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Road Adaptive Active Suspension Design Using
Linear Parameter-Varying Gain-Scheduling

Ian Fialho and Gary J. Balas, Member, IEEE

Abstract—This paper presents a novel approach to the design
of road adaptive active suspensions via a combination of linear pa-
rameter-varying control and nonlinear backstepping techniques.
Two levels of adaptation are considered: the lower level control
design shapes the nonlinear characteristics of the vehicle suspen-
sion as a function road conditions, while the higher level design in-
volves adaptive switching between these different nonlinear char-
acteristics, based on the road conditions. A quarter car suspension
model with a nonlinear dynamic model of the hydraulic actuator is
employed. Suspension deflection, car body acceleration, hydraulic
pressure drop, and spool valve displacement are used as feedback
signals. Nonlinear simulations show that these adaptive suspen-
sion controllers provide superior passenger comfort over the whole
range of road conditions.

Index Terms—Active suspensions, linear parameter-varying
control.

I. INTRODUCTION

A
CTIVE control of vehicle suspensions has been the sub-

ject of considerable investigation since the late 1960s; see,

for example, [1], [7], [8], [12], [13], [16], [18] and the references

therein. Studies concerning the limitations and potential bene-

fits of active suspensions [4], [6], [8], [9], [17] have shown that

suspension controllers that focus on a fixed performance metric

offer a limited improvement in performance over conventional

passive suspensions, when the improvement is assessed over the

whole range of road conditions. In order to realize the full po-

tential of active suspensions the controller should have the ca-

pability of adapting to changing road environments.

Two important suspension performance metrics considered in

the literature are passenger comfort and suspension deflection,

i.e., the relative displacement between the car body and wheel

assembly. It is widely accepted that lower vertical acceleration

levels correspond to increased comfort. Structural features of a

vehicle place a hard limit on the amount of suspension deflec-

tion available to reduce the car body acceleration. Hence, the

goal in designing vehicle suspensions is to minimize car body

acceleration, subject to the hard constraint on available suspen-

sion deflection. Typically, active suspensions are designed so

that even very rough road profiles do not cause the suspension
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limits to be reached; see [7] and [8]. The conservatism of this ap-

proach stems from the fact that in order to lower the vertical ac-

celeration experienced by the car body larger suspension travel

is required. Since the controller is linear, and is designed for

worst-case road inputs, under normal road conditions insuffi-

cient suspension deflection is generated. As a consequence pas-

senger comfort is lower than is possible with a nonlinear con-

troller.

Significantly higher levels of suspension performance are

achievable by designing suspension controllers that focus

exclusively on minimizing car body acceleration when the

suspension deflection is small, and on minimizing suspension

deflection when the deflection limit is approached, thereby

preventing the limit from being reached. Thus the active sus-

pension switches from a “soft” setting to a “stiff” setting based

on the magnitude of suspension deflection. Such nonlinear

controllers were designed in [13] using nonlinear backstepping

techniques [11], and the transition between a “soft” and

“stiff” suspension was achieved by means of a novel nonlinear

filter. Even higher levels of performance may be achieved by

adaptively controlling the rate of transition between soft and

stiff settings, based on road conditions. If the road is essen-

tially smooth (except for the occasional large pothole, e.g., a

highway), it would be preferable to maintain the soft setting

for a large portion of the deflection range, rapidly switching to

the stiff setting as the deflection limit is approached. Although

this would result in a large vertical acceleration (due to the

rapid stiffening of the suspension) as the deflection limit is

approached over the rough sections, it would be a small price

to pay for the superior comfort over the smooth sections. On

the other hand, if the road section is essentially rough, i.e.,

off-road conditions, it would be preferable to start stiffening the

suspension gradually over the range of suspension deflection.

This road adaptive modification was discussed in reference

[14].

In this paper we discuss the design of road adaptive active

suspensions using linear parameter-varying (LPV) gain-sched-

uling [2], [3]. The LPV framework has certain advantages over

the backstepping techniques used in [12]–[14]:

1) The LPV framework does not require full state-feedback,

and hence only measurable signals such as suspension de-

flection, car body acceleration, hydraulic pressure drop,

and spool valve displacement are used in the feedback

loop.

2) Rapid switching between suspension settings is possible

with LPV controllers. This is in contrast to reference [14],

where the switching is constrained to occur only in the

common zone of the different suspension settings.

1063–6536/02$17.00 © 2002 IEEE
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3) The LPV framework easily extends to more complex

problems where steering, braking and suspensions are

integrated to achieve a vehicle-level gain-scheduled

control design.

4) Since LPV methods use induced norms to quantify per-

formance, robustness (to both parametric variations and

unmodeled dynamics) and sensor noise can be incorpo-

rated in the problem formulation.

We end this section with an outline of the paper. In Section II

we present the nonlinear quarter car model used for suspension

design, and discuss fundamental tradeoffs that motivate the de-

sign problem considered here. The design of road adaptive sus-

pension controllers is the subject of Sections III-A and III-B.

In Section III-C the controller is analyzed at fixed road condi-

tion parameter settings. Switching between the different road

condition parameter settings, is discussed in Section IV. Con-

cluding remarks are found in Section V. For the convenience

of the reader, a brief discussion on linear parameter-varying

methods is included in the Appendix.

II. SUSPENSION MODELING AND PERFORMANCE TRADEOFFS

The quarter car model shown in Fig. 1 will be used to de-

sign active suspension controllers. In Fig. 1 the sprung mass,

, represents the car chassis, while the unsprung mass, ,

represents the wheel assembly. The spring, , and damper, ,

represent a passive spring and shock absorber that are placed

between the car body and the wheel assembly, while the spring,

, serves to model the compressibility of the pneumatic tyre.

The variables , , and are the car body travel, the wheel

travel, and the road disturbance, respectively. The force that

is applied between the sprung and unsprung masses is gener-

ated by means of a hydraulic actuator placed between the two

masses. Hence , where is the pressure drop across

the hydraulic actuator piston, and is the piston area. The

hydraulic actuator considered here is a four-way valve-piston

system; see [1], [13], [15], and [16] for more details. As shown

in [13] and [15] the rate of change of is given by

(1)

where

total actuator volume;

effective bulk modulus;

load flow;

total piston leakage coefficient.

The load flow is given by

(2)

where

discharge coefficient;

spool valve area gradient;

displacement of the spool valve;

hydraulic fluid density;

hydraulic supply pressure.

Fig. 1. Quarter car model.

The spool valve displacement is controlled by a voltage or

current input to the servovalve. The dynamics of the servo-

valve can be approximated as

(3)

In deriving a state-space model for the quarter car dynamics it

is assumed that and are measured from their static equi-

librium positions and that the tyre remains in contact with the

road at all times. The state variables are defined to be ,

, , , , and

. Observe that the pressure drop has been scaled by a

constant which was taken to be , the objective of this

scaling being to improve numerical conditioning during control

design and closed-loop simulation. A straightforward applica-

tion of Newton’s law to the model shown in Fig. 1, along with

the hydraulic actuator equations (1) through (3) results in the

following nonlinear state-space model for the quarter car dy-

namics:

(4)

where

and

In this paper, we assume that the suspension deflection limit

is 0.08 m (8 cm), and that the maximum spool valve displace-
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TABLE I
PARAMETER VALUES

ment is 0.01 m (1 cm). The parameter values are taken from

reference [13] and are listed in Table I.

Suspension Performance and Tradeoffs: In order to improve

passenger comfort the transfer function from the road

disturbance to the car body acceleration should be small

in the frequency range from 0–65 rad/s. At the same time it is

necessary to ensure that the transfer function from the

road disturbance to the suspension deflection is small

enough to ensure that even very rough road profiles do not cause

the deflection limits to be reached.

The fact that the force is applied between the two masses

places fundamental limitations on the transfer functions

and . As shown in [6], the acceleration transfer function

has a zero at the “tyrehop frequency,” .

For the parameter values listed in Table I, rad/s. Sim-

ilarly, the suspension deflection transfer function has a

zero at the “rattlespace frequency,” .

For the parameter values in Table I, rad/s. The

tradeoff between passenger comfort and suspension deflection

is captured by the fact that is not possible to simultaneously keep

both the above transfer functions small around the tyrehop fre-

quency and in the low-frequency range. In [6] it is shown that a

small reduction in at low frequencies and in the vicinity

of the tyrehop frequency results in a large increase in at

these frequencies and vice versa.

It follows from the previous two paragraphs that fixed linear

controllers (and therefore passive suspensions) are designed to

tradeoff between the conflicting tendencies of the vertical accel-

eration and suspension deflection transfer functions. The goal

of this paper is to design suspension controllers that minimize

either acceleration or suspension deflection, depending on the

magnitude of suspension deflection, thereby overcoming the

limitations of linear designs. When the suspension deflection is

small the controller should focus on vertical acceleration, i.e., a

soft setting. As the deflection limit is approached the controller

should focus on preventing the suspension deflection from ex-

ceeding this limit, i.e., a stiff setting. Moreover, as discussed in

the introduction, the rate of transition between the soft and stiff

setting should be adaptively controlled based on the road con-

ditions. In order to achieve these objectives, the LPV controller

is designed using two scheduling parameters, and . The

parameter corresponds to suspension deflection. The param-

eter is assumed to lie in the range [0, 0.1] and corresponds

to the road conditions. Small values of correspond to smooth

road profiles while values close to 0.1 correspond to rough

profiles. Both these are assumed to be exogenous time-varying

parameters during the design stage. The LPV controller is de-

signed so that when is small (smooth roads) the controller

focuses on minimizing acceleration for a range of values

around zero and rapidly switches focus to minimizing suspen-

sion deflection as approaches the deflection limit of 0.08 m.

When is large (rough roads) the controller gradually switches

focus from acceleration to deflection as varies from zero to

0.08 m. Since the LPV controller guarantees stability and per-

formance over bounded , trajectories, during controller

implementation we can set to be equal to the current sus-

pension deflection (or a magnitude limited version thereof) and

to be equal to a bounded and continuous signal that quanti-

fies road conditions; see Remark 1 for a discussion. This results

in a controller that achieves the desired objectives.

III. ROAD ADAPTIVE SUSPENSION DESIGN

This section presents the design of a road adaptive suspension

controller that achieves the objectives discussed in the preceding

sections. The controller uses measurements of suspension de-

flection ( ), piston pressure drop ( ), car body accel-

eration ( ) and spool valve displacement ( ), and schedules

on two parameters, and , which correspond to suspension

deflection and road conditions, respectively. In order to com-

pensate for the nonlinear dynamics of the hydraulic actuator we

divide the control design into two steps.

Step 1) (LPV Design)

In this step we design an LPV controller that sched-

ules on , and achieves the response char-

acteristics outlined in the previous section. The non-

linear load flow term in the suspension model

(4) is treated as a fictitious control variable , resulting

in the following state-space model that is used for the

LPV design:

(5)

Step 2) (Compensating for the hydraulic actuator

nonlinearity)

In this step we use nonlinear backstepping tech-

niques [11] to choose the servovalve voltage, , such

that the nonlinear term is close to the fictitious

control signal .

A. LPV Controller Design

The interconnection used to design the LPV part of the sus-

pension controller is shown in Fig. 2.

The LPV controller uses measurements of the suspension de-

flection ( ), piston pressure drop ( ), and
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Fig. 2. LPV control design interconnection.

car body acceleration ( ), and schedules on the parameter

. As in standard design, the performance ob-

jectives are achieved by using frequency dependent weighting

functions to penalize the signals of interests. The difference in

the LPV design is that to achieve a shift in focus from ver-

tical acceleration to suspension deflection the weights associ-

ated with some of the signals are allowed to be dependent on

the scheduling parameter as well. The main parameter-depen-

dent weighting functions in Fig. 2 are and .

The weight is used to penalize the vertical acceleration,1

while penalizes suspension deflection. We vary the

gain of these weights, as a function of the scheduling param-

eter , to capture the relative importance of vertical acceleration

and deflection at the different parameter values. Denoting the

parameter-dependent gains by and , we

choose to have the realization

(6)

and to have the realization

(7)

Notice that at a fixed parameter value is simply a first-

order linear time-invariant weight with transfer function

Similarly, at a fixed parameter value is a linear time-

invariant weight with transfer function

Thus the pole locations of the weights are constant, while the

gain is allowed to vary as a function of parameter values. For

a fixed value, the weight begins rolling off before the

tyrehop zero at rad/s. This is done to respect the

well-known design rule-of-thumb that requires the perfor-

mance weights to roll off before an open-loop zero. We do not

1W [�] penalizes car body travel x instead of �x . These, however, are

equivalent since �X (s) = s X (s).

roll the weight back up after the zero since we are only inter-

ested in acceleration performance in the 0–65 rad/s frequency

range. In any case, as shown in reference [17],

[i.e., tends to a finite, possibly zero, limit as ],

and hence penalizing acceleration at higher frequencies offers

no significant benefit. Similar reasoning is used to explain the

roll-off of the weight before the rattlespace zero at

rad/s.

To capture the desired suspension response characteristics,

for small values of (smooth roads) (respectively, )

should be large (respectively, small) for a significant part of the

range, and then rapidly become small (respectively, large)

as the limit approaches. On the other hand, for large values

of (rough roads) (respectively, ) should gradually

change from a large (respectively, small) value to a small (re-

spectively, large) value as varies from zero to the deflec-

tion limit. Plots of the parameter-dependent gains and

versus , for fixed values of are displayed in Fig. 3.

Observe that the maximum value of (as a function of

) is larger for smaller values of . The reason for this is that

when is small, the controller stiffens rapidly as the deflec-

tion limit is approached and hence should focus very strongly

of deflection during the stiffening. On the other hand, when

is large the controller stiffens very gradually and hence can be

less aggressive in limiting suspension deflection. Expressions

for and are as follows:

if

if

otherwise

and

if

if

otherwise
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Fig. 3. � [�] (solid) and � [�] (dot) versus � for various � values.

where the function that determines the rate of transition

between the “soft” and “stiff” setting as a function of , and

the function that allows us to vary the maximum value of

(as a function of ) are defined as

if

if

and

if

if

We now proceed to discuss the remaining weighting functions

used in the LPV control design interconnection of Fig. 2.

Uncertainty and Noise Weights: The weight is used to

incorporate robustness to unmodeled dynamics into the control

design, and captures a level of unstructured multiplicative un-

certainty at the plant input. It is chosen to be

This choice corresponds to a negligible uncertainty level below

10 Hz, and 100% uncertainty at high frequency. The weight

is used to model sensor noise. This is chosen to be a 3 3

diagonal matrix given by .

Actuator Weights: The weight is used to penalize

the piston pressure drop . Its purpose is to limit high

pressure transients that could potentially generate noise or

cause excessive stress levels in the hydraulic components. We

choose . Recall that and that the

supply pressure is approximately Pa. Hence, this choice

corresponds to limiting the piston pressure to be no more than

twice the supply pressure . The weight is used to

limit the fictitious control signal , which physically

corresponds to the load flow through the spool valve. The

maximum of the term over a pressure range of and

the spool valve displacement range of 0.01 m is 44.7214.

Therefore is chosen to be constant weight, ,

in order to limit to this maximum value.

Reference Weights: The reference weight is used to

shape the magnitude and frequency content of the road distur-

bance signal . This was chosen to be parameter-dependent

with a realization

Observe that at a fixed parameter value is simply a linear

time-invariant weight with transfer function

Thus the pole location is constant while the gain varies as a

function of the parameter value. The weight rolls off above 10

Hz to reflect the fact that high-frequency deviations in the road

surface have significantly lower amplitude compared to low-

frequency deviations (see [5]). Fig. 4 shows the variation of the

gain as a function of parameter values.

For , is small for a significant part of the

range and then increases at larger values. This reflects

the fact that points corresponding to smaller values should

be optimized with respect to lower levels of road disturbance. At
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Fig. 4. � [:] versus � for � 2 [0; 0:055] (solid), 0.065 (dash), 0.08 (dot) and 0.1 (dash dot).

higher values is chosen to be larger since points corre-

sponding to higher values should be optimized with respect

to higher levels of road disturbances. The explicit expression for

is similar to those for and , and hence

we do not display it here.

Remark 1: It is important to note that the car model used

in the control design interconnection of Fig. 2 is linear and

time-invariant, and hence the parameter-varying nature of

the interconnection is due solely to the parameter-dependent

weights , and . The actual imple-

mented closed-loop system will be of the form .

The LPV design assures us that the closed loop will be ex-

ponentially stable for any trajectory that takes values in a

closed and bounded set and has at most a finite number of

discontinuities in any interval; see the Appendix for the LPV

problem formulation. We can always guarantee that is

bounded by choosing if necessary,

where the saturation limits can be chosen to be the bounds of

the parameter variation set used in the LPV design. If

exceeds this limit the scheduling variable input to the LPV

controller will be held at this limit, and hence the controller

dynamics will be held at that corresponding to the saturation

bounds until falls below the saturation limit again. By

design, the LPV closed-loop system is stable in this duration,

and hence cannot grow without bound. The “finite

number of discontinuities condition” is always met for

since physical motion must be continuous. The road condition

scheduling variable is bounded by definition. We can ensure

that it is continuous by passing it through a filter before it enters

the LPV controller.

1) LPV Controller Synthesis: The synthesis of an LPV con-

troller for the control design interconnection of Fig. 2 involves

solving a set of affine matrix inequalities (AMIs); see [2] for de-

tails. The AMIs represent an infinite number of constraints since

the inequalities must hold for every parameter value. For com-

putational purposes, these are approximated by a finite number

of constraints by gridding the parameter space. As a conse-

quence, the LPV controller that results is defined only at the grid

points. Typically, linear interpolation between these grid points

is used to define the scheduled controller as a continuous func-

tion of the parameter values. In the present design we choose

the following grid:

It follows from the definition of the parameter-dependent

weights that the 39 grid points actually correspond to only

ten distinct control design interconnections. Hence only ten

different matrix quadruples need to be

stored in order to implement the LPV controller.

We denote the control design interconnection of Fig. 2

by . For “frozen” at a fixed parameter value , let

be the achievable performance over fixed, linear

controllers. The outputs of the parameter-dependent intercon-

nection of Fig. 2 are scaled by the parameter-dependent matrix

prior to performing the controller synthesis. This scaling nor-

malizes the achievable performance across the parameter

set to one. The goal is to prevent any single plant from

“dominating” in the LPV design.
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B. Compensating for the Hydraulic Actuator Nonlinearity

We now discuss the application of a single nonlinear back-

stepping step to compensate for the hydraulic nonlinearity

. Define the error variable

where is the output of the LPV controller designed in Sec-

tion III-A. If is small then is close to the desired value

. Now

where

Note that from (4)

and hence is a function of measured signals alone. If we set

the servovalve voltage to be

(8)

then the equation becomes

The closed-loop equations (in the new coordinates) are

(9)

Defining to be the combination of the states

and the state of the LPV controller, (9) can be written more

concisely as

(10)

(11)

It follows from the fact that the LPV controller globally ex-

ponentially stabilizes the system (5) that is a globally

exponentially stable equilibrium point for the subsystem

and that this subsystem has finite gain from

to . Therefore if , the closed-loop system appears as

the cascade of an exponentially stable first-order linear time-

invariant system ( subsystem) and a globally exponentially

stable, finite-gain subsystem [the system in (10)]. Hence the

closed-loop system is stable and and remain bounded in re-

sponse to bounded road disturbances. This is true for any posi-

tive value of , however small values may result in large errors.

In our simulations we set . Since appears in the de-

nominator of the control (8), in order to avoid division by zero

we use the modification proposed in [12]:

Set if

and

Set if

in the denominator of (8).

Remark 2: The controller defined in (8) requires computa-

tion of the rate-of-change of , i.e., the output of the LPV con-

troller. In our case, it turns out that the LPV controller has a zero

direct feedthrough term, i.e., has a realization of the form

It is clear that discontinuous jumps in the parameter would

lead to the derivative operator being ill defined. This can be

overcome by filtering out any high-frequency variations in be-

fore feeding it into the LPV controller. It follows from Remark

1 that this filtering does not compromise stability of the closed

loop. It does, however, lead to a controller that reacts slower to

variations in the scheduling variables.

C. Controller Analysis

The LPV controller designed in Section III-A has nine

states, and is implemented by linearly interpolating between

the controller matrices at the parameter

grid points. We consider the frequency response plots of the

closed-loop system obtained by interconnecting the system

in (5) with the LPV controller frozen at representative grid

parameter values. These are displayed in Fig. 5.

For comparison, the frequency response of the passive sus-

pension is shown by the solid plots. Our choice of parameter-

dependent weighting functions dictate that at the

controller should focus exclusively on minimizing acceleration.

This is shown by the dash-dot frequency response plots in Fig. 5.

When the controller should focus exclusively on

minimizing suspension deflection. This is shown by the dashed

plots in Fig. 5. Similarly at the controller

should focus on a combination of acceleration and deflection,

while at the controller should focus on sus-

pension deflection. This is shown by the dotted and point type

responses, respectively. From Fig. 5 we see that the LPV con-

troller shifts focus from minimizing acceleration to minimizing

deflection, in a manner consistent with our choice of param-

eter-dependent weighting functions.
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Fig. 5. LPV controller: “frozen” closed-loop frequency responses, � = [0; 0] (dash dot), � = [0:08; 0] (dash), � = [0:055; 0:1] ( dot), � = [0:08; 0:1] (point),
passive (solid).

Fig. 6. LPV controller responses to a 0.05-m bump, � = 0:055 (dotted), � = 0:1 (solid). The solid horizontal lines in the suspension deflection window are
the deflection limits, while the dashed plot is the road disturbance.

The time responses of the nonlinear controller (LPV con-

troller combined with the backstepping compensator) are shown

in Figs. 6 and 7.

In the simulations, the LPV controller is implemented by set-

ting the scheduling variable, , to be equal to the suspension

deflection, i.e., . The responses in Fig. 6

correspond to a small road bump of height 0.05 m (5 cm). The

dotted responses correspond to the controller with set equal

to 0.055 (smooth road setting), while the solid responses cor-

respond to (rough road setting). Recall that when
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Fig. 7. LPV controller responses to a 0.1-m bump, � = 0:055 (dotted), � = 0:1 (solid). The solid horizontal lines in the suspension deflection window are
the deflection limits, while the dashed plot is the road disturbance.

the controller begins to shift focus from acceler-

ation to deflection when the deflection exceeds 0.055 m. Since

the size of the bump is only 0.05 m, this setting focuses exclu-

sively on minimizing acceleration, and hence the vertical accel-

eration experienced by the car body is very small. On the other

hand the controller with set to 0.1 begins to shift focus from

almost zero deflection. Smaller suspension deflection is gener-

ated and as a consequence the level of vertical acceleration is

considerably higher. We conclude that, from the point of view

of passenger comfort, over small bumps (smooth road sections)

a road condition setting of is preferable.

The responses in Fig. 7 correspond to a large road bump of

height 0.1 m (10 cm). The dotted responses correspond to the

controller with set equal to 0.055 (smooth road setting), while

the solid responses correspond to (rough road setting).

As can be seen from the dotted deflection responses, the con-

troller with begins to rapidly limit suspension de-

flection when the deflection exceeds 0.055 m. During this rapid

stiffening a large vertical acceleration is transmitted to the car

body. On the other hand the controller with gradually

limits deflection as it increases from zero to the deflection limit.

Due to the fact that the stiffening is gradual, the level of ver-

tical acceleration is significantly lower than achieved with the

setting. We conclude that, from the point of view

of passenger comfort, over large bumps (rough road sections) a

road condition setting of is preferable.

Based on the above analysis, we conclude that superior

passenger comfort over the whole range of road conditions is

achievable by automatically switching between 0.055 and

0.1. Road adaptive switching of is discussed next.

IV. ROAD ADAPTIVE SWITCHING

As seen in the previous section, a setting of

is preferable on smooth roads, while a setting of is

preferable on rough roads. Therefore, lower acceleration levels

can be achieved over the range of road conditions, by adaptively

switching in response to the road conditions. In this section

we discuss the use of the switching strategy presented in [14] to

switch between controllers, based on current road conditions.

Suspension deflection is used as a measure of road smoothness,

and controllers are switched based on the following logic:

Initialize at 0.055.

I. Switching from 0.055 to 0.1:

If ,

switch to 0.1,

else, maintain at 0.055.

II. Switching from 0.1 to 0.055:

If ,

switch to 0.055,

else, maintain at 0.1.

The first switching rule causes to switch from the smooth

road setting to the rough road setting when the road becomes

rough. According to the second switching rule if is currently

at the rough road setting and the suspension deflection has re-

mained below for at least seconds, is switched back to
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Fig. 8. Road adaptive responses (solid). The dotted responses correspond to a constant � setting of 0:055. The dashed plot in the bottom window is the road
profile.

0.055. Note that due to the fact that suspension deflec-

tion under similar road conditions will be smaller for .

We choose m, m and second.

In order to avoid discontinuous jumps in the scheduling

variable, defined by the above switching rules is passed

through a filter before it enters the LPV controller. We choose

the filter to be . In Fig. 8 the road adaptive re-

sponse (solid) is compared with the response that corresponds

to a constant setting of 0.055 (dotted lines). During the first

large bump a switching to occurs, and hence during

the remaining part of this bump, and during the second large

bump lower car body accelerations are achieved. The controller

switches back to on the trailing edge of the second

small bump. Both switched and responses coincide

over the third small bump. In Fig. 9 we compare the road

adaptive responses (solid) with responses that correspond to a

constant setting of 0.1 (dotted lines). Over the larger bumps

the acceleration responses are similar. Once again, due to the

fact that the road adaptive controller switches to

under smooth road conditions, the acceleration levels over the

first and last small bumps are lower than that achieved by the

constant setting of .

We point out that since the LPV controller is defined for a

range of , a larger number of switching values could be

used to further improve passenger comfort. This improvement

however is achieved at the cost of a more complex switching

logic.

V. CONCLUSION

In this paper we have presented a framework for designing

road adaptive suspension controllers. Linear parameter-varying

techniques were used in combination with nonlinear backstep-

ping to achieve the desired nonlinear response of the vehicle

suspension. The superiority of the road adaptive controllers has

been demonstrated in nonlinear simulations. Since the present

controller requires only ten controller values to be stored in

memory, we expect it to be easily implementable as well.
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Fig. 9. Road adaptive responses (solid). The dotted responses correspond to a constant � setting of 0:1. The dashed plot in the bottom window is the road profile.

APPENDIX

LINEAR PARAMETER-VARYING CONTROL

In this appendix we provide a brief introduction to

gain-scheduling based on linear parameter-varying (LPV) plant

representations. For a compact subset , the parameter

variation set denotes the set of all piecewise continuous

functions mapping (time) into with a finite number of

discontinuities in any interval. From the point of view of

control design it is assumed that the plant has the partitioned

LPV representation

(12)

Here , is the measurement, is the

control input, is the exogenous disturbance,

is the error output, and the state-space matrices are assumed to

be continuous functions of the parameter . It is assumed that

the parameter can be measured in real time, and that the

controller is of the form

(13)

where .

The “quadratic LPV -performance problem” is

to choose the parameter-varying controller matrices

such that the resultant

closed-loop system is quadratically stable and the induced

norm from to is . The main synthesis result is that

the existence of a controller that solves the quadratic LPV

-performance problem can be expressed as the feasibility of

a set of AMIs, which can be solved numerically. For more

details on LPV synthesis results the reader is referred to [2],

[3]. The parameter is assumed to be available in real time,

and hence it is possible to construct an LPV controller whose

dynamics adjust according to variations in , and maintain

stability and performance along all parameter trajectories.

This approach allows gain-scheduled controllers to be treated

as a single entity, with the gain-scheduling achieved via the

parameter-dependent controller.
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