
1

Road Design Layer Detection in Point Cloud Data for Construction Progress Monitoring 1

Steven VICK1, Ioannis BRILAKIS2 2

1 PhD Candidate, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, UK, CB2 3

1PZ, Email: sv364@cam.ac.uk 4

2 Laing O’Rourke Reader, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, 5

UK, CB2 1PZ, Email: ib340@cam.ac.uk 6

Abstract 7

Poor performance in transportation construction is well-documented, with an estimated $114.3 billion in global annual 8

cost overrun. Studies aimed at identifying the causes highlighted traditional project management functions like 9

progress monitoring as the most important contributing factors. Current methods for monitoring progress on road 10

construction sites are not accurate, consistent, reliable, or timely enough to enable effective project control decisions. 11

Automating this process can address these inefficiencies. The detection of layered design surfaces in digital as-built 12

data is an essential step in this automation. A number of recent studies, mostly focused on structural building elements, 13

aimed to accomplish similar detection but the methods proposed are either ill-suited for transportation projects or 14

require labelled as-built data that can be costly and time consuming to produce. This paper proposes and 15

experimentally validates a model-guided hierarchical space partitioning data structure for accomplishing this detection 16

in discrete regions of 3D as-built data. The proposed solution achieved an F1 Score of 95.2% on real-world data 17

confirming the suitability of this approach. 18

Keywords: Transportation Construction; Progress Monitoring; Drones; Automation 19

INTRODUCTION 20

A recent study estimated that $3.2 trillion per year in infrastructure investment is required to keep pace with global 21

GDP growth through 2030, with approximately 16% of that investment ($512 billion) required for road construction 22

(Dobbs et al., 2013). Poor performance in this field is well-documented, with more than forty independent studies and 23

government audits over the past three decades identifying as many as 83 separate causes for transportation construction 24

cost overrun (e.g. Siemiatycki, 2009; Cantarelli et al., 2010; Memon et al., 2012; Salling & Leleur, 2015). One study 25

mailto:sv364@cam.ac.uk
mailto:ib340@cam.ac.uk

2

analysed projects in Great Britain, Denmark, Sweden, and Norway, concluding that 77% experienced cost overruns 26

with the average amount being 29% of original contract value (Salling & Leleur, 2015). Assuming these levels of 27

performance continue, there is a potential for $114.3 billion in annual cost overrun on road construction projects 28

worldwide ($512B × 77% × 29%). While the causes of these overruns are varied, traditional project management 29

functions have been highlighted as the most important contributors (González et al., 2014). Project control is one such 30

function that directly impacts project performance (Del Pico, 2013). It’s a cyclical process consisting of progress 31

monitoring and implementation of corrective actions. Automating the first part of the project control cycle, progress 32

monitoring, can enable more timely and effective corrective actions aimed at keeping a project on time and within 33

budget. 34

Progress monitoring is the cyclical collection, analysis, and reporting of work complete at a given point in 35

time, compared to the planned worked complete. The main processes of progress monitoring are: (1) collecting as-36

built data, (2) processing it into the form required for analysis, and (3) comparing it with the desired (or “as-planned”) 37

state of the project. Current transportation progress monitoring practice is largely “non-spatial” involving no or very 38

sparse measurement of the physical progress on site. Project engineers, surveyors, crew foremen, and other on-site 39

personnel collect as-built data using paper or electronic checklists and daily reports, verbal updates, site photographs, 40

material delivery receipts, inventory reports, and subcontractor invoices. These manual data collection methods rely 41

on the experience, training, and subjective assessment of the individuals performing the inspection. Additionally, 42

collecting and parsing data from these disparate sources into meaningful activity-level inputs and compiling them into 43

project-level performance metrics is a time consuming and arduous task that consumes as much as 30-50% of a project 44

manager’s time (Navon & Sacks, 2007). Progress determinations are made in increments of distance along the 45

centreline of the road. For example, a project utilizing a 20m increment might report completion of a layer to station 46

01+20 (i.e. 120m from the beginning of the road). One drawback of this approach is that progress (or lack of progress) 47

between the stations may be left unreported. Ultimately, non-spatial progress monitoring methods are too error-prone, 48

inconsistent, and burdensome to enable timely and effective implementation of corrective project control actions. 49

The civil engineering community recently examined using a variety of commercially-available spatio-50

temporal sensors to support progress monitoring. Ultra-wide band (UWB) (e.g. Shahi et al., 2012), radio frequency 51

identification (RFID) (e.g. Razavi & Moselhi, 2012), barcode (Cheng & Chen, 2002), global positioning system 52

3

(GPS), and various combinations of these sensors (e.g. Razavi & Haas, 2010) have been used to track materials, 53

equipment, and other resources as indicators of progress. While these sensors can provide useful information, they 54

don’t directly measure the physical progress on the site. Additionally, their installation and maintenance can be 55

burdensome for project management as tags and readers must be applied, monitored, and repositioned on a wide range 56

of resources as the project evolves. 57

An alternative approach that directly measures the progress on site uses spatial data collection technologies. 58

Spatial progress monitoring involves surveying the work performed, calculating the volumes, areas and/or distances 59

that form the basis of the analysis, and comparing the results with planned progress to determine project status. The 60

most common data collection technologies used are Robotic Total Stations, Global Navigation Satellite System 61

(GNSS) receivers, Light Detection and Ranging (LiDAR) scanners, and Aerial Photogrammetry (NCHRP, 2013). 62

However, the scale of most transportation construction projects dictates the use of methods capable of quickly 63

surveying large areas to an acceptable level of accuracy and resolution, defined as 1-5 cm three-dimensional (3D) 64

point accuracy and more than 150 points/m2 (Olsen et al., 2013). Table 1 summarizes current technologies capable of 65

achieving at or near this level of performance. Note that performance and cost can vary due to a variety of factors for 66

each technology, so general ranges are provided based on a review of academic studies, technical reports, and 67

manufacturer specifications. Unmanned aerial photogrammetry stands out as a cost-effective data collection solution 68

capable of meeting the demands of spatial progress measurement on large transportation sites. 69

Although these data collection solutions exist, automatically recognizing progress in the as-built scene is a 70

difficult task. The authors decompose automatic progress monitoring for road construction into the following steps: 71

(1) aligning and registering the as-built data in a common coordinate system with the design model, (2) detecting ‘if’ 72

and ‘where’ each road design layer occurs in the as-built data, (3) comparing this with the as-planned status, and (4) 73

generating the progress report. Commercially-available solutions exist for the first step, typically using GPS and/or 74

surveyed control targets to place the as-built data in the design model’s geographic coordinate system (e.g. Trimble, 75

2017; Pix4d, 2017). The second step, however, remains an unsolved problem and is the focus of this study. Note that 76

the authors define road layer detection as a process that identifies which, and exactly where, each design layer is 77

present in the as-built point cloud data (PCD). While no methods exist for automatically detecting road design surfaces 78

in as-built data, similar functions are performed in automated manufacturing quality control processes. Such systems 79

4

(e.g. GOM Inspect (2017)) compare as-built data from recently-manufactured components with 3D models to detect 80

quality deviations beyond acceptable levels. However, these applications benefit from a variety of controlling factors 81

that cannot feasibly be replicated on transportation construction sites. For example, they are designed to operate 82

indoors with known and stable lighting conditions. Additionally, the components analysed are relatively small and 83

can be carefully measured from all required perspectives. 84

Detecting road design layers in unlabelled spatial data requires a-priori information regarding the expected 85

elevation of each layer throughout the corridor. Civil Information Modelling (CIM) is a mature technology capable of 86

providing such information, and is gaining wider support from government agencies and contractors. The U.S. Army 87

Corps of Engineers, for example, requires use of CIM tools in design and construction of all horizontal civil works 88

projects (US Army, 2013). CIM models represent horizontal construction as combinations of triangulated surfaces 89

defined by dynamic design objects such as alignments, profiles, and design cross sections. This enables extraction of 90

individual model surfaces defining the finished grade of activity layers typically found in road construction. In current 91

practice, CIMs are used mostly for design visualization and automated guidance of earthwork equipment (Schneider, 92

2013). Since CIM model surfaces can be very large and complex, an interesting problem to consider is how to best 93

divide them into smaller sections to allow incremental progress detection. 94

The computer graphics, medical imaging, and robotics fields regularly deal with spatial subdivision of 95

complex 3D spaces. Rasterization and voxelization are two popular methods for accomplishing this task. Rasterization 96

uses a perspective-projection of 3D objects onto a 2D plane and then divides this projection into a regular grid. In 97

computer graphics a grid of picture elements (pixels) is used. Voxelization divides 3D space into a network of 98

regularly-spaced cuboid volume elements (voxels). A common voxel organizational structure known as the octree 99

recursively divides a cube-bounded 3D space into eight sub-cubes down to a specified subdivision threshold (criteria 100

are typically dimension-based or occupancy-based). Voxels are the smallest subdivision, or the ‘leaves’, of this 101

hierarchical tree structure. The octree structure allows rapid searching and indexing of 3D space, and implicitly 102

describes how various objects are distributed within complex 3D scenes (Watt, 2000). These benefits make octrees an 103

attractive option for use in detecting 3D design surfaces in as-built point cloud data, but the trade-off between accuracy 104

and efficiency must be kept in mind. For example, an octree of finer resolution (i.e. smaller leaf voxel size) more 105

5

accurately represents a 3D object but at the expense of increased memory usage and slower voxel traversal operations 106

(Watt, 2000). 107

In summary, the basic building blocks for implementing an improved automated progress monitoring 108

approach exist in current practice. LiDAR and photogrammetry are viable means for obtaining survey-quality as-built 109

data on large construction sites, while CIM provides the basis for a digital comparison of the as-built data with the as-110

planned state. Detecting the CIM design layers in as-built data is the next unsolved problem in realizing this 111

automation. This paper proposes and evaluates a novel model-guided and sparse hierarchical space partitioning 112

approach for accomplishing road design layer detection in discrete regions of as-built point cloud data. The following 113

section reviews recent research relevant to this task. The proposed solution is then described in detail and evaluated 114

using both synthetic and real-world data from the construction of a residential road in Cambridge, UK. Finally, the 115

researchers summarize the experimental results, draw conclusions, and discuss future research goals. 116

BACKGROUND 117

The specific technical problem addressed in this paper is detection of road design surfaces in as-built data to support 118

automated progress monitoring. The following review evaluates related methods proposed in recent studies based on 119

their level of automation and applicability for layered road design surfaces. 120

A group of related studies focused on detecting building construction design objects using as-built PCD 121

collected by laser scanning (Bosché, 2010; Kim et al., 2013; Turkan et al., 2014; Kalasapudi et al., 2017), 122

photogrammetry (Golparvar-Fard et al., 2015; Tuttas et al., 2014; Braun et al., 2015), or both (Han et al., 2018). Design 123

object detection in the 3D data was accomplished in different ways. This study divides the automated design surface 124

detection approaches into two main categories: (1) point-correspondence and (2) space partitioning. The following 125

sub-sections review the literature in these two categories before examining the sparse research specifically related to 126

transportation design surfaces. 127

Point Correspondence Approaches 128

Point-correspondence approaches (Bosché, 2010; Kim et al., 2013; Turkan et al., 2014) generate as-planned point 129

clouds from 3D model elements and search for the nearest as-built correspondences within a threshold distance to 130

determine if an as-planned point is present in the as-built scene. Design surface triangulation vertices are sparse, so 131

6

as-planned point clouds must be either subsampled on the design surface to closely match the density of the as-built 132

cloud (e.g. Kim et al., 2013), or the as-built points must be projected onto the nearby surfaces before selecting the 133

nearest projection as the correct as-planned point location (e.g. Bosché, 2010). The researchers mostly used thresholds 134

on the number of confirmed point correspondences to determine if a model element was detected. These methods 135

showed promise for automatically detecting planned structural building elements in 3D PCD, particularly when 136

factoring in a-priori connectivity and construction sequencing information like Kim et al. (2013). However, they 137

focused on all-or-nothing detection of the individual components. Such an approach works well for detecting relatively 138

small components constructed within a progress monitoring cycle (e.g. a column), but fails to capture the kind of 139

incremental progress needed to support effective project control on road construction sites with very large design 140

surfaces. 141

Space Partitioning Approaches 142

Other researchers partitioned registered as-built/as-planned scenes and identified points falling into the partitioned 143

regions to facilitate object detection. Some used the boundaries of each structural element model (e.g. a square column) 144

to conduct this partitioning (e.g. Zhang & Arditi, 2013). More commonly used approaches partition the 3D space 145

containing the as-built/as-planned scene using voxels. Some (Tuttas et al., 2014; Braun et al., 2015) built an octree 146

over the as-built PCD and searched for points within orthogonal distance thresholds of rasterized planar segments (e.g. 147

rectangles or triangles) extracted from each structural element’s constituent surfaces. Although this approach is not 148

“all-or-nothing,” it does limit the detection decision to each planar surface segment that makes up the design object. 149

Consider the effect of this on a road design surface that has very large planar regions (think of a large stretch of flat 150

highway) as well as areas where the surface orientation changes in much smaller intervals (think of a banked highway 151

around a curve). In this case, the surface detection would happen in uneven and inconsistent intervals along the length 152

of the road, resulting in progress reports that are difficult to interpret and act upon. 153

An approach that more consistently partitioned larger and/or more complex scenes (Golparvar-Fard et al., 154

2015) voxelized the entire 3D space containing the registered as-is/as-built scene before traversing the voxels (twice: 155

once each for as-planned and as-built data) from various unordered camera positions and labelling them based on the 156

presence of design elements and as-built points. This method made use of ubiquitous daily job site images for as-built 157

data collection, and even enforced visibility and visual consistency constraints to account for static and dynamic 158

7

occlusions in the scene. However, the uniform nature of the implemented voxelization is ill-suited for large and 159

closely-layered road design surfaces. Consider the notional case illustrated in Figure 1, showing a longitudinal (y-z) 160

2D section of a small asphalt road design region. Realistic design layer thicknesses are represented to scale with the 161

voxel size shown, approximating the design specifications for the road construction site evaluated later in this paper. 162

With a notional 10 cm leaf voxel size, the thin upper design surfaces occupy the same voxel in multiple instances. As-163

built point and as-planned surface occupancy in this case would not be sufficient to identify which design surface is 164

found in the as-built scene, presenting a problem for the detection approach used by Golparvar-Fard et al. (2015). 165

Voxelizing the scene at 1/5 the previous resolution (2 cm shown in Figure 1) can address this concern, but results in 166

a 125x increase in the total number of voxels that need to be traversed and analysed. Using a smarter space partitioning 167

approach, like an octree that only subdivides branch cells containing as-planned data, can reduce this complexity but 168

other issues still remain. First, use of regular cuboid voxels small enough to distinguish between thin asphalt layers 169

requires extremely high-density as-built data. For example, a 2 cm leaf voxel size in Figure 1 would alleviate the 170

problem of voxels occupied by multiple design layers, but would require as-built data with a spatial resolution of at 171

least 2,500 pts/m2 to ensure at least one point could be found in each voxel along the road corridor, not accounting for 172

noise and measurement error. This limits the data collection options to the most expensive and time-consuming 173

methods (Table 1) that are more susceptible to occlusions due to the ground-level perspective. Second, the cubic-grid 174

structure of the voxelization produces voxels that do not uniformly fit the design surfaces. In some instances, a surface 175

intersects only the corner of a voxel while in others it cuts directly through the middle. As a result, as-built points 176

corresponding to a specific design surface are only sought above the surface in some cases, while in others only the 177

region below is considered. This could results in further inconsistencies with the object detection decision, particularly 178

when voxelizing at finer resolutions to ensure unique as-planned voxel labels. 179

Transportation-Specific Research 180

Just one study sought to compare road design surface layers to as-built point cloud data (Kivimaki & Heikkila, 2015). 181

This study, however, stopped short of true design surface detection as the matching of surveyed points to the relevant 182

design surface was accomplished by assigning a specific code linking each point to a surface. Such point codes are 183

only possible on terrestrial survey equipment where the exact nature of each point can be coded into the machine prior 184

to taking the measurement. The authors concede that manual matching of point clouds to surfaces is required for data 185

that lack the point code information; a drawback on the efficiency and applicability of this approach. 186

8

Gaps in Knowledge, Objective, and Research Questions 187

The existing body of research is heavily-skewed towards structural building components in as-built PCD. Surfaces for 188

such components are typically characterized by relatively-small orthogonally intersecting planar sections (e.g. the 189

faces of a concrete foundation wall). Road design surfaces are larger and more complex, typically involving changes 190

in slope along both the longitudinal and transverse axes of the road corridor. The closely-layered construction, 191

particularly in the thin upper asphalt layers, also differentiates road design surfaces from building structural 192

components. These differences limit the applicability of existing building-focused detection methods on as-built data 193

for road projects. Considering the state of practice and body of research reviewed in the preceding sections, we identify 194

the following gaps in knowledge: (1) no method exists for automatically measuring progress on road construction 195

projects, (2) existing methods for automatically detecting design surfaces in as-built data are not well-suited for 196

identifying and distinguishing individual layered road design surfaces, (3) none of the proposed methods tackle 197

incremental progress detection, and (4) there is no formal understanding of the challenges and limitations associated 198

with adopting an automated progress monitoring approach on linear transportation projects. 199

The objective of this study is to address gaps 2-4 by developing and testing a novel data structure for 200

automatically and incrementally detecting layered road design surfaces in unlabelled as-built PCD. The authors 201

examine the following research questions to accomplish this objective: (1) how can the 3D as-planned space be 202

partitioned to allow for consistent and incremental road layer detection?, (2) how can as-built PCD be accurately 203

classified within the partitioned regions, accounting for noise and uncertainty in the as-built scene?, and (3) what 204

combination of design and/or input parameters will be required to produce the most desirable results? 205

PROPOSED SOLUTION 206

The authors propose a novel solution for detecting layered road design surfaces in discrete regions of as-built point 207

cloud data. This solution implements a new model-guided and sparse hierarchical space partitioning data structure 208

named BrickTree, a combination of the authors’ names and a nod to the rectangular cuboid shape of the leaf voxels in 209

this structure. Figure 2 illustrates the key processes in implementing this approach. The inputs to this solution are (1) 210

an as-built point cloud, scaled in real-world units and registered in the CIM model’s coordinate system, and (2) 211

triangulated road layer surfaces extracted from the CIM model. The rest of this section describes in further detail the 212

four processes of the proposed solution. 213

9

The BrickTree Data Structure 214

The first step in generating the BrickTree applies a rigid-body transformation to the layered design surfaces, 215

positioning them just above the global origin with the longitudinal direction of the road corridor aligned with the y-216

axis and the transverse direction aligned with the x-axis. A 2D grid, named the projectGrid, is then created on the x-y 217

plane below the registered and aligned design surface layers. The projectGrid serves as the basis of further partitioning 218

as each square grid cell defines the x-y boundaries of a rasterBranch in the hierarchical tree structure (Figure 3). As 219

such, each rasterBranch is a vertical projection of a projectGrid cell, and is defined within the hierarchy as a collection 220

of leafVoxels. LeafVoxels are defined as 3D rectangular space partitioning elements that subdivide each rasterBranch 221

region. The gridCellSize parameter determines the granularity of the incremental surface detection decision, which 222

occurs at the rasterBranch level where only one design layer should be identified for a given dataset. Note that this 223

could result in small classification errors in regions of transition between as-built layers, and selection of the 224

gridCellSize parameter should consider this possible error in determining the acceptable level of granularity for the 225

final progress report. The authors note that such errors (e.g. detecting a surface within a branch’s boundaries when 226

only half of it is actually present) are common for all spatial partitioning methods, and generally deemed acceptable 227

if properly controlled considering the inaccuracy and subjectivity of current progress monitoring practice. The 228

gridCellSize is set to 0.5m and controlled for in the following experiments based on conversations with local project 229

management personnel that indicated this would be an acceptable level of granularity for the final progress 230

determination, allowing more detailed reporting of progress than the centreline increment methods used in current 231

practice. 232

Each rasterBranch is partitioned into leafVoxels at intersections with the layered design surfaces. The goal 233

of this model-guided voxelization is to ensure each leafVoxel enables consistent searching for as-built points in the 234

regions above and below their corresponding surface. This study constructs axes-aligned voxels, relying on the 235

assumption that road surfaces can be reasonably approximated as flat within the regions defined by the gridCellSize. 236

This simplifying assumption reduces the complexity of point-to-voxel assignment operations by limiting them to a 237

series of simple indexing calculations in the x, y, and z-directions. The degree to which this assumption affects the 238

performance of the proposed method and how well it generalizes to the possible combinations of road camber and 239

grade is the focus of further research by the authors, and thus is not reported in this paper. 240

10

To construct the leafVoxels, the authors orthogonally project the projectGrid onto each surface, storing the 241

centroid and normal direction of each projected grid cell for the following steps. The z-value of this centroid coupled 242

with the searchDistance parameter defines the height of the constructed leafVoxels, while the horizontal limits of the 243

grid cells define the voxel boundaries in the x and y directions. Selecting the optimal searchDistance value is a focus 244

of experiments in the following section, but an important consideration is the thickness of the thinnest design layer as 245

this sets an upper limit on the value in order to limit voxel overlap. The final step in constructing the BrickTree sets 246

the upper z-limit of the outer 3D bounding box as the maximum point elevation of the voxels in the top surface layer. 247

With the BrickTree constructed, the proposed solution moves on to the next step: populating the leafVoxels with as-248

built data. 249

Populating the BrickTree with as-built points 250

There are two general strategies for assigning as-built points to a hierarchical space partitioning tree: (1) traverse the 251

point cloud to determine where in the tree structure each point lies, or (2) traverse the tree structure to identify and 252

assign points in the vicinity of each voxel. The axes-aligned leafVoxel structure allows points to be rapidly indexed 253

and assigned to discrete 3D regions. For this reason, the authors chose to traverse the as-built cloud, directly assigning 254

points to leafVoxels. Because the voxels are not evenly-spaced in the z-direction, rapid indexing only occurs at the 255

branch level. For a given as-built point, 𝑝𝑝𝑏𝑏, the process calculates the branch index by comparing it to the origin 256

(lower-left point) of the projectGrid, 𝑝𝑝𝑜𝑜, using the following equations where 𝑛𝑛𝑖𝑖_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the number of projectGrid 257

cells in the x-direction. Note that the bracket notation used indicates floor-rounding to the nearest integer value. 258

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 = � 𝑝𝑝𝑏𝑏𝑖𝑖 − 𝑝𝑝𝑜𝑜𝑖𝑖𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔� (1) 259

 260

𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 = � 𝑝𝑝𝑏𝑏𝑏𝑏 − 𝑝𝑝𝑜𝑜𝑏𝑏𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔� (2) 261

 262 𝑏𝑏𝑔𝑔𝑏𝑏𝑛𝑛𝑏𝑏ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 + 𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 × 𝑛𝑛𝑖𝑖_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (3) 263

 264

With the branch identified, the method then compares the z-component of the built point, 𝑝𝑝𝑏𝑏𝑏𝑏, to the z-limits of the 265

leafVoxels to determine which, if any, to assign the point to. If an as-built point is detected inside a leafVoxel, the 266

voxel is marked as ‘detected'. Note that this initial labelling is reviewed and updated in the subsequent branch 267

11

classification step. After the algorithm processes all as-built points falling within the BrickTree bounding box and 268

applies the pointThreshold to label the leafVoxels, the branch classification processes begins. 269

Branch classification 270

Noise and other errors could result in multiple leafVoxels being marked 'detected' in the same rasterBranch. A 271

classification decision must be made to correct this conflict as it’s only possible to detect one design surface per branch 272

in an as-built scene. Sophisticated decision boundaries can be learned using supervised or unsupervised machine 273

learning approaches, but these require a large number of training datasets from a variety of construction sites. While 274

the authors aim to collect further data and explore machine learning based classification in future work, the current 275

study implements a simple statistical threshold decision boundary as a proof of concept for the overall framework. 276

Three possible rules are considered: maximum points (i.e. select the voxel with the most points), minimum distance 277

(i.e. select the voxel with the minimum average orthogonal distance between its as-built points and the design surface), 278

and minimum vertical variance (i.e. select the voxel whose points have the lowest variance in the z-direction). 279

Regardless of the decision rule used, the algorithm labels each rasterBranch with the surface identified and updates 280

the leafVoxel labels in the branch accordingly. The optimal classification rule out of the three considered is 281

experimentally evaluated later in this paper. 282

Outlier correction 283

The final step in the surface detection process, outlier correction, aims to improve the final result’s accuracy using a 284

priori knowledge of road construction operations. Specifically, the method assumes that road surfaces are generally 285

not constructed with gaps or missing areas in the middle. The authors propose a neighbourhood consensus algorithm 286

to accomplish this task. Two input parameters, neighbourDistance and consensusThreshold are used. The 287

neighbourDistance parameter defines the size of the neighbourhood in which a branch classification is compared to 288

that of its neighbours. Figure 4 illustrates different construction cases for the branch comparison ‘neighbourhood’. 289

Implementing the different construction cases ensures the comparison region size remains constant no matter where 290

the analysed branch lies on the projectGrid. The algorithm traverses the constructed neighbourhood, tallying branch 291

classifications by surface identification. If the ratio of any surface’s tallied count to the total number of branches in 292

the neighbourhood exceeds the consensusThreshold¸ a consensus is declared in the neighbourhood. The algorithm 293

then compares and updates (if required) the analysed branch’s classification and leafVoxel labels. The optimal 294

12

consensusThreshold value and size of the outlier correction window, defined by the neighborDistance parameter, are 295

explored in the experiments later in this paper. 296

Construction and as-built data quality 297

The proposed solution assumes an acceptable level of construction (𝜀𝜀𝑐𝑐) and as-built data measurement (𝜀𝜀𝑚𝑚) error. The 298

authors divide these errors into the horizontal (𝜀𝜀𝑐𝑐,ℎ , 𝜀𝜀𝑚𝑚,ℎ) and vertical (𝜀𝜀𝑐𝑐,𝑣𝑣, 𝜀𝜀𝑚𝑚,𝑣𝑣) directions to describe their impact on 299

the proposed method. Measurement errors also include noise, further divided into random noise, outliers, and 300

occlusions. The BrickTree structure implicitly limits the influence of outliers and occlusions by only considering 301

points within the leafVoxel regions. Points from low-level occlusions (e.g. equipment sitting on the road surface) could 302

still trigger detection errors, but this type of noise is difficult to control on an active site. Additionally, the outlier 303

correction step is designed to correct these errors as long as the occluded region is not much larger than the comparison 304

neighbourhood. Consequently the following analysis of required input data quality only considers random noise (𝜀𝜀𝑖𝑖), 305

which is assumed to be Gaussian and primarily affecting the vertical measurements. 306

Horizontal errors (𝜀𝜀𝑐𝑐,ℎ and 𝜀𝜀𝑚𝑚,ℎ) could result in detection errors, mostly along the boundaries of the road 307

corridor. The gridCellSize parameter defines the proposed solution’s sensitivity to horizontal error, with the following 308

equation describing the relationship required to enable accurate detection: 309

𝜀𝜀𝑐𝑐,ℎ + 𝜀𝜀𝑚𝑚,ℎ < 𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔 (4) 310

In practice, contract specifications dictate the acceptable level of construction error. The United Kingdom’s Highways 311

Agency sets the tolerance for 𝜀𝜀𝑐𝑐,ℎ at 25 mm (Manual of Contract Documents for Highway Works, Volume 1, Series 312

0700). Using the 0.5 m gridCellSize implemented in this study and the maximum acceptable 𝜀𝜀𝑐𝑐,ℎ, as-built data with 313 𝜀𝜀𝑚𝑚,ℎ less than 47.5 cm is required, which is achievable using any of the technologies listed in Table 1. 314

Vertical errors (𝜀𝜀𝑐𝑐,𝑣𝑣, 𝜀𝜀𝑚𝑚,𝑣𝑣, and 𝜀𝜀𝑖𝑖) could result in detection errors within any branch of the BrickTree. The 315

searchDistance parameter drives the proposed solution’s vertical error sensitivity, and is limited to a maximum 316

distance equal to the thickness of the thinnest road design layer to avoid overlapping leafVoxels. Equation 5 describes 317

the relationship between this parameter and the input data error required to enable detection: 318

𝜀𝜀𝑐𝑐,𝑣𝑣 + 𝜀𝜀𝑚𝑚,𝑣𝑣 + 𝜀𝜀𝑖𝑖 < 𝑠𝑠𝑔𝑔𝑏𝑏𝑔𝑔𝑏𝑏ℎ𝐷𝐷𝑖𝑖𝑠𝑠𝐷𝐷𝑏𝑏𝑛𝑛𝑏𝑏𝑔𝑔 (5) 319

13

Again, contract specifications drive the acceptable 𝜀𝜀𝑐𝑐,𝑣𝑣 levels, with the UK’s Highway’s Agency defining the limits at 320

+/- 6 mm for pavement, +/- 15 mm for base, and +/- 10 mm for subbase levels. Using the maximum allowable 𝜀𝜀𝑐𝑐,𝑣𝑣 of 321

15 mm and a notional 4 cm searchDistance, most points would have to be within a vertical measurement error (𝜀𝜀𝑚𝑚,𝑣𝑣 +322

 𝜀𝜀𝑖𝑖) of 2.5 cm to facilitate detection. In this case, unmanned aerial photogrammetry and low-level LiDAR are the only 323

feasible data collection methods per Table 1. The following section experimentally tests the viability of the proposed 324

solution and determines the optimal values for the various parameters and classification rules mentioned in this section. 325

METHODOLOGY, EXPERIMENTS, AND RESULTS 326

The authors generated simulated point cloud data to test the feasibility of the proposed solution prior to conducting 327

further verification experiments on real-world data. The simulated data allowed isolation and testing of the proposed 328

solution’s performance in the presence of typical construction and as-built measurement errors, while controlling for 329

occlusions and clutter in the observed scene. Although occlusions are to be expected on a construction site, controlling 330

for them in these initial experiments allowed the authors to focus on the performance of the proposed solution under 331

the conditions in which it is designed to operate: when the measured surface is visible in the scene. Robustness to 332

expected levels of occlusion, and strategies for addressing errors caused by such occlusions will be addressed in further 333

research. 334

Unmanned aerial photogrammetry was selected as the data collection technology for this study, based on its 335

low cost, fast mobilization, and ability to meet required data quality thresholds. The authors developed a data 336

simulation module to produce the synthetic aerial photogrammetry point cloud, using a 3D surface model of an in-337

progress road site as the input (Figure 5). The model, developed using AutoCAD Civil 3D, was a 500-meter long 338

undivided crowned road with -2% camber in the transverse direction to either side of the road’s centreline, and 2% 339

grade in the longitudinal direction. Random construction errors were added to the surface layers within the allowable 340

limits discussed in the previous section. 341

Simulated Aerial Photogrammetry Data 342

The aerial data simulation module aims to produce point clouds that are qualitatively similar to real-world aerial 343

photogrammetry data in measurement error profile and point density. Error in photogrammetric surveying products 344

depends on a wide range of factors, to include sensor quality, image resolution, range (i.e. how close the sensor is to 345

14

the scene), focal length, angle of incidence, percent overlap between adjacent images, level of texture in the scene, 346

lens distortion, and the quality of camera calibration (Dai et al., 2014). A recent study (Slocum & Parrish, 2017) 347

proposed an in-depth computer graphics workflow for generating simulated aerial photogrammetry data; a method 348

that shows promise for isolating and analysing the contributing factors in photogrammetric error. However, the 349

complexity of this approach was deemed unnecessary for the purposes of this study, and the authors opted instead for 350

a simpler approach that models photogrammetric error as a function of Ground Sample Distance (GSD); a descriptor 351

that accounts for sensor quality, resolution, focal length, and range. Focusing on these factors is a reasonable 352

simplification, as a number of other contributing factors can be controlled using effective data collection planning and 353

established sensor calibration routines. GSD describes the size of an image pixel projected onto the observed ground 354

surface, and is calculated as (Pix4d, 2017): 355

𝐺𝐺𝑔𝑔𝐷𝐷 =
𝑤𝑤𝑐𝑐 ∙ ℎ𝑤𝑤𝐼𝐼 ∙ 𝑓𝑓 (6) 356

where 𝑤𝑤𝑐𝑐 is the width of the sensor in meters, 𝑤𝑤𝐼𝐼 is the width of the image in pixels, ℎ is the data collection height in 357

meters, and 𝑓𝑓 is the focal length in meters. A recent white paper on a state-of-the-art aerial photogrammetry system 358

reported horizontal root-mean-square errors (RMSE) in the 1 – 7 pixel range (𝜇 = 2.7, σ = 1.5) and vertical RMSE in 359

the 1 – 4.3 pixel range (𝜇 = 2.4, σ = 1.1) after analysing data produced at various heights and under differing 360

weather/lighting conditions (Pauly, 2016). Using this as a guide, the aerial data simulation module generates each 361

noisy point (𝑝𝑝𝑖𝑖,𝜀𝜀) in the following manner: 362

𝑝𝑝𝑖𝑖,𝜀𝜀 = 𝑝𝑝𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑏𝑏𝑣𝑣�𝑖𝑖𝑏𝑏 + 𝜀𝜀𝑏𝑏𝑣𝑣�𝑏𝑏 (7) 363

where 𝑝𝑝𝑖𝑖 ∈ 𝑃𝑃, 𝜀𝜀𝑖𝑖𝑏𝑏 ~ 𝑁𝑁(0, 2.7 ∙ 𝐺𝐺𝑔𝑔𝐷𝐷), and 𝜀𝜀𝑏𝑏 ~ 𝑁𝑁(0, 2.4 ∙ 𝐺𝐺𝑔𝑔𝐷𝐷). Here, 𝑃𝑃 is the set of points in the sampled cloud, 364 𝑣𝑣�𝑖𝑖𝑏𝑏 is a randomly-generated normalized vector in the xy-plane (〈𝑥𝑥,𝑦𝑦, 0〉) and 𝑣𝑣�𝑏𝑏 is the vector 〈0, 0, 1〉. 365

To produce 𝑃𝑃, the algorithm randomly samples points on the input triangulated surface model (e.g. Figure 5) 366

according to the user-specified density profile, defined by an input mean and standard deviation. This random 367

sampling aims to mimic variations in point density attributable to changes in image texture while allowing the user to 368

control the mode of these variations. This approach relies on the assumption that the as-built site contains sufficient 369

texture for photogrammetric reconstruction, and that the density variations can be adequately described by a single 370

normal distribution. Multimodal variations could be modelled by splitting the input surface into regions where 371

15

different materials are expected and assigning separate input parameters to each prior to simulation. Since this study 372

is primarily focused on detecting asphalt road design layers, the uniform image texture within these regions should 373

result in point densities that can be described by a unimodal normal distribution. The next section examines the 374

veracity of this assumption. The simulated data produced for the purposes of this study was generated using a GSD of 375

2 cm with a density distribution of 𝜇 = 200 pts/m2
 and 𝜎 = 1.5. 376

Real World Data 377

The authors collected as-planned data on two separate days during the construction of a residential road for a new 378

development in Cambridge, UK. The asphalt road design included five distinct surfaces: (1) the formation (bottom of 379

excavation), (2) a 520 mm thick sub-base layer, (3) a 125 mm thick base course, (4) a 65 mm thick asphalt binder 380

course, and (5) a 40 mm thick asphalt wearing course. Autodesk's Civil 3D application was used to generate a 3D 381

corridor model from the 2D design information provided by the contractor. The wearing course thickness limits the 382

searchDistance parameter to a maximum of 4 cm, which requires most points to have a vertical measurement error of 383

less than 2.5 cm to enable accurate detection. 384

Trimble's UX5 fixed wing UAS conducted the aerial surveys, the details of which are provided in Figure 6. 385

The authors used the following steps to plan the data collection: (1) Select a desired GSD to achieve the required 386

accuracy, considering typical error ranges discussed in the previous section, (2) Select a desired data collection height 387

using Equation 6, taking into consideration local aviation authority regulations and on-site structures, equipment, and 388

obstructions, (3) Define the desired degree of overlap between adjacent images, (4) Plan the flight route to achieve 389

the parameters defined in the previous three steps, and (5) Establish ground control point (GCP) targets throughout 390

the site to enable accurate geo-referencing during post-processing. The authors used Trimble’s UX5 flight planning 391

software to complete step 4, using a desired elevation of 70 m and target image overlap of 80% in both the longitudinal 392

and transverse directions. Eight GNSS-surveyed GCP targets were distributed throughout the site. The authors 393

performed photogrammetric post-processing of the collected images in Trimble's Business Center (TBC) aerial 394

photogrammetry application. The process involved: (1) importing the images and synchronized on-board sensor data, 395

(2) refining the sensor-defined camera positions using manual target observations in at least 3 images per GCP, and 396

(3) conducting a dense photogrammetric reconstruction to produce the final survey products. One issue that can affect 397

photogrammetric reconstruction quality on road sites is the potential for visual similarity between multiple regions 398

16

along the construction corridor, leading to errors in feature matching and calculation of external camera parameters. 399

The employed method accounts for this by logging the UX5’s GPS, altimeter, and inertial measurement unit (IMU) 400

sensor readings at each image location, and then enforcing a feature-matching constraint that declares positive matches 401

can only occur between images with overlapping frames measured from their sensor-defined positions. The quality of 402

the collected data is analysed and compared to the synthetic data in the following section. Figure 7 depicts the point 403

clouds and ground truth conditions at the time of data collection. 404

Comparing the Simulated and Real World Datasets 405

The authors verified the simulated data’s suitability by comparing it to the real world data, specifically examining the 406

point density and point-to-ground-truth-surface distance statistics. This was done by constructing histograms of the 407

data for each metric; normal distributions were then fit to the histograms to describe and visualize the results (Figure 408

8). Isolating photogrammetric measurement error in this case would require accurately modelling the construction 409

error throughout the road corridor, which would in-turn require measurement and modelling techniques that introduce 410

their own errors. To account for this, and make the following analysis an ‘apples-to-apples’ comparison, the authors 411

computed the simulated data’s point-to-surface distances relative to the errorless design surfaces. Consequently, the 412

point-to-surface distributions reported below are composite values that include both measurement and construction 413

vertical errors along the length of the corridor. Points attributable to occlusions in the real-world data were manually 414

cropped prior to performing the analysis in order to focus only on the quality of the road surface measurements. This 415

comparison confirms that the simulated data reasonably approximates the real-world aerial photogrammetric data. The 416

real-world vertical errors were within 𝜎𝐷𝐷𝐷𝐷𝑏𝑏1 = 1.5 𝑝𝑝𝑥𝑥 and 𝜎𝐷𝐷𝐷𝐷𝑏𝑏2 = 1.3 𝑝𝑝𝑥𝑥 respectively, both of which are within the 417

expected ranges discussed above. 418

Development Platform and Performance Measures 419

The authors developed the proposed solution using an in-house coding platform named Gygax that allows for 420

processing and visualization of both images and PCD, and incorporates the open-source Emgu CV and Point Cloud 421

Library code libraries. The solution uses a combination of C++ and C# code written and compiled in Microsoft Visual 422

Studio 2015. All experiments utilized a computer with 4.0 GHz Intel i7 processor, 32 GB RAM, a dedicated 1,280-423

core GPU with 2 GB memory, and Windows 10 64-bit operating system. 424

17

This study used average precision (𝑝𝑝𝜇), average recall (𝑔𝑔𝜇), and the F score (𝐹𝐹1) to measure experimental 425

performance by comparing the binary leafVoxel detection labels to the ground truth. The ground truth was developed 426

by overlaying the project grid with the as-built data and manually labelling each branch with the observed design layer 427

name. Equations 6-8 define these metrics for a model with 𝑔𝑔 design surfaces, where true positive (𝑇𝑇𝑃𝑃𝑏𝑏) is the number 428

of leafVoxels correctly labelled as 'detected' in surface 𝑏𝑏, false positive (𝐹𝐹𝑃𝑃𝑏𝑏) is the number incorrectly labelled as 429

'detected', true negative (𝑇𝑇𝑁𝑁𝑏𝑏) is the number correctly labelled as 'not detected', and false negative (𝐹𝐹𝑁𝑁𝑏𝑏) is the number 430

incorrectly labelled as 'not detected'. 431

𝑝𝑝𝜇𝜇 =
∑ 𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐=1∑ 𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐=1 (8) 432

𝑔𝑔𝜇𝜇 =
∑ 𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐=1∑ 𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐=1 (9) 433

𝐹𝐹1 =
2 × 𝑝𝑝𝜇𝜇 × 𝑔𝑔𝜇𝜇𝑝𝑝𝜇𝜇 + 𝑔𝑔𝜇𝜇 (10) 434

𝑝𝑝𝜇 measures the reliability of the positive-detection decision as the portion of leafVoxels labelled ‘detected’ that were 435

detectable in the as-built scene. 𝑔𝑔𝜇 measures the proposed solution’s positive-detection effectiveness as the portion of 436

detectable leafVoxels that were labelled as ‘detected’. Each of these metrics describes a different component of the 437

proposed solution’s overall effectiveness and optimal performance is achieved when each is maximized. In practice, 438

this is difficult because there are often trade-offs between precision and recall. 𝐹𝐹1 is the harmonic mean of 𝑝𝑝𝜇 and 𝑔𝑔𝜇, 439

and is used to measure overall performance in the following experiments. 440

Experiments on Synthetic Data 441

The first experiments conducted on the synthetic data aimed to determine which branch detection deconfliction rule 442

produces the best results, and how variations in the voxel height (searchDistance) affect those results. The authors 443

conducted 20 trials for each decision rule tested (60 in total), varying the searchDistance between 0.1 and 2.0 cm in 444

0.1 cm increments. As discussed previously, the wearing course’s 40 mm design thickness drove selection of the 445

searchDistance values tested. Figure 9 shows the F1 Score achieved in each of these trials. The maximum point 446

decision rule resulted in the highest F1 Score in each case. Additionally, the authors concluded that the minimum 447

distance rule is not reliable for deconflicting branch detection decisions, as it demonstrated no ability to improve 448

detection performance. Finally, the results in Figure 9 show a preference for the maximum-possible voxel height, 449

18

using a search distance of 2 cm in this case. Using the optimal decision rule (maximum point) and search distance (2 450

cm), the authors recorded an average F1 Score of 91.0% with the misclassifications occurring almost exclusively in 451

the upper-two design layers (77.1% and 80.8% F1 Scores respectively for the Binder and Asphalt Wearing Surface 452

layers). This indicates that the normally-distributed measurement errors cause confusion in the classification decision 453

for thinner layers. The following experiments aimed to correct these errors using the outlier correction step described 454

in the previous section. 455

To examine the influence of the design parameters on the outlier correction step’s performance, the authors 456

conducted further trials iterating through neighbourDistance values from 1 to 10 while varying the 457

consensusThreshold between 0.5 and 1.0 in increments of 0.05. The range of neighbourDistance values tested was 458

determined experimentally to ensure an observable peak in F1 Score. The authors chose to use 0.5 as the minimum 459

consensusThreshold assuming that the most likely scenario would involve a neighbourhood with just two surface 460

layers under consideration at a time. Figure 10 shows the results of these experiments. Peak performance was achieved 461

using a neighbour distance of 2 and consensus threshold of 60%, which resulted in an average F1 Score of 99.7%. The 462

results confirm the utility of the proposed solution under ideal conditions, when the constructed surfaces are clearly 463

visible. The following section examines the proposed solution’s performance on the real-world datasets. 464

Experiments on Real-World Data 465

The data collection surface on Day 1 was subject to a number of occlusions caused by a parked vehicle, a roller 466

compacter, and multiple safety barriers associated with work related to other schedule tasks. Additionally, the 467

contractor intentionally built three regions of the binder material to a lower-than-designed elevation. These regions 468

corresponded to areas where connecting roads were awaiting their asphalt binder installation, during which time the 469

contractor would correct the intentionally-low regions to provide a smooth connection. The initial real-world-data 470

experiments eliminated these regions and occluded areas, in both datasets, from the analysis in order to isolate the 471

method’s performance on regions where the ground truth surfaces are observable in the data. Strategies for dealing 472

with these troubling regions are then discussed in subsequent paragraphs, and are the focus of continuing research. 473

Figure 11 illustrates the location and type of some of the occlusions. The authors implemented the proposed solution 474

on the Day 1 and Day 2 datasets using the optimal parameters from synthetic data testing. Table 2 summarizes the 475

results of these experiments. The overall results show reasonably good performance, but further improvement is 476

19

needed. The reduced performance compared to the synthetic data is due to localized error regions in the ground-truth 477

Asphalt Binder and Wearing Surface areas (Figure 12 highlights some typical examples). These localized errors could 478

be due to unplanned deviations in surface elevation (i.e. construction errors) or systematic errors in the point cloud 479

data. Regardless of the cause, a progress monitoring approach should be able to recognize which design layers these 480

regions are supposed to belong to. This also holds true for the regions that are occluded or otherwise deviate from the 481

design layer elevations. The following experiments examined how such regions could be accounted for using the 482

proposed outlier correction method. 483

Adjusting for error regions and occlusions 484

The authors experimented with increasing the outlier correction method’s neighbour distance parameter to compensate 485

for the error and occluded regions. The combinations of outlier correction parameters producing an F1 Score above 486

95% in the synthetic data (as shown in Figure 10), were implemented on the Day 1 and Day 2 datasets for search 487

distances greater than 2. The best overall performance resulted from a search distance of 7 with a consensus threshold 488

of 55%. Table 3 shows the results for this combination, both with and without the occlusions accounted for in the 489

performance calculations. Figure 13 illustrates the results. 490

Processing Time 491

The proposed solution took approximately 11 seconds to generate the incremental surface detection decisions for the 492

200 m section of road analysed above, using a 5.5-million-point input cloud. Note that this does not include the 493

BrickTree build time (~40 seconds), as this step only needs to be completed at project initialization or when the 494

design is changed. The total cycle time (including BrickTree initialization, data collection, and post-processing) was 495

approximately 3 hours, 35 minutes on Day 1, and 2 hours, 29 minutes on Day 2. The increased efficiency on Day 2 496

was due mostly to better familiarity with the post-processing software and field equipment. The authors tested the 497

proposed solution on additional synthetic data in order to evaluate how changes in the size of the as-built and as-498

planned data affect its processing time, the results of which are summarized in Figure 14. Note that BrickTree 499

initialization time (not shown) also increased linearly with projects size, with the 10-Lane, 500 m long road 500

requiring 2 minutes, 8 seconds to initialize the data structure. 501

SUMMARY AND CONCLUSION 502

20

Effectively monitoring construction progress can enable timely and effective project control decisions aimed at 503

keeping a project on track. Unfortunately, current transportation project monitoring practice is manual, error-prone, 504

inefficient, and ultimately contributes to the annual $114.3B in global cost overrun. Automating this process can 505

improve overall project performance, and detecting design surfaces in digital as-built data is a key requirement for 506

realizing such an automated approach. A number of recent studies proposed methods for conducting this detection on 507

building structural components. Unfortunately, these methods are not well-suited for larger and more complex layered 508

road design surfaces. The only related transportation-focused study required labelled as-built data, entirely skipping 509

the automated surface detection process. 510

This paper marks the first study specifically aimed at automatically detecting layered road design surfaces in 511

unlabelled as-built point cloud data. The authors proposed and evaluated a novel model-guided space partitioning 512

hierarchical tree structure, termed the BrickTree, for accomplishing this task. A simulated aerial photogrammetry point 513

cloud was generated and used to test the performance of the proposed solution under ideal conditions not subject to 514

occlusions or construction errors beyond acceptable levels. These initial experiments culminated in an average F1 515

Score of 99.7%, while providing perspective on the best decision rule and outlier correction parameters to use for 516

further testing. The solution was then tested on two real-world datasets, ultimately resulting in an average F1 Score of 517

95.2%. 518

It is important to note that the proposed solution does have limitations. This study focuses on progress 519

monitoring, and as such does not aim to identify or classify construction errors. It requires the constructed surfaces to 520

be mostly within established quality limits. The authors acknowledge the natural link between progress and quality, 521

and note that large-scale quality measurement is inherent in the proposed leafVoxel populating and rasterBranch 522

classifying steps, since as-built points lying outside the model-hugging voxel regions will not be considered. In this 523

manner, road layers that are built with errors exceeding the acceptable thresholds in large areas will not be detected 524

by the method, and this lack of detection could be used to highlight potential construction errors for further 525

investigation by the project management team. Another limitation is that the proposed solution requires up-to-date 526

design information that reflects field-level construction procedures. For example, consider the regions discussed 527

earlier that were intentionally left lower than the design elevations to account for connection with intersecting roads 528

21

that had yet to be paved. Modelling this level of detail is possible, but requires close coordination between the design 529

and construction teams. This study’s main contributions are: 530

 (1) The BrickTree space partitioning hierarchical data structure, which has numerous advantages. First, the 531

sparse nature of the hierarchical tree structure, utilizing a fixed tree depth where voxels are only generated at known 532

surface geometry locations, reduces the complexity of tree traversal and search operations while simultaneously 533

reducing memory usage compared to equivalent non-sparse voxelization approaches (Laine & Karras, 2011). Second, 534

the uniform fit of each voxel to its parent surface geometry, thanks to the model-guided construction topology, ensures 535

a consistent detection framework across the entire surface. This improves the consistency of point-to-surface 536

attribution and eliminates the need for an as-planned traversal of the tree structure (because it’s already known which 537

design surfaces belong to which voxels). Third, the ability to adjust voxel shape allows for point searches in tighter 538

vertical tolerances while maintaining broader horizontal ranges that enable consideration of sparser as-built point 539

clouds. Finally, the layered vertical branch orientation enables logical reasoning about the presence of a design surface 540

based on the status of the other voxels within the branch and its’ neighbours. 541

(2) Empirical evidence supporting the optimal searchDistance parameter and branch classification decision 542

rule to use when implementing the proposed solution. The authors noted a preference in the results for use of the 543

largest searchDistance possible based on the thinnest design surface layer. However, further research is needed to 544

identify how well these conclusions generalize when applied to different as-built and as-planned datasets. 545

(3) A workflow for generating synthetic as-built road construction point cloud data that is qualitatively similar 546

to real-world aerial photogrammetric data. The developed application allows the user to specify parameters controlling 547

the synthetic point cloud’s noise/error and density distribution profiles while also modelling construction errors. This 548

can be used to test the viability of a proposed method and/or its sensitivity to fluctuations in data quality. It can also 549

be used to determine flight parameters and equipment requirements (using ground sample distance) for achieving the 550

level of data quality needed for a given method. 551

While the results reported here are promising, there remains room for improvement. The authors divide the 552

remaining errors, as visible in the Day 1 results at the top of Figure 13, into two different categories. The first is 553

confusion between the Asphalt Binder and Wearing Surface layers. These surfaces are separated by the thinnest 554

margin, i.e. the thickness of the Wearing Surface layer, and are thus more susceptible to misclassification errors due 555

22

to noise in the PCD and construction errors near the acceptable limits. While more accurate and precise as-built data 556

collection methods (e.g. laser scanning) could ameliorate this situation, UAS photogrammetry offers several 557

advantages that warrant further investigation into methods for dealing with such misclassifications in the aerial PCD. 558

The biggest advantages of UAS photogrammetry include the lower cost and ability to collect the data remotely. The 559

latter advantage improves site safety by not exposing further personnel to the hazards inherent on a construction site, 560

and ensures the data collection will not impede ongoing work. 561

The second error category is confusion at the boundary between adjacent layers. Note that this issue did not 562

emerge while testing the synthetic data using a smaller neighbour distance during outlier correction. However, as the 563

authors increased the neighbour distance to accommodate larger error regions than modelled in the synthetic data, the 564

boundaries between adjacent layers became less well defined. For example, consider Figure 13 which shows that the 565

staggered boundary between the Base Course and Asphalt Binder layers in the Day 1 data is lost using the larger 566

neighbour distance. A more sophisticated outlier correction method could potentially be used to account for initial 567

classification errors while maintaining the boundary conditions in the as-built data. Both of these error categories will 568

be further examined in the authors’ future research. 569

ACKNOWLEDGMENTS 570

This research is made possible through funding from the United States Air Force and the Cambridge Commonwealth 571

and International Trust. The authors express gratitude to the Trimble Corporation for their support in lending 572

equipment and expertise to the data collection operation. The views expressed in this paper are those of the authors 573

and do not necessarily reflect the official policy or position of the Air Force, the Department of Defense or the U.S. 574

Government. All supporting data is included in this paper and the provided references. 575

REFERENCES 576

 Bosché, F. (2010). "Automated recognition of 3D CAD model objects in laser scans and calculation of as-built 577

dimensions for dimensional compliance control in construction." Advanced Engineering Informatics, 24 (1), 107–578

118. 579

Braun, A., Tuttas, S., Borrmann, A. & Stilla, U. (2015). "Automated progress monitoring based on photogrammetric 580

point clouds and precedence relationship graphs." Proc., 32nd International Symposium on Automation and 581

Robotics in Construction and Mining, 274–280. 582

Cantarelli, C.C., Flyvbjerg, B., Molin, E.J.E. & van Wee, B. (2010). "Cost Overruns in Large-Scale Transportation 583

23

Infrastructure Projects: Explanations and Their Theoretical Embeddedness." European Journal of Transport and 584

Infrastructure Research, 10 (1), 5–18. 585

Chan, D.W. & Kumaraswamy, M.M. (1997). "A comparative study of causes of time overruns in Hong Kong 586

construction projects." International Journal of Project Management, 15 (1), 55–63. 587

Cheng, M.Y. & Chen, J.C. (2002). "Integrating barcode and GIS for monitoring construction progress." Automation 588

in Construction, 11 (1), 23–33. 589

Dai, F., Feng, Y. & Hough, R. (2014). "Photogrammetric error sources and impacts on modeling and surveying in 590

construction engineering applications." Visualization in Engineering, 2 (1), 1–14. 591

Del Pico, W.J. (2013). Project Control: Integrating Cost and Schedule in Construction. Hoboken, NJ: John Wiley & 592

Sons. 593

DJI (2017). "DJI Site Survey Solution".〈http://store.dji.com/product/site-survey-solutions-single-perpetual〉(5 594

March 2017). 595

Dobbs, R., Pohl, H., Lin, D.-Y., Mischke, J., Garemo, N., Hexter, J., Matzinger, S., Palter, R. & Nanavatty, R. 596

(2013). Infrastructure productivity: how to save $1 trillion a year. McKinsey Global Institute. 597

Faro (2017). "Laser Scanner Tech Sheets".〈http://www.faro.com/en-gb/resources/tech-sheets/〉(13 November 598

2017). 599

Golparvar-Fard, M., Peña-Mora, F. & Savarese, S. (2015). "Automated Progress Monitoring Using Unordered Daily 600

Construction Photographs and IFC-Based Building Information Models." Journal of Computing in Civil 601

Engineering, 10.1061/(ASCE)CP.1943-5487.0000205, 04014025. 602

GOM Inspect (2017). "GOM Inspect Software".〈http://www.gom.com/3d-software/gom-inspect.html〉(29 April 603

2017). 604

González, P., González, V., Molenaar, K. & Orozco, F. (2014). "Analysis of Causes of Delay and Time Performance 605

in Construction Projects." Journal of Construction Engineering and Management, 10.1061/(ASCE)CO.1943-606

7862.0000721, 04013027. 607

Han, K.K., Degol, J. & Golparvar-Fard, M. (2018). "Geometry- and Appearance-Based Reasoning of Construction 608

Progress Monitoring." Journal of Construction Engineering and Management, 10.1061/(ASCE) CO.1943-609

7862.0001428, 04017110. 610

Highways Agency, UK (2014). "Manual of Contract Documents for Highway Works, Volume 1, Series 0700", 611

London, UK. 612

Kalasapudi, V.S., Tang, P. & Turkan, Y. (2017). "Computationally efficient change analysis of piece-wise 613

cylindrical building elements for proactive project control." Automation in Construction, 81, 300–312. 614

24

Kim, C., Son, H. & Kim, C. (2013). "Automated construction progress measurement using a 4D building 615

information model and 3D data." Automation in Construction, 31, 75–82. 616

Kivimaki, T. & Heikkila, R. (2015). "Infra BIM based Real-time Quality Control of Infrastructure Construction 617

Projects." Proc., 32nd International Symposium on Automation and Robotics in Construction and Mining, 877–882. 618

Laine, S. & Karras, T. (2011). "Efficient sparse voxel octrees." IEEE Transactions on Visualization and Computer 619

Graphics, 17 (8), 1048–1059. 620

Leica (2017). "Leica Pegasus:Two Mobile Reality Capture."〈http://www.leica-geosystems.co.uk〉(13 November 621

2017). 622

Memon, A.H., Abdul Rahman, I. & Abdul Aziz, A.A. (2012). "The cause factors of large project’s cost overrun: a 623

survey in the southern part of Peninsular Malaysia." International Journal of Real Estate Studies (INTREST), 7 (2), 624

1–15. 625

Navon, R. & Sacks, R. (2007). Assessing research issues in Automated Project Performance Control (APPC). 626

Automation in Construction, 16 (4), 474–484. 627

NCHRP (2013). "Synthesis 446: Use of Geospatial Data, Tools, Technologies, and Information in Department of 628

Transportation Projects." Washington, D.C. 629

Olsen, M.J., Roe, G. V., Glennie, C., Persi, F., Reedy, M., Hurwitz, D., Williams, K., Tuss, H., Squellati, A. & 630

Knodler, M. (2013). "NCHRP Report 748: Guidelines for the Use of Mobile LIDAR in Transportation 631

Applications." Washington, D.C. 632

Pauly, K. (2016). "White Paper: Trimble UX5 - Increasing Your Productivity." Trimble Corporation, Belgium. 633

Pix4d (2017). "Pix4D Drone Mapping."〈https://pix4d.com/〉(7 July 2015). 634

Razavi, S.N. & Haas, C.T. (2010). "Multisensor data fusion for on-site materials tracking in construction." 635

Automation in Construction, 19 (8), 1037–1046. 636

Razavi, S.N. & Moselhi, O. (2012). "GPS-less indoor construction location sensing." Automation in Construction, 637

28, 128–136. 638

Salling, K.B. & Leleur, S. (2015). "Accounting for the inaccuracies in demand forecasts and construction cost 639

estimations in transport project evaluation." Transport Policy, 38, 8–18. 640

Schneider, C. (2013). "Techbrief: 3D, 4D, and 5D Engineered Models for Construction, an Executive Summary." 641

US Department of Transportation, Federal Highway Administration. 642

Shahi, A., Aryan, A., West, J.S., Haas, C.T. & Haas, R.C.G. (2012). "Deterioration of UWB positioning during 643

construction." Automation in Construction, 24, 72–80. 644

25

Siemiatycki, M. (2009). "Academics and Auditors: Comparing Perspectives on Transportation Project Cost 645

Overruns." Journal of Planning Education and Research, 29 (2), 142–156. 646

Slocum, R. & Parrish, C. (2017). "Simulated Imagery Rendering Workflow for UAS-Based Photogrammetric 3D 647

Reconstruction Accuracy Assessments." Remote Sensing, 9 (4), 396. 648

The Survey Association (2015). "Client Guide to Aerial LiDAR Surveys." Newark-on-Trent, UK. 649

The Survey Association (2016). "Client Guide to Small Unmanned Aircraft Surveys." Newark-on-Trent, UK. 650

TransMagic (2017). "MagicCheck – CAD Model Comparison."〈https://transmagic.com/magiccheck-cad-model-651

comparison/〉(29 April 2017). 652

Trimble (2015). "Trimble TX8 Laser Scanner Datasheet." [Online].〈http://www.trimble.com/3d-laser-653

scanning/index.aspx〉(16 July 2015). 654

Trimble (2017). "Trimble Business Center Aerial Photogrammetry Module." [Online].〈http://uas.trimble.com/tbc-655

am〉(29 April 2017). 656

Turkan, Y., Bosché, F., Haas, C.T. & Haas, R. (2014). "Tracking of secondary and temporary objects in structural 657

concrete work." Construction Innovation, 14 (2), 145–167. 658

Tuttas, S., Braun, A., Borrmann, A. & Stilla, U. (2014). "Comparison of Photogrammetric Point Clouds with BIM 659

Building Elements for Construction Progress Monitoring." The International Archives of Photogrammetry, Remote 660

Sensing and Spatial Information Sciences, XL-3, 341–345. 661

U.S. Army Corps of Engineers (2013). Engingeering and Construction Bulletin 2013-18. (ECB 2013-18).662

Washington, D.C. 663

Watt, A. (2000). 3D Computer Graphics. Third. Essex, UK: Pearson Education. 664

Zhang, C. & Arditi, D. (2013). "Automated progress control using laser scanning technology." Automation in 665

Construction, 36, 108–116. 666

667

668

669

670

671

672

26

TABLES 673

Table 1. Summary of accurate and dense spatial data collection technologies. 674

Technology Cost Accuracy Density Strengths Limitations

Manned aerial

LiDARa,c,d

$$ cm 10s - 100s Lighting invariance,

large coverage area,

non-intrusive

Cost, mobilization

time

Unmanned aerial
LiDARa,c,d

$ mm - cm 100s Lighting invariance,

non-intrusive

Battery life

Unmanned aerial
photogrammetrya,b,e

< $ cm 100s Cost, non-intrusive Battery life, daylight

collection only

Mobile LiDARa,c,f $ - $$ cm 100s - 1,000s Lighting invariance,

coverage area

Cost, intrusive, ground

view more sensitive to

occlusions

Terrestrial LiDARa,g,h $ mm 100s - 10,000s Accuracy, density,

Lighting invariance

Coverage, intrusive,

ground view more

sensitive to occlusions

Note: Cost ranges are up-front, $ indicates costs in the $10,000s and $$ indicates costs in the $100,000s. Density 675

ranges are in pts/m2. The intrusive/non-intrusive assessment considers whether or not the technology requires on-site 676

collection in the proximity of ongoing work, which has implications for safety and work productivity. 677

Sources: aNCHRP (2013), bThe Survey Association (2016), cOlsen et al. (2013), dThe Survey Association (2015b), 678
eDJI (2017), fLeica (2017), gTrimble (2015), hFaro (2017) 679

680

Table 2. Summary of initial results on the Day 1 and Day 2 datasets 681

Dataset 𝑝𝑝𝜇 𝑔𝑔𝜇 F1

Day 1 83.6% 82.8% 83.2%

Day 2 84.7% 84.7% 84.7%

Overall 84.2% 83.8% 84.0%

682

Table 3. Summary of final results on the Day 1 and Day 2 datasets without 683

(and with) occlusions considered 684

Dataset 𝑝𝑝𝜇 𝑔𝑔𝜇 F1

Day 1 90.2% (83.6%) 89.8% (83.2%) 90.0% (83.4%)

Day 2 99.9% (99.9%) 99.9% (99.8%) 99.9% (99.9%)

Overall 95.3% (91.7%) 95.1% (91.5%) 95.2% (91.6%)

685

Figure Captions

Vick and Brilakis, Road Design Layer Detection in Point Cloud Data for Construction Progress Monitoring

Figure 1. Longitudinal road design section showing 2D projection of 10 cm voxel grid

Figure 2. Proposed Surface Detection Process

Figure 3. The BrickTree Structure

Figure 4. Neighbourhood construction example for neighbourDistance = 1

Figure 5. Simulated In-Progress Road Construction Site

Figure 6. UAS Flight Details

Figure 7. As built point clouds and ground truth conditions

Figure 8. Comparison of the real world and simulated datasets

Figure 9. Performance for the tested search distances and decision rules

Figure 10. Performance for each combination of outlier correction parameters tested

Figure 11. Occlusions and deviations in the Day 1 data (ground truth surfaces shown)

Figure 12. Localized error regions (circled) in the Day 1 dataset

Figure 13. Day 1 and Day 2 surface detection results after increasing the searchDistance parameter

Figure 14. Complexity of the proposed solution

y

z

Figure 1. Longitudinal road design section showing 2D
projection of 10 cm voxel grid

Process Inputs/Outputs Process

Legend:

Registered

& Aligned

PCD

Road

Design

Surfaces

Populate voxels

Populated

Voxels
Classify Branches

Classified

Branches

Generate

BrickTree

BrickTree

Remove Outliers

Labelled

Voxels and

Branches

Figure 2. Proposed Surface Detection Process

searchDistance

gridCellSize

rasterBranch

leafVoxels

k

BrickTree

rasterBranches

n leafVoxels

xy

z

Figure 3. The BrickTree Structure

x

y

Figure 4. Neighbourhood construction example
for neighbourDistance = 1

Formation

Sub Base

(520mm)

Base

(125mm)

Asphalt Binder

(65mm)

Asphalt Wearing

(40mm)

Design Layers In Progress Simulated Construction Error

15 mm

-15 mm

0 mm

Figure 5. Simulated In-Progress Road Construction Site

Flight Information Day 1 Day 2

Avg. Flying Height AGL (m): 70.3 70.7

No. of Images: 224 251

Avg. Photo Scale: 1 : 4799 1 : 4883

Avg. GSD (cm): 2.29 2.33

Pre-Flight Setup (min) 45 27

Flight Duration (min) 11 12

Post Processing (min) 158 110

Figure 6. UAS Flight Details

D
ay

 1
:

Formation Sub Base Base Binder Wearing

Legend:

D
ay

 2
:

Figure 7. As built point clouds and ground truth conditions

0

2

4

6

8

10

12

14

-20 -15 -10 -5 0 5 10 15 20

%
 o

f
p

o
in

ts

Distance (cm)

Point-to-Surface Distance Comparison

Simulated Day 1 Day 2𝜇 = -0.8, 𝜎 = 3.2𝜇 = -1.2, 𝜎 = 3.6𝜇 = -0.1, 𝜎 = 4.8

0%

5%

10%

15%

20%

25%

30%

194 199 204 209 214

%
 o

f
1

 m
2

R
e

g
io

n
s

A
n

a
ly

ze
d

Density (pts / m2)

Point Density Comparison

Simulated Day 1 Day 2

Figure 8. Comparison of the real world and simulated datasets

25%

35%

45%

55%

65%

75%

85%

95%

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

A
x
is

 T
it

le

Voxel Search Distance (cm)

F1 Score

Maximum Point Minimum Distance Minimum Variance

Figure 9. Performance for the tested search distances and decision rules

1.0
0.95

0.90
0.85

0.80
0.75

0.70
0.65

0.60
0.55

0.50

1

2

3

4

5

6

7

8

9

10

0.7

0.75

0.8

0.85

0.9

0.95

1

Performance by Outlier Correction Parameter Values

F
1

 S
c
o

re

0.8

0.85

0.9

0.95

1
2
3
4
5
6
7
8
9

80%

85%

90%

95%

80%

85%

75%

90%

95%

100%

Performance by Outlier Correction Parameter Values

99.7%

F
1

 S
co

re

Figure 10. Performance for each combination of outlier correction parameters tested

Areas intentionally

built low

Occlusion from

parked vehicle

Safety barriers

Base Binder

Ground-truth layers:

Figure 11. Occlusions and deviations in the Day 1 data (ground truth surfaces shown)

Sub Base Base Binder Wearing

Legend:

Not Considered

Base

Sub Base

Binder

Wearing

Figure 12. Localized error regions (circled) in the Day 1 dataset

Legend:

Day 2:

Day 1:

Sub Base Base Binder Wearing Not Detected

Sub Base

Base

Binder

Wearing

Figure 13. Day 1 and Day 2 surface detection results after increasing the searchDistance parameter

0

10

20

30

40

50

60

70

80

0 5,000 10,000 15,000 20,000

T
im

e
(s

ec
o

n
d

s)

Road Surface Area (m^2)

Processing Time by Project Size

(2 x106 as-built points)

4

6

8

10

12

14

16

0 2 4 6 8 10 12

T
im

e
(s

ec
o

n
d

s)

of Points (millions)

Processing Time by As-Built PCD Sizes

(500 m, 2-Lane Road)

2-Lane, 100 to

500 m Roads
4-Lane, 500 m Road

6-Lane, 500 m Road

8-Lane, 500 m Road

10-Lane, 500 m Road*Lane width = 3.6 m

Figure 14. Complexity of the proposed solution

	Vick & Brilakis Revised Manuscript
	Figure Captions
	Figure1
	Figure2
	Figure3
	Figure4
	Figure5
	Figure6
	Figure7
	Figure8
	Figure9
	Figure10
	Figure11
	Figure12
	Figure13
	Figure14

