Equation (4) is satisfied if μ̄ <

0.5.

2.7 Quadratic residuosity

An integer a is called a quadratic residue modulo m if there

exists a solution for the congruence equation of x ,

x2 ≡ a mod m.

In other words, a is called a quadratic residue if a has a

square root, and a quadratic non-residue otherwise. Unlike

real numbers, not every integer has its square roots for a

given modulus m. An integer a can be a quadratic residue or

a quadratic non-residue, depending on the value of modulus

m.

Let a function QR(a, m) be defined by

QR(a, m) =

{
1 (if ∃x s.t. x2 ≡ a (modm))

0 (if ∀x s.t. x2 �≡ a (modm))

This function will be used as a distinguisher of a quadratic

residue. If QR(a, m) = 1, let
〈
a1/2

〉
m

denote one of the square

roots of a modulo m.

Quadratic residuosity has been used for RNS in signal

processing applications to represent a complex signal (for

instance, refer to section 8.1 of [22]), whereas no previously

proposed RNS M-red algorithm has used quadratic residu-

osity. This paper applies quadratic residuosity to the RNS

M-red algorithm for the first time to construct algorithms that

consist of the least number of unit multiplications.

3 Conventional algorithms

3.1 Basic RNSM-red algorithm

3.1.1 Algorithm

Figure 2 shows the Montgomery reduction algorithm corre-

sponding to steps 2–5 of Fig. 1. By relaxing the range of the

output to less than 2p, the final subtraction has been removed.

In addition, the upper bound of the input is also relaxed from

p2 to β p2 with β ≥ 4. The condition R > β p ensures that

the output is less than 2p.1 All RNS M-red algorithms in

this paper can be regarded as RNS variants of this M-red

algorithm.

Figure 3 shows the RNS M-red algorithm derived straight-

forwardly from M-red in Fig. 2. A description of each step is

on the same line as the step number, followed by the actual

specification in matrix form. Steps 1, 4, and 5 correspond to

steps 1, 2, and 3 in Fig. 2, respectively. Steps 2 and 3 derive

approximation {q ′}B′ from {q}B , which is a technique called

the base extension step. Similarly, steps 6 and 7 are also the

1 s = (x + pq)/R < (β p2 + pR)/R = (β p/R + 1)p < 2p.

123

Journal of Cryptographic Engineering (2019) 9:313–331 317

Fig. 2 Montgomery reduction (M-red)

base extension, deriving {s}B from {s}B′ . A constant R is

set R = M =
∏n

i=1 mi for RNS M-red, while R = 2l is a

common setting for the binary M-red.

Since step 1 is carried out in base B, modulo M is automat-

ically applied to the computation and the result is equivalent

to that of step 1 in Fig. 2. It is in base B ′ that steps 4 and 5

should be carried out. The reason for this is as follows: As for

step 4, it is of no use computing (x + pq) in B because the

result is always a multiple of M and thus always 0 in base B.

The computation in step 5 is to multiply M−1 by r . This can

be carried out in base B ′ but not in base B, since M−1 does

not exist in base B. Although the final result s is computed at

step 5, it is only represented in base B ′. In order to complete

the representation in base B, steps 6 and 7 extend {s}B′ to

{s}B . This ensures compatibility between output and input

of the RNS M-red algorithm.

The matrix elements in each step are defined as follows:

Step 1:2 di =
〈
−p−1

〉
mi

.

Step 2:3 wi i =
〈
M−1

i

〉
mi

.

Step 3: The first base extension.

ai j =
〈
M j

〉
m′

i
,

ai = 〈−M〉m′
i
.

Step 4: pi = 〈p〉m′
i
.

Step 5: wi =
〈
M−1

〉
m′

i
.

Step 6: w′
i i =

〈
M ′

i
−1

〉
m′

i

.

Step 7: The second base extension.

bi j =
〈
M ′

j

〉
mi

,

bi =
〈
−M ′

〉
mi

.

This algorithm includes (2n2 + 5n) unit multiplications. We

exclude the multiplications by L̂ at steps 3 and 7 because a

technique in [3] shows how to carry out each of these by less

than n additions.

2 d is used because it looks like an inverted p, which makes it easier

to relate to p−1.

3 w is similarly used because it looks like an inverted M .

Fig. 3 Basic RNS M-red algorithm[3]

3.1.2 Requirement for parameters

Throughout this paper, we assume that the bit length w is

common to base elements mi and m′
i . Let mi have a form of

the pseudo-Mersenne prime,

mi = 2w − μi ∈ B,

where μi is a relatively small positive integer. Similarly,

m′
i = 2w − μ′

i ∈ B ′.

123

318 Journal of Cryptographic Engineering (2019) 9:313–331

Such a modulus has two important properties:

(a) mi is a special modulus for fast reduction.

(b) 1/mi can be well approximated as 1/2w.

Property (b) applies to the computation of L̂ in steps 3

and 7 in Fig. 3. Let ξi (q) = 〈θ〉mi
be the results of step 2. To

estimate the approximation error between

L =

⌊
n∑

i=1

ξi (q)/mi

⌋

and

L̂ =

⌊
n∑

i=1

trunc(t, ξi (q))/2w

⌋
,

let us consider a function f (q) =
∑n

i=1 ξi (q)/mi and its

approximate function f̃ (q) =
∑n

i=1 trunc(t, ξi (q))/2w. The

following equations hold for f and f̃ [23].

f (q) − e1 ≤ f̃ (q) ≤ f (q)

e1 = n(2−t − 2−w) +
1

2w

n∑

i=1

(
1 −

1

mi

)
μi (5)

Let q ′ be the extended value of q as computed in step 3. Using

the above equations, we can show the relationship between

q ′ and q as q ′ = q + uM with u ∈ {0, 1} if an offset α = 0.

This means that q is transformed to q ′ at step 3 with an error

term uM . This error is absorbed in the relaxed range of the

output
〈
x M−1

〉
p

until the end of step 5. A similar analysis

can be applied to the second base extension at step 7. In

this case, an approximation error e1 is replaced by e2 with

parameters (m′
i , μ

′
i), and an offset α is positive. A typical

offset at the second base extension is α = 0.5 [3]. The second

base extension is error-free if e2 < α and 2p ≤ (1 − α)M ′.

Conditions (i)–(v) below are typical requirements for

ensuring correct results [3,23].

(i) gcd(M, M ′) = 1

(ii) gcd(p, M) = 1

(iii) max(e1, e2) ≤ α < 1

(iv) β p ≤ (1 − α)M

(v) 2p ≤ (1 − α)M ′

From condition (iii) and Eq. (5), we can derive the lower

bound of t , the effective number of bits for approximation,

as

t ≥ t0 =
⌈
− log2{(α − max(e0, e′

0))n
−1 + 2−w}

⌉
,

Fig. 4 G-RNS M-red algorithm [9]

where e0 and e′
0 represent the summation parts of e1 and e2,

respectively.

3.2 G-RNS algorithm

Guillermin proposed an algorithm that at the time achieved

the minimum number of unit multiplications [9]. We call this

algorithm G-RNS (Fig. 4). Step 1 is the integration of steps 1

and 2 in Fig. 3. Step 2 is from the first term of step 4 combined

with steps 5 and 6 of Fig. 3. Step 3 is derived from steps 3–6

of Fig. 3. Step 4 corresponds to step 7 of the basic algorithm.

Step 5 is new in Fig. 4.

Elements of the matrices of G-RNS are defined as follows:

Step 1: di i = 〈wi i · di 〉mi
=

〈
M−1

i (−p−1)
〉
mi

.

Step 2: ei i =
〈
w′

i i · wi

〉
m′

i
=

〈
M ′

i
−1

M−1
〉
m′

i

.

Step 3:

a′
i j =

〈
w′

i i · wi · pi · ai j

〉
m′

i
=

〈
M ′

i
−1

m−1
j p

〉
m′

i

,

a′
i =

〈
w′

i i · wi · pi · ai

〉
m′

i
=

〈
−M ′

i
−1

p
〉
m′

i

.

123

Journal of Cryptographic Engineering (2019) 9:313–331 319

Fig. 5 C-RNS M-red algorithm[15]

Step 4:

bi j =
〈
M ′

j

〉
mi

,

bi =
〈
−M ′

〉
mi

.

Step 5: ci i =
〈
M ′

i

〉
m′

i
.

The necessary number of unit multiplications for G-RNS

is (2n2 + 3n).

3.3 C-RNS algorithm

Figure 5 shows an algorithm proposed by Cheung et al.[15].

Elements appear in each step are defined as follows:

Step 1: di i =
〈
M−1

i (−p−1)
〉
mi

.

Step 2: ei i =
〈
M ′

i
−1

M−1
〉
m′

i

.

Step 3:

ai j =
〈
M j

〉
m′

i
,

ai = 〈−M〉m′
i
.

Step 4: fi i =
〈
w′

i i · wi · pi

〉
m′

i
=

〈
M ′

i
−1

M−1 p
〉
m′

i

.

Step 5:

bi j =
〈
M ′

j

〉
mi

,

bi =
〈
−M ′

〉
mi

.

Step 6: ci i =
〈
M ′

i

〉
m′

i
.

The difference from G-RNS is that C-RNS restores the

original base extension matrix at step 3. The number of mul-

tiplications is (2n2 + 4n) in general cases, but computation

of the base extension can be reduced drastically in the special

case when n is small. As discussed in [15,16], it follows that

ai j =
〈
M j

〉
m′

i
=

∏

k �= j

mk mod m′
i

=
∏

k �= j

(mk − m′
i) mod m′

i ,

and that |mk−m′
i | = |μ′

i−μk | is a small number. Therefore, if

n is not so large, we can expect that ai j and bi j are close to 2w .

This makes it possible to reduce the computation amount at

the base extensions. In hindsight, this property can be applied

to the basic RNS M-red as well. It is shown in [16] that

efficient parameters exist for n = 4 and 258-bit modulus p.

3.4 R-RNS algorithm

Gandino et al. proposed a reorganized version of the RNS

Montgomery multiplication algorithm [6], which we call the

R-RNS algorithm here. As shown in Fig. 6, we can describe

the R-RNS algorithm using almost the same notation as G-

RNS. Let us explain the difference between Figs. 4 and 6.

1. Input and output are changed from {x}B B′ and {s}B B′

to {x}B ∪ { ˆ̂x}B′ and {s}B ∪ {ŝ}B′ , respectively, where

elements of { ˆ̂x}B′ and {ŝ}B′ are defined as

〈
ˆ̂x
〉
m′

i

=
〈
x M ′

i
−2

〉
m′

i

,

〈
ŝ
〉
m′

i
=

〈
s M ′

i
−1

〉
m′

i

.

2. In step 2, elements of the matrix are changed from ei j to

e′
i j , where the latter is defined as

e′
i j =

〈
ei j M ′

i
2
〉
m′

i

=
〈
M ′

i M−1
〉
m′

i

.

123

320 Journal of Cryptographic Engineering (2019) 9:313–331

Fig. 6 R-RNS M-red algorithm

Due to this definition, the following relationship holds.

〈
ei j · x

〉
m′

i
=

〈
e′

i j · ˆ̂x
〉
m′

i

Thus, the result of step 2 in Fig. 6 is identical to that in

Fig. 4.

3. Notation of the result in step 3 is changed to
〈
ŝ
〉
m′

i
,

although its value is identical to 〈σ 〉m′
i
, the result of step 3

of Fig. 4.

4. Since the new output includes
〈
ŝ
〉
m′

i
instead of 〈s〉m′

i
, step 5

of Fig. 4 is omitted in Fig. 6. This reduces the number of

unit multiplications by n from Fig. 4.

The number of unit multiplications is (2n2 +2n) in this case.

4 New algorithms

4.1 Derivation of Q-RNS

We introduce an idea to pose quadratic residuosity to the RNS

base so as to make steps 1 and 2 in the G-RNS algorithm

unnecessary. Figure 7 (left) shows part of a long sequence

of operations in which a multiplication and G-RNS M-red

are repeated. It consists of three phases: the previous M-red,

a multiplication, and the present M-red. The input of the

present M-red is {xy}B B′ . For simplicity, elements of RNS

representation are uniformly numbered from 1 to 2n only in

Fig. 7. From the definition of G-RNS, the input is multiplied

by the constants

di i =
〈
M−1

i (−p−1)
〉
mi

, (6)

ei i =
〈
M ′

i
−1

M−1
〉
m′

i

(7)

in base B = {m1, . . . , mn} and B ′ = {m′
1, . . . , m′

n}, respec-

tively. If the bases, B and B ′, are selected so that these

Fig. 7 From G-RNS to Q-RNS

123

Journal of Cryptographic Engineering (2019) 9:313–331 321

constants are quadratic residues, each constant can be repre-

sented as a square of a constant K , as shown in Fig. 7 (left).

We will, then, transfer the square root K from the present

M-red to the previous M-red, integrating K onto the coef-

ficient of the multiplication at the last steps (Fig. 7, right).

As a result, outputs of previous M-reds are modified to K x

and K y and their product is K 2xy, which is the same as

the value immediately after steps 1 and 2 of Fig. 4. We call

this new algorithm as Q-RNS M-red or simply as Q-RNS,

using initials for quadratic residuosity. Q-RNS includes sQ-

RNS which is directly derived from G-RNS and dQ-RNS in

which a unit multiplication is replaced by the Montgomery

multiplication.

Most past improvements in RNS M-red algorithms

except [6] were optimization within one round of M-red exe-

cution. Our optimization for Q-RNS M-red is unique in that

it transfers a square root4 of a constant from a present round

to a previous round.

As seen in Fig. 7, Q-RNS assumes that multiplication is

carried out as preprocessing for the next M-red. This assump-

tion ensures that the degree of K is 2. Let us consider possible

degrees of K . All RNS M-red algorithms discussed in this

paper use two bases, B and B ′, with the intent that these

M-reds accommodate a number twice the length of what a

single base can represent. This means M-red is designed not

to accommodate a number with a degree more than or equal

to 3. If the degree of K is 1 or 0, we could cope with such

cases by multiplying K or K 2 by the input. Even if such cases

should occur, the computation amount would be the same as

Fig. 7 (left).

4.2 sQ-RNS algorithm

Figure 8 shows the sQ-RNS algorithm—the initial “s” indi-

cating a single-level rather than double-level Montgomery—

a technique proposed in [13]. sQ-RNS is basically derived

according to the procedure shown in Fig. 7 with a small extra

optimization.

The constants di i and ei i , defined by Eqs. (6) and (7), are

the diagonal elements in steps 1 and 2 of G-RNS. Quadratic

residuosity of these constants is key to the design of Q-RNS.

The square root of di i would yield
〈
M

−1/2
i (−1)1/2 p−1/2

〉
mi

.

The factor (−1)1/2 requires that (−1) should be a quadratic

residue modulo mi . To reduce constraints on base B even

a bit, a factor 〈−1〉mi
in di i is moved to the base extension

matrix a′
i j . As a result, the constant K 2 is defined by

〈
K 2

〉
mi

= 〈−di i 〉mi
=

〈
M−1

i p−1
〉
mi

,

4 If more than one square root of the constant exists, either is useful to

construct Q-RNS M-Red.

Fig. 8 sQ-RNS M-red algorithm

〈
K 2

〉
m′

i

= ei i =
〈
M ′

i
−1

M−1
〉
m′

i

.

The new requirement for base B is that values on the right-

hand side of the above equations must be quadratic residues.

For a given p and i, j ∈ [1, n], we can describe the require-

ment using the function QR as follows:

∏

i �= j

QR(m j , mi)
∏

∀i

QR(p, mi)

×
∏

i �= j

QR(m′
j , m′

i)
∏

∀i, j

QR(m j , m′
i) = 1 (8)

If Eq. (8) holds, there exists a coefficient K defined by the

following equations and Q-RNS is properly defined.

〈K 〉mi
=

〈
M

−1/2
i p−1/2

〉
mi

〈K 〉m′
i
=

〈
M ′

i
−1/2

M−1/2
〉
m′

i

The computation of L̂ ′ at step 1 is also modified due to

the transfer of the factor 〈−1〉mi
. Before the transfer, it was

L̂ ← ⌊0 +
∑n

i=1 trunc(t,
〈
K 2x

〉
mi

)/2w⌋. This is replaced by

L̂ ′ ←

⌊
1 + α +

n∑

i=1

trunc(t,
〈
K 2x

〉
mi

)/2w

⌋
.

Note here that the offset value changes from 0 to (1 + α),

which compensates for the effect of transfer of the fac-

tor 〈−1〉mi
. Derivation of the new formula is explained in

123

322 Journal of Cryptographic Engineering (2019) 9:313–331

“Appendix A”. This also makes the constant a′
i negative, as

shown in the next paragraph.

In Fig. 8, input and output of the algorithm are
{

K 2x
}

B B′

and {K s}B B′ , respectively, and the elements in each matrix

are defined from those of G-RNS as follows:

αi j =
〈
−a′

i j

〉
m′

i

=
〈
−M ′

i
−1

m−1
j p

〉
m′

i

αi =
〈
−a′

i

〉
m′

i
=

〈
M ′

i
−1

p
〉
m′

i

βi j =
〈
K bi j

〉
mi

=
〈
K M ′

j

〉
mi

=
〈
M

−1/2
i p−1/2 M ′

j

〉
mi

βi = 〈K bi 〉mi
=

〈
K (−M ′)

〉
mi

=
〈
−M

−1/2
i p−1/2 M ′

〉
mi

γi = 〈K ci i 〉m′
i
=

〈
K M ′

i

〉
m′

i
=

〈
M ′

i
1/2

M−1/2
〉
m′

i

The constants βi j , βi , and γi are each multiplied by K ,

because they correspond to the explanatory constants h1

through h2n in Fig. 7 (right).

Note that steps 2 and 3 in Fig. 8 can be carried out simulta-

neously. Therefore, the computation time of sQ-RNS can be

estimated as comparable with twice that of the matrix mul-

tiplication. The number of unit multiplications is (2n2 + n),

which is the minimum among all previously proposed RNS

M-red algorithms.

4.3 dQ-RNS algorithm

The double-level Montgomery is a technique proposed

in [13]. It replaces the standard modular unit multiplication

in RNS M-red with single-word Montgomery multiplication.

dQ-RNS in Fig. 9 is derived by applying this technique to

sQ-RNS. Using Montgomery multiplication ⊗M removes

the requirement μ̄ < 0.5, due to its special modulus for

fast reduction. Without this requirement, we can take square

numbers mi = σ 2
i , as base elements which may violate

the condition, μ̄ < 0.5. In this approach, the condition for

quadratic residue becomes very simple as

∏

∀i

QR(p, mi) = 1 (9)

since mi = σi
2 automatically satisfies QR(mi , m j) = 1.

Therefore, it is expected that bases can be found efficiently

for a wider range of base size n.

The elements of matrices in dQ-RNS are defined from

those of sQ-RNS with the modification by coefficient 2kw/2

(for k = 1, 2, 3), which is represented by a symbol with a

dot.

α̇i j =
〈
2wαi j

〉
m′

i

α̇i =
〈
2wαi

〉
m′

i

Fig. 9 dQ-RNS M-red algorithm

β̇i j =
〈
23w/2βi j

〉
mi

β̇i =
〈
23w/2βi

〉
mi

γ̇i =
〈
23w/2γi

〉
m′

i

A variable {ζ }B B′ is also modified as

{
ζ̇
}

B B′ =
{

2w/2ζ
}

B B′
.

If we take an even-valued w, these elements are always well-

defined. Constants,
{

K 2
}

B B′ and {K }B B′ are the same as in

sQ-RNS. Consequently, variables
{

K 2x
}

B B′ and {ξ}B′ are

unchanged from sQ-RNS, leaving the formulae for L̂ ′ and L̂

unchanged.

The number of unit multiplications of dQ-RNS is also

(2n2 + n). It should be noted that the unit multiplication in

this case is the Montgomery multiplication.

4.4 Base search

A base search experiment is carried out for a given modulus p

to find RNS bases that satisfy the requirement for quadratic

residuosity. To avoid bias, we use five NIST primes [24]

and one for Curve25519 [25], which are defined as common

moduli for Elliptic Curve Cryptography. The NIST primes

are called P-192, P-224, P-256, P-384, and P-521, with num-

bers representing the bit size of each prime. The prime for

Curve25519 is defined as 2255 − 19.

Experiment for sQ-RNS:

We search for bases satisfying Eq. (8) using the following

search algorithm.

123

Journal of Cryptographic Engineering (2019) 9:313–331 323

Table 1 Example base for sQ-RNS

Prime w μi = 2w − mi μ′
i = 2w − m′

i max log2 μ max μ̄

NIST P-192 50 27 117 351 951 1163 2567 2855 8543 13.0 0.26

NIST P-224 58 57 63 147 447 27 731 3807 7403 12.9 0.22

NIST P-256 65 535 751 3219 8031 49 979 2191 11,335 13.5 0.21

NIST P-384 98 51 855 4343 52,155 117 831 1571 1827 15.7 0.16

NIST P-521 132 347 363 527 38,835 725 6647 11,535 38,679 15.2 0.12

Curve25519 65 535 2191 3219 8031 49 751 979 11,335 13.5 0.21

Search algorithm 1:

1 Let candidates be an ordered sequence of prime numbers

in the form ci = 2w −μi , where μi > μ j > 0 for i > j .

The search is done in a smaller-index-first manner.

2 Pool = {ci |QR(ci , c j) · QR(c j , ci) = 1 for i �= j}.

3 B = {ci |ci ∈ Pool ∧ QR(p, ci) = 1 ∧ |B| = n}.

4 B ′ = {ci |ci ∈ Pool ∧ ci /∈ B ∧ |B ′| = n}.

Since we choose the candidates from among prime num-

bers, they all satisfy the condition that they must be mutually

prime. This also makes it easier to determine the quadratic

residuosity.

Table 1 presents the search results for n = 4. The right-

most column shows that these bases satisfy the condition

μ̄ < 0.5.

Experiment for dQ-RNS:

We apply the following search algorithm, which generates

bases satisfying the condition given by Eq. (9).

Search algorithm 2:

1 Let seeds be an ordered sequence of odd numbers in the

form σi = 2w/2 − νi , where νi > ν j > 0 for i > j . The

search is done in a smaller-index-first manner.

2 Pool = {σi | gcd(σi , σ j) = 1 for i �= j}.

3 B = {σ 2
i |σi ∈ Pool ∧ QR(p, σi) = 1 ∧ |B| = n}.

4 B ′ = {σ 2
i |σi ∈ Pool ∧ σ 2

i /∈ B ∧ |B ′| = n}.

As a lemma, if QR(p, σi) = 1, then QR(p, σi
2) = 1 (see

“Appendix B”). For the base elements found by algorithm 2,

it holds that μ̄ > 0.5, since

σ 2
i = (2w/2 − νi)

2
= 2w − νi 2

w/2+1 + ν2
i .

Figure 10 shows the search results for α = 0.5 and ν ≥ 2,

the degree of laziness. The search succeeds for (n, w) plot-

ted in the figure, although the graph P-256 is almost hidden

behind that of C25519. The search fails when max(e1, e2)

exceeds 0.5 and violates condition (iii) max(e1, e2) ≤ α in

Sect. 3.1.2. The lower bounds of word length w for success

are 22, 24, 24, 26, 28, and 24 bits for P-192, P-224, P-256, P-

Fig. 10 Base search results for dQ-RNS

384, P-512, and Curve25519, respectively. The lower bound

t0 for necessary bit length for approximation ranges from 3 to

8. Therefore, it is possible to realize a compact computation

circuit for L̂ and L̂ ′. Let N1 be a number of seeds satisfying

QR(p, σi) = 1, and let N0 be the number of all seeds gen-

erated until the algorithm halts. In our experiment, N1/N0

ranges from 0.30 to 0.43, which implies that the probability

that QR(p, σi) = 1 is near 0.3 for these primes. We also

confirm that bases are efficiently found for some randomly

chosen non-NIST primes.

Experiments show that bases for dQ-RNS can be found

unless the word size w is too small. For instance, w ≥ 22

suffices for P-192. Since values less than 22 do not seem to be

promising parameters for efficient hardware implementation,

dQ-RNS has a sufficient range of word size selection. It is

up to hardware designers to determine optimum sizes for

specific Q-RNS applications.

5 Application to cryptography

We discuss several procedures necessary for RNS imple-

mentation of public-key cryptography, including Initialize,

Finalize, transform to RNS representation (ToRNS, here-

after), and transform to Binary representations (ToBin,

hereafter). We also provide formulae for bounds on degree

123

324 Journal of Cryptographic Engineering (2019) 9:313–331

Table 2 Comparison of basic representations

Algorithm Representation Note

(a) Orthodox, Eq. (1) 〈x〉p Typically, p is a large prime or a product of two primes.

(b) M-red, Eq. (3) 〈x M〉p Setting M = 2l is efficient for a binary computer.

(c) RNS M-red
{
〈x M〉p

}
B B′ M is a product of elements in B

(d) sQ-RNS M-red
{

K 〈x M〉p

}
B B′ Constant K is a function of (p, B, B ′).

(e) dQ-RNS M-red
{
2w/2 K 〈x M〉p

}
B B′ The double-level Montgomery variant of (d)

of laziness and for relaxation of reduction within a channel.

Although these issues were discussed in previous work, we

are interested in the case of Q-RNS and exact expressions of

bounds.

5.1 Basic representation

Table 2 shows the representations of computation result of

each algorithm. Row (a) corresponds to the orthodox mod-

ular multiplication described by Eq. (1). Row (b) is for the

standard Montgomery multiplication defined by Eq. (3), in

which a constant M = 2l is multiplied by x . The bar symbol

in row (b) means relaxation of the upper bound of reduction

from p to 2p. Row (c) represents conventional RNS M-reds

other than R-RNS. This is an immediate transformation of

(b) into an RNS representation with base B and B ′. Rows (d)

and (e) are for Q-RNS, derived from (c) by multiplying con-

stant K and 2w/2 K , respectively. The representation for the

R-RNS algorithm is derived from (d) if we replace coefficient

{K }B B′ with {1}B ∪ {X}B′ , where 〈X〉m′
i
=

〈
M ′

i
−1

〉
m′

i

.

Montgomery developed an efficient reduction algorithm

(b) by multiplying a constant R (here, M) by representation

(a), whereas this paper proposes efficient RNS M-red algo-

rithms (d) and (e) by multiplying constants K and 2w/2 K

by representation (c). As a result, (d) and (e) are realized

with fewer unit multiplications, and their structures are much

simpler. As will be explained in the next subsection, we can

embed multiplication by K or 2w/2 K into the Initialized pro-

cess. We can also carry out the removal process of K or

2w/2 K in parallel with the Finalized process.

5.2 ToRNS and Initialize

If
{
〈x〉p

}
B B′ is given, Initialize for conventional RNS M-red

is carried out as follows: First, a product

{
〈x〉p

}
B B′ ⊗

{〈
M2

〉
p

}

B B′

(10)

is computed, then the product is input to RNS M-red to obtain{
〈x M〉p

}
B B′ . A similar Initialize process can be defined

for Q-RNS and applied to the result of ToRNS, which

denotes the transformation from binary to RNS represen-

tation. To describe the concrete procedure, we assume the

input is represented in binary as 〈x〉p =
∑n−1

j=0 x j 2
jw with

x j ∈ [0, 2w − 1].

For sQ-RNS:

X0 ← xn−1

X j ←
〈
X j−12w + xn−1− j

〉
mi

(j = 1, . . . , n − 1).

This procedure outputs Xn−1 =
〈
〈x〉p

〉
mi

. The second step

can be implemented with a single-word modular reduction.

This matches the special modulus for fast reduction. By run-

ning this procedure with all moduli, we obtain
{
〈x〉p

}
B B′ .

To initialize this variable, we first multiply it by a constant.

{
〈x〉p

}
B B′ ⊗

{
K 2

〈
M2

〉
p

}

B B′

(11)

Then, we input the product to sQ-RNS and obtain the basic

representation
{

K 〈x M〉p

}
B B′ .

For dQ-RNS:

Y0 ← x0

Y j ←
〈
(x j 2w + Y j−1)2−w

〉
mi

(j = 1, . . . , n − 1).

This procedure outputs Yn−1 =
〈
2−(n−1)w〈x〉p

〉
mi

. The

second step can be implemented with a single-word Mont-

gomery reduction, which matches well with the double-level

Montgomery. By running this procedure with all moduli,

we obtain
{
2−(n−1)w〈x〉p

}
B B′ . It is possible to prepare the

following lookup table for the single-word Montgomery

reduction.

〈
−mi

−1
〉
2w

,
〈
−m′

i
−1

〉
2w

(i = 1, . . . , n) (12)

These constants are used in a similar way to the constant

(−p−1) mod R at step 1 in Fig. 2.

For Initialize, we first multiply a constant as follows.

{
2−(n−1)w〈x〉p

}
B B′

⊗M

{
2nw K 2

〈
M2

〉
p

}

B B′

(13)

123

Journal of Cryptographic Engineering (2019) 9:313–331 325

Then, we input this product to dQ-RNS and obtain the basic

representation
{
2w/2 K 〈x M〉p

}
B B′ .

5.3 Finalize and ToBin

In the conventional RNS M-red, the Finalize of the Mont-

gomery reduction is carried out by inputting the following

value to RNS M-red.

{
〈x M〉p

}
B B′ =

{
〈x M〉p

}
B B′ ⊗ {1}B B′

Similarly, the Finalize for sQ-RNS and dQ-RNS is carried

out by inputting the following values to the respective M-red

algorithms.

sQ-RNS algorithm:

{
K 〈x M〉p

}
B B′ ⊗ {K }B B′ . (14)

dQ-RNS algorithm:

{
2w/2 K 〈x M〉p

}
B B′

⊗M

{
2w/2 K

}
B B′

. (15)

Regardless of sQ-RNS or dQ-RNS, the products above

are both
{

K 2〈x M〉p

}
B B′ . Similarly, the intermediate results

at step 1 of the corresponding Q-RNS M-reds are the same,

namely,

⎡
⎢⎣

〈ξ 〉m′
1

...

〈ξ 〉m′
n

⎤
⎥⎦ =

⎡
⎢⎢⎢⎢⎣

〈
〈x〉p M ′

1
−1

〉
m′

1

...〈
〈x〉p M ′

n
−1

〉
m′

n

⎤
⎥⎥⎥⎥⎦

.

To compute binary representation, we need an additional

subroutine, ToBin, shown in Fig. 11, the input of which is

the intermediate result of step 1 above. From condition (v)

in Sect. 3.1.2, it follows that

〈x〉p < 2p ≤ (1 − α)M ′.

This meets the input requirement of ToBin. If the return value

Z of ToBin is not less than p, it is best to carry out the final

subtraction in the binary representation.

ToBin in Fig. 11 is derived for dQ-RNS from the one

proposed in [9]. In [9], one of the moduli in base B is chosen

as m1 = 2w, which is used as 2w in Fig. 11. On the other

hand, due to quadratic residuosity, it is not possible to use

m1 = 2w for Q-RNS. Therefore, ToBin needs (n + 1) more

words in its lookup table in step 2 than were used in [9]. In

addition, step 4 needs an n-word table, while step 3 needs no

table.

In Fig. 11, unit multiplication is basically the Montgomery

multiplication, although step 2 is an exception. Typical

Fig. 11 ToBin transform for dQ-RNS

implementation of step 2 is to apply multiplication without

reduction and take the lower w bits. Since steps 2 and 3 can

be carried out at the same time, efficient implementation is

possible.

To obtain ToBin for sQ-RNS, steps 3 and 4 in Fig. 11

should be respectively modified by the following parts of the

equation. These need a 2n-word table for sQ-RNS in addition

to the conventional RNS M-reds.

diag
[〈

2−w
〉
m′

1
, . . . ,

〈
2−w

〉
m′

n

]
⊗,

⎡
⎢⎢⎢⎢⎣

〈
−M ′

1
−1

2−w
〉
m′

1

...〈
−M ′

n
−1

2−w
〉
m′

n

⎤
⎥⎥⎥⎥⎦

⊗ .

5.4 Degree of laziness

We will represent the upper bound for degree of laziness ν

described with Q-RNS parameters. As a typical lazy reduc-

tion, we consider the product sum.

Input:

ν∑

i=1

{
2w/2 K 〈xi M〉p

}
B B′

⊗M

{
2w/2 K 〈yi M〉p

}
B B′

=

{
K 2

ν∑

i=1

〈xi M〉p · 〈yi M〉p

}

B B′

.

Output:

123

326 Journal of Cryptographic Engineering (2019) 9:313–331

⎧
⎨
⎩2w/2 K

〈
M ·

ν∑

i=1

xi yi

〉

p

⎫
⎬
⎭

B B′

.

If 4ν ≤ β holds, then

ν∑

i=1

〈xi M〉p · 〈yi M〉p ≤ ν(2p)2 = 4ν p2 ≤ β p2.

This satisfies the upper bound on input for dQ-RNS. On the

other hand, from condition (iv) in Sect. 3.1.2, it holds that

β p ≤ (1 − α)M .

Combined with 4ν ≤ β, this leads to

ν ≤ β/4 ≤ (1 − α)M/4p.

Thus, we can conclude that

νmax =

⌊
(1 − α)M

4p

⌋
.

Here, α may be replaced by e1. The same formula can be

applied to sQ-RNS.

5.5 Relaxation of reduction within channel

So far, we have assumed that the modular reduction in a

unit multiplication is carried out strictly; that is, its result

is always less than mi . It is, however, known for the Mont-

gomery reduction in Fig. 2 that relaxation of reduction is

effective toward avoiding a conditional branch due to the

final subtraction, thus making the implementation simpler. It

may be also possible to apply this idea to modular reduction

at a unit operation.

Let 〈ξ 〉m denote the δ-relax of 〈ξ 〉m defined as 〈ξ 〉m ≡

〈ξ 〉m (modm) and 〈ξ 〉m ∈ [0, δm), where δ ≥ 1. A special

case δ = 1 means strict reduction. If we introduce δ-relax to

RNS M-red, it affects the representation of error bound e1,

which is modified as

ẽ1 = n(2−t − 2−w) +
1

2w

n∑

i=1

(
δ −

1

mi

)
μi .

= e1 +
δ − 1

2w

n∑

i=1

μi

Similar modification is required for e2.

By replacing e1 and e2 with ẽ1 and ẽ2 in conditions (i)–

(v) in Sect. 3.1.2, the basic algorithm in Fig. 3 and all its

variants including Q-RNSs output a correct result for δ-relax

variables. Note that the ranges of L̂ and L̂ ′ change when

δ-relax is applied. In the strict reduction case, their ranges

are

0 ≤ L̂ ≤ n − 1

1 ≤ L̂ ′ ≤ n + 1,

whereas in the δ-relax case,

0 ≤ L̃ ≤ δn − 1,

1 ≤ L̃ ′ ≤ δn + 1.

Since the relaxation requires a wider bit length than w, there

is a tradeoff between simple reduction and word size.

6 Comparison

6.1 Number of unit multiplications

Table 3 summarizes comparison of four conventional RNS

M-red algorithms and two Q-RNS M-red algorithms. Among

these, the proposed ones achieved the least number of

unit multiplications. It should be noted that unit multi-

plication for dQ-RNS is Montgomery’s, while other algo-

rithms use standard modular multiplication. Note also that

if n is small in C-RNS, there is a possibility that one

can find base extension matrices with less computation.

As for the requirements for base choice, the basic algo-

rithms G-RNS and R-RNS pose the weakest requirements,

while sQ-RNS poses the strongest. C-RNS and dQ-RNS

fall somewhere in between. dQ-RNS has weaker require-

ments on the RNS base than does sQ-RNS, since it is

possible to employ square numbers as elements of the

bases.

As in conventional RNS M-reds, it is easy to implement

sQ-RNS and dQ-RNS in parallel processing architecture

due to RNS. Since sQ-RNS and dQ-RNS mostly con-

sist of two matrix multiplications, these algorithms have

more regularity and simplicity than do conventional ones.

From past work, it is definite that Q-RNS can terminate

in (2n2 + n)/n = (2n + 1) cycles if n processing units

operate in parallel. Since multiplication previous to Q-RNS

finishes in 2n/n = 2 cycles, the total cycles of Mont-

gomery multiplication is (2n + 1 + 2ν), where ν is the

degree of laziness. Another possibility, though less likely,

is that with (n2 + n) unit multipliers, Q-RNS finishes

in two cycles. Although this seems theoretically possible,

in practice there are several issues for elaboration, such

as feasibility of fan-out n of registers and design of an

efficient circuit for summing up the results from unit mul-

tipliers.

Bigou et al. proposed a method that consists of fewer

unit multiplications than other RNS M-red algorithms,

123

Journal of Cryptographic Engineering (2019) 9:313–331 327

Table 3 Comparison of RNS

M-red
RNS M-red Feature # of unit mult. Requirements to base

Basic [3] Straightforward 2n2 + 5n Weak Mutually prime

(Fig. 3) μ̄ < 0.5

G-RNS [9] Integrated lookup tables 2n2 + 3n Weak Mutually prime

(Fig. 4) μ̄ < 0.5

C-RNS [15] Special form of ≤ 2n2 + 4n Medium Mutually prime

(Fig. 5) Base extension matrices μ̄ < 0.5

n is smaller

R-RNS [6] Reorganized G-RNS 2n2 + 2n Weak Mutually prime

(Fig. 6) μ̄ < 0.5

sQ-RNS Quadratic Residuosity (QR) 2n2 + n Strong Mutually prime

(Fig. 8) μ̄ < 0.5

QR by Eq. (8)

dQ-RNS QR and 2n2 + n Medium Mutually prime

(Fig. 9) The double-level Montgomery QR by Eq. (9)

Table 4 Number of memory words

G-RNS [9] R-RNS [6] sQ-RNS dQ-RNS

Main body∗1 2n2 + 5n 2n2 + 4n 2n2 + 3n 2n2 + 3n

Base B, B ′ +2n +2n +2n +2n

ToRNS +0 +0 +0 +2n∗2

Initialize∗3 +2n +2n +2n +2n

Finalize∗4 +0 +n +2n +2n

ToBin∗5 +2n +2n +(3n + 1) +(2n + 1)

Total 2n2 + 11n 2n2 + 11n 2n2 + 12n + 1 2n2 + 13n + 1

∗1 The Main body shows the necessary number of words, and other

rows show numbers in addition to the Main body.
∗2 Table for Eq. (12).
∗3 Multipliers in Eqs. (10), (11), and (13), respectively.
∗4 Multipliers in Eqs. (14) and (15), respectively.
∗5 Refer to Sect. 5.3. For G-RNS, m1 = 2w is assumed

including Q-RNS, under the hypothesis that the modu-

lus p and the product of base moduli M should satisfy

a certain equation [12,14]. Although Q-RNS also poses

quadratic residuosity conditions, their hypothesis is much

stronger than that of Q-RNS. Actually, no base exists for

NIST primes [14]. In their algorithm, it should be prefer-

able to fix the base first and then determine p under

the hypothesis. On the other hand, we can find bases

with very high probability not only for NIST primes

but also for other primes. Therefore, the discussion in

this paper does not include their algorithm for compari-

son.

6.2 Size of lookup table

Table 4 shows comparison of the lookup table size neces-

sary for the four algorithms, G-RNS, R-RNS, sQ-RNS, and

Fig. 12 A set of operation units

dQ-RNS. Compared with G-RNS and R-RNS, sQ-RNS and

dQ-RNS need only (n + 1) and (2n + 1) words of extra

memory, respectively. With such little additional memory,

Q-RNSs provide sufficient merit regarding reduction in the

number of multiplications and simplicity of the algorithm. A

toy example of parameters is shown in “Appendix C”.

6.3 FPGA implementation

We have implemented sQ-RNS on FPGA with parameters

n = 4, w = 65 and P-256 as a modulus. We have also

implemented R-RNS for comparison.

Figure 12 shows the main operation units, a multiply-and-

add unit and a modular reduction unit, where the latter carries

out the fast reduction algorithm presented in Sect. 2.6. Let

cm and cr be the clock cycles required to carry out these

operations, respectively. In our implementation, it follows

that cm = 1 and cr = 2. n sets of these operation units

are prepared. We use almost the same configuration for both

sQ-RNS and R-RNS.

123

328 Journal of Cryptographic Engineering (2019) 9:313–331

Fig. 13 Operation diagrams for a sQ-RNS and b R-RNS

Figure 13 shows the operation diagram for both imple-

mentations. In each implementation, four sets of operation

units run in parallel and the diagram show the operation of

each unit. For sQ-RNS, first 7 cycles correspond to step 1 of

the algorithm, followed by 3 cycles of step 3. Step 2 over-

wraps step 3 with 1 cycle of delay. sQ-RNS completes in 15

cycles. A similar diagram is shown for R-RNS with 18 cycles.

A 3-cycle difference is caused by steps 1 and 2 of R-RNS,

which are unnecessary in sQ-RNS. An approximately 17%

reduction in clock cycles is achieved by sQ-RNS compared

with R-RNS. If cm ≤ cr holds, we can derive the equations

representing clock cycles from Fig. 13 as:

sQ-RNS: (2n + 3)cm + 2cr

R-RNS: (2n + 4)cm + 3cr .

Table 5 summarizes the results of FPGA implementa-

tions. Both (a) and (b) consume almost the same hardware

resources specific to FPGA, such as look up table (LUT),

flip-flop (FF), and digital signal processing (DSP). In the

implementation, we did not apply hand tuning to the multi-

plier and adder. Namely, these components are synthesized

automatically by the compiler. Further optimization may be

possible.

7 Conclusion

This paper proposed new RNS Montgomery reduction algo-

rithms, namely, sQ-RNS and dQ-RNS, which are derived

by posing quadratic residuosity requirements on RNS bases.

They achieve fewer number of unit multiplications than all

previously proposed algorithms. The size of the lookup tables

they use is comparable with conventional ones. Improve-

ment over the R-RNS algorithm was confirmed with FPGA

implementations. Since the proposed algorithms have more

regularity and symmetry than do conventional ones, it may

Table 5 Synthesis results

(a) sQ-RNS (b) R-RNS

Word length w 65 65

Base size n 4 4

Number of operation units 4 4

Clock cycles 15 18

Max. frequency(MHz) 139.5 142.7

Hardware components

LUT 4076 4247

FF 2104 2329

DSP 84 84

FPGA device Kintex® UltraScale+™

Compiler Vivado® 2018.1

be worth studying software implementations for multi-core

processors. Another topic for future study is improvement to

the two base search algorithms proposed in this paper.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

Appendix A: Derivation of L̂′

In order to derive the formula for L̂ ′ of Q-RNS, we start from

the basic RNS M-red in Fig. 3. From step 1, we obtain

{q}B =
{

x(−p)−1
}

B
.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Cryptographic Engineering (2019) 9:313–331 329

From step 2, we have

θi =
〈
q Mi

−1
〉
mi

=
〈
x(−p)−1 Mi

−1
〉
mi

.

Let ϕi =
〈
K 2x

〉
mi

, then

ϕi =
〈
(p)−1 Mi

−1x
〉
mi

.

Thus, the following equation holds.

θi = mi − ϕi (16)

Note that this transformation of variables will change the

offset from 0 to (1 + α), as described later in this proof.

From the Chinese remainder theorem, there exists an integer

L satisfying

q =

n∑

i=1

θi Mi − L M .

Substituting Eq. (16) into the above equation leads to

q =

n∑

i=1

ϕi (−Mi) + (n − L)M .

Division by M on both sides results in

n∑

i=1

ϕi

mi

= (n − L) −
q

M
. (17)

Define tri as

tri = trunc(t, ϕi).

Then

tri ≤ ϕi ≤ tri + 2w−t − 1

holds. Following Appendix B of [23], we can derive the equa-

tion

f (q) − e1 ≤ f̃ (q) ≤ f (q), (18)

where f and f̃ are defined as

f (q) =

n∑

i=1

ϕi

mi

, f̃ (q) =

n∑

i=1

tri

2w
.

By adding (1 + α) on both sides of Eq. (18) and considering

Eq. (17), e1 ≤ α < 1 and 0 ≤ q/M < 1, we can obtain the

relationship

(n − L) < 1 + α + f̃ (q) < (n − L) + 2.

If we define L̂ ′ =
⌊

1 + α + f̃ (q)
⌋

, we can derive the equa-

tion

L̂ ′ = (n − L) + u,

where u ∈ {0, 1}. Letting q̂ be an approximation of q as

computed by L̂ ′, it follows that

q̂ =

n∑

i=1

ϕi (−Mi) + L̂ ′M

= q + uM .

This shows that q̂ has the same range as q ′, which is the base

extension result at step 3 in Fig. 3. Finally, we obtain the

following formula computing
〈
q̂
〉
m′

i
from {ϕ}B .

〈
q̂
〉
m′

i
=

〈
n∑

i=1

〈−Mi 〉m′
i
ϕi + L̂ ′ 〈M〉m′

i

〉

m′
i

.

Appendix B: Proof of lemma

Lemma 1 For given mutually prime odd numbers p and σi ,

if QR(p, σi) = 1, then QR(p, σi
2) = 1.

Proof From assumption QR(p, σi) = 1, there exists an

integer x0 ∈ [0, σi) which satisfies p ≡ x0
2(modσi). In

addition, it is true that gcd(x0, σi) = 1, because otherwise,

gcd(p, σi) �= 1, which contradicts the assumption. Letting

p′ = (p − x0
2)/σi , p′ is an integer. Since gcd(2, σi) = 1,

the following x1 can be defined.

x1 = p′(2x0)
−1 mod σi .

This means that there is an integer k satisfying

2x1x0 = p′ + kσi .

This equation will be used later. Now, we define a new integer

x as

x = x1σi + x0.

Let us evaluate � = p − x2 as follows:

� = p − (x1σi + x0)
2 = p − (x1σi)

2 − 2x1x0σi − x0
2

= p − (x1σi)
2 − (p′ + kσi)σi − x0

2

123

330 Journal of Cryptographic Engineering (2019) 9:313–331

= p − (x1σi)
2 −

(
p − x0

2

σi

+ kσi

)
σi − x0

2

= −(x1
2 + k)σi

2

This shows that � ≡ 0 (modσ 2
i), in other words, that p ≡

x2 (modσ 2
i). Therefore, QR(p, σi

2) = 1 holds. ⊓⊔

Appendix C: Toy example for dQ-RNS

We present a toy example of parameters for the dQ-RNS algo-

rithm. Since n is small, we can find these parameters using

search algorithm 1 in Sect. 4.4, rather than search algorithm 2.

Therefore, every base element is a prime number and not a

square number. As a result, μ̄ < 0.5 holds and we can use

the same bases B and B ′ for the computation of sQ-RNS.

p = 288230376151711813 (58 bits)

w = 32 and n = 2.

B = { 4294967291, 4294967189 } = { 232 − 5, 232 − 107 }

B′ = { 4294967161, 4294966661 } = { 232 − 135, 232 − 635 }

e1 = 2.6 × 10−8, e2 = 1.8 × 10−7

t ≥ t0 = 3 (bits)

μ̄ = 0.30

νmax = 7

δ = 1

ToRNS:

[〈
−m1

−1
〉
2w

〈
−m2

−1
〉
2w

]
=

[
3435973837 2368252995

]

[〈
−m′

1
−1

〉
2w

〈
−m′

2
−1

〉
2w

]
=

[
3785934135 804883635

]

Initialize:

{
2nw K 2

〈
M2

〉
p

}

B

=
[

2021288184 2297663181
]

{
2nw K 2

〈
M2

〉
p

}

B′

=
[

732735884 604521080
]

Main body:

[
α̇11 α̇12

α̇21 α̇22

]
=

[
2641058936 4285691761

354704368 1204129832

]

[
α̇1

α̇2

]
=

[
259711200

4169481193

]

[
β̇11 β̇12

β̇21 β̇22

]
=

[
2079821785 3360655186

2733482470 3593946207

]

[
β̇1

β̇2

]
=

[
4088860008

3523066947

]

[
γ̇1 0

0 γ̇2

]
=

[
1292050203 0

0 129202610

]

Finalize:

{
2w/2 K

}
B

=
[

3932984385 3650095956
]

{
2w/2 K

}
B′

=
[

351404616 967078097
]

ToBin:

[〈
M ′

1

〉
2w

〈
M ′

2

〉
2w

]
=

[
4294966661 4294967161

]
〈
−M ′

〉
2w = 4294881571

⎡
⎢⎣

〈
−M ′

1
−1

〉
m′

1〈
−M ′

2
−1

〉
m′

2

⎤
⎥⎦ =

[
506806125

3788160595

]

References

1. Posch, K.C., Posch, R.: Modulo reduction in residue number sys-

tems. IEEE Trans. Parallel Distrib. Syst. 6(5), 449–454 (1995)

2. Schwemmlein, J., Posch, K.C., Posch, R.: RNS-modulo reduction

upon a restricted base value set and its applicability to RSA cryp-

tography. Comput. Secur. 17(7), 637–650 (1998)

3. Kawamura, S., Koike, M., Sano, F., Shimbo, A.: Cox-rower archi-

tecture for fast parallel Montgomery multiplication. In: EURO-

CRYPT2000, LNCS1807, pp. 523–538. Springer (2000)

4. Nozaki, H., Motoyama, M., Shimbo, A., Kawamura, S.: Implemen-

tation of RSA algorithm based on RNS Montgomery multiplica-

tion. In: CHES2001, LNCS2162, pp. 364–376. Springer (2001)

5. Bajard, J.-C., Imbert, L.: A full RNS implementation of RSA. IEEE

Trans. Comput. (Brief Contrib.) 53(6), 769–774 (2004)

6. Gandino, F., Lamberti, F., Paravati, G., Bajard, J.-C., Montuschi,

P.: An algorithmic and architectural study of Montgomery expo-

nentiation in RNS. IEEE Trans. Comput. 61(8), 1071–1083 (2012)

7. Schinianakis, D.M., Kakarountas, A.P., Stouraitis, T.: A new

approach to elliptic curve cryptography: an RNS architecture. In:

Proceedings of IEEE MELECON 2006, May 16–19, Benalmadena

(Malaga), Spain, pp. 1241–1245 (2006)

8. Schinianakis, D.M., Fournaris, A.P., Michail, H.E., Kakaroun-

tas, A.P., Souraitis, T.: An RNS implementation of an Fp elliptic

curve point multiplier. IEEE Trans. Circuits Syst. 56(6), 1202–1213

(2009)

9. Guillermin, N.: A high speed coprocessor for elliptic curve scalar

multiplications over Fp. In: CHES2010, LNCS6225, pp. 48–64.

Springer (2010)

10. Antão, S., Bajard, J.-C., Sousa, L.: RNS-based elliptic curve point

multiplication for massive parallel architectures. Comput. J. 55(5),

629–647 (2012)

11. Schinianakis, D.M., Souraitis, T.: Multifunction residue architec-

tures for cryptography. IEEE Trans. Circuits Syst. 61(4), 1156–

1169 (2014)

12. Bigou, K., Tisserand, A.: RNS modular multiplication through

reduced base extensions. In: ASAP, pp. 57–62. IEEE (2014)

13. Bajard, J.-C., Merkiche, N.: Double level Montgomery cox-rower

architecture, new bounds. In: Smart Card Research and Advanced

Applications (CARDIS), LNCS 8968, pp. 139–153. Springer

(2015)

14. Bigou, K., Tisserand, A.: Single base modular multiplication for

efficient hardware RNS implementations of ECC. In: CHES2015,

LNCS9293, pp. 123–140. Springer (2015)

15. Cheung, R., Duquesne, S., Fan, J., Guillermin, N., Verbauwhede,

I., Yao, G.: FPGA implementation of pairing using residue number

123

Journal of Cryptographic Engineering (2019) 9:313–331 331

system and lazy reduction. In: CHES2011, LNCS6917, pp. 421–

441. Springer (2011)

16. Yao, G.X., Fan, J., Cheung, R.C.C., Verbauwhede, I.: Faster pairing

coprocessor architecture. In: Pairing 2012, LNCS 7708, pp. 160–

176. Springer (2012)

17. Bigou, K., Tisserand, A.: Improving modular inversion in RNS

using the plus-minus methods. In: CHES 2013, LNCS8086, pp.

233–249. Springer (2013)

18. Bajard, J.-C., Eynard, J., Merkiche, N., Plantard, T.: RNS arithmetic

approach in lattice-based cryptography. In: 22nd IEEE Symposium

on Computer Arithmetic (2015)

19. Gérard, B., Kammerer, J.-G., Merkiche, N.: Contribution to the

design of RNS architecture. In: 22nd IEEE Symposium on Com-

puter Arithmetic (2015)

20. Bajard, J.-C., Eynard, J., Merkiche, N.: Montgomery reduction

within the context of residue number system arithmetic. Special

Issue on Montgomery Arithmetic. J. Cryptogr. Eng. https://doi.

org/10.1007/s13389-017-0154-9

21. Montgomery, P.L.: Modular multiplication without trial division.

Math. Comput. 44(170), 519–521 (1985)

22. Ananda Mohan, P.V.: Residue Number Systems—Theory and

Applications. Birkhäuser. ISBN: 978-3-319-41383-9(2016)

23. Kawamura, S., Yonemura, T., Komano, Y., Shimizu, H.: Exact error

bound of cox-rower architecture for RNS arithmetic. Cryptology

ePrint Archive: Report 2016/266, March (2016). https://eprint.iacr.

org/2016/266

24. Federal Information Processing Standards Publication: FIPS186-4

“Digital Signature Standard (DSS).” Appendix D, National Insti-

tute of Standards and Technology, July (2013)

25. Bernstein, D.J.: Curve25519: new Diffie-Hellman speed records.

In: Public Key Cryptography—PKC 2006, LNCS 3958, pp. 207–

228. Springer (2006)

123

https://doi.org/10.1007/s13389-017-0154-9
https://doi.org/10.1007/s13389-017-0154-9
https://eprint.iacr.org/2016/266
https://eprint.iacr.org/2016/266

	RNS Montgomery reduction algorithms using quadratic residuosity
	Abstract
	1 Introduction
	2 Basic concepts
	2.1 Notation
	2.2 Modular multiplication
	2.3 Montgomery reduction
	2.4 RNS
	2.5 Chinese remainder theorem
	2.6 Special modulus for fast reduction
	2.7 Quadratic residuosity

	3 Conventional algorithms
	3.1 Basic RNS M-red algorithm
	3.1.1 Algorithm
	3.1.2 Requirement for parameters

	3.2 G-RNS algorithm
	3.3 C-RNS algorithm
	3.4 R-RNS algorithm

	4 New algorithms
	4.1 Derivation of Q-RNS
	4.2 sQ-RNS algorithm
	4.3 dQ-RNS algorithm
	4.4 Base search

	5 Application to cryptography
	5.1 Basic representation
	5.2 ToRNS and Initialize
	5.3 Finalize and ToBin
	5.4 Degree of laziness
	5.5 Relaxation of reduction within channel

	6 Comparison
	6.1 Number of unit multiplications
	6.2 Size of lookup table
	6.3 FPGA implementation

	7 Conclusion
	Appendix A: Derivation of '
	Appendix B: Proof of lemma
	Appendix C: Toy example for dQ-RNS
	References

