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Abstract 7 

Poor performance in transportation construction is well-documented, with an estimated $114.3 billion in global annual 8 

cost overrun. Studies aimed at identifying the causes highlighted traditional project management functions like 9 

progress monitoring as the most important contributing factors. Current methods for monitoring progress on road 10 

construction sites are not accurate, consistent, reliable, or timely enough to enable effective project control decisions. 11 

Automating this process can address these inefficiencies. The detection of layered design surfaces in digital as-built 12 

data is an essential step in this automation. A number of recent studies, mostly focused on structural building elements, 13 

aimed to accomplish similar detection but the methods proposed are either ill-suited for transportation projects or 14 

require labelled as-built data that can be costly and time consuming to produce. This paper proposes and 15 

experimentally validates a model-guided hierarchical space partitioning data structure for accomplishing this detection 16 

in discrete regions of 3D as-built data. The proposed solution achieved an F1 Score of 95.2% on real-world data 17 

confirming the suitability of this approach. 18 

Keywords: Transportation Construction; Progress Monitoring; Drones; Automation 19 

INTRODUCTION 20 

A recent study estimated that $3.2 trillion per year in infrastructure investment is required to keep pace with global 21 

GDP growth through 2030, with approximately 16% of that investment ($512 billion) required for road construction 22 

(Dobbs et al., 2013). Poor performance in this field is well-documented, with more than forty independent studies and 23 

government audits over the past three decades identifying as many as 83 separate causes for transportation construction 24 

cost overrun (e.g. Siemiatycki, 2009; Cantarelli et al., 2010; Memon et al., 2012; Salling & Leleur, 2015). One study 25 
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analysed projects in Great Britain, Denmark, Sweden, and Norway, concluding that 77% experienced cost overruns 26 

with the average amount being 29% of original contract value (Salling & Leleur, 2015). Assuming these levels of 27 

performance continue, there is a potential for $114.3 billion in annual cost overrun on road construction projects 28 

worldwide ($512B × 77% × 29%). While the causes of these overruns are varied, traditional project management 29 

functions have been highlighted as the most important contributors (González et al., 2014). Project control is one such 30 

function that directly impacts project performance (Del Pico, 2013). It’s a cyclical process consisting of progress 31 

monitoring and implementation of corrective actions. Automating the first part of the project control cycle, progress 32 

monitoring, can enable more timely and effective corrective actions aimed at keeping a project on time and within 33 

budget. 34 

Progress monitoring is the cyclical collection, analysis, and reporting of work complete at a given point in 35 

time, compared to the planned worked complete. The main processes of progress monitoring are: (1) collecting as-36 

built data, (2) processing it into the form required for analysis, and (3) comparing it with the desired (or “as-planned”) 37 

state of the project. Current transportation progress monitoring practice is largely “non-spatial” involving no or very 38 

sparse measurement of the physical progress on site. Project engineers, surveyors, crew foremen, and other on-site 39 

personnel collect as-built data using paper or electronic checklists and daily reports, verbal updates, site photographs, 40 

material delivery receipts, inventory reports, and subcontractor invoices. These manual data collection methods rely 41 

on the experience, training, and subjective assessment of the individuals performing the inspection. Additionally, 42 

collecting and parsing data from these disparate sources into meaningful activity-level inputs and compiling them into 43 

project-level performance metrics is a time consuming and arduous task that consumes as much as 30-50% of a project 44 

manager’s time (Navon & Sacks, 2007). Progress determinations are made in increments of distance along the 45 

centreline of the road. For example, a project utilizing a 20m increment might report completion of a layer to station 46 

01+20 (i.e. 120m from the beginning of the road). One drawback of this approach is that progress (or lack of progress) 47 

between the stations may be left unreported. Ultimately, non-spatial progress monitoring methods are too error-prone, 48 

inconsistent, and burdensome to enable timely and effective implementation of corrective project control actions. 49 

The civil engineering community recently examined using a variety of commercially-available spatio-50 

temporal sensors to support progress monitoring. Ultra-wide band (UWB) (e.g. Shahi et al., 2012), radio frequency 51 

identification (RFID) (e.g. Razavi & Moselhi, 2012), barcode (Cheng & Chen, 2002), global positioning system 52 
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(GPS), and various combinations of these sensors (e.g. Razavi & Haas, 2010) have been used to track materials, 53 

equipment, and other resources as indicators of progress. While these sensors can provide useful information, they 54 

don’t directly measure the physical progress on the site. Additionally, their installation and maintenance can be 55 

burdensome for project management as tags and readers must be applied, monitored, and repositioned on a wide range 56 

of resources as the project evolves. 57 

An alternative approach that directly measures the progress on site uses spatial data collection technologies. 58 

Spatial progress monitoring involves surveying the work performed, calculating the volumes, areas and/or distances 59 

that form the basis of the analysis, and comparing the results with planned progress to determine project status. The 60 

most common data collection technologies used are Robotic Total Stations, Global Navigation Satellite System 61 

(GNSS) receivers, Light Detection and Ranging (LiDAR) scanners, and Aerial Photogrammetry (NCHRP, 2013). 62 

However, the scale of most transportation construction projects dictates the use of methods capable of quickly 63 

surveying large areas to an acceptable level of accuracy and resolution, defined as 1-5 cm three-dimensional (3D) 64 

point accuracy and more than 150 points/m2 (Olsen et al., 2013). Table 1 summarizes current technologies capable of 65 

achieving at or near this level of performance. Note that performance and cost can vary due to a variety of factors for 66 

each technology, so general ranges are provided based on a review of academic studies, technical reports, and 67 

manufacturer specifications. Unmanned aerial photogrammetry stands out as a cost-effective data collection solution 68 

capable of meeting the demands of spatial progress measurement on large transportation sites. 69 

Although these data collection solutions exist, automatically recognizing progress in the as-built scene is a 70 

difficult task. The authors decompose automatic progress monitoring for road construction into the following steps: 71 

(1) aligning and registering the as-built data in a common coordinate system with the design model, (2) detecting ‘if’ 72 

and ‘where’ each road design layer occurs in the as-built data, (3) comparing this with the as-planned status, and (4) 73 

generating the progress report. Commercially-available solutions exist for the first step, typically using GPS and/or 74 

surveyed control targets to place the as-built data in the design model’s geographic coordinate system (e.g. Trimble, 75 

2017; Pix4d, 2017). The second step, however, remains an unsolved problem and is the focus of this study. Note that 76 

the authors define road layer detection as a process that identifies which, and exactly where, each design layer is 77 

present in the as-built point cloud data (PCD). While no methods exist for automatically detecting road design surfaces 78 

in as-built data, similar functions are performed in automated manufacturing quality control processes. Such systems 79 
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(e.g. GOM Inspect (2017)) compare as-built data from recently-manufactured components with 3D models to detect 80 

quality deviations beyond acceptable levels. However, these applications benefit from a variety of controlling factors 81 

that cannot feasibly be replicated on transportation construction sites. For example, they are designed to operate 82 

indoors with known and stable lighting conditions. Additionally, the components analysed are relatively small and 83 

can be carefully measured from all required perspectives. 84 

Detecting road design layers in unlabelled spatial data requires a-priori information regarding the expected 85 

elevation of each layer throughout the corridor. Civil Information Modelling (CIM) is a mature technology capable of 86 

providing such information, and is gaining wider support from government agencies and contractors. The U.S. Army 87 

Corps of Engineers, for example, requires use of CIM tools in design and construction of all horizontal civil works 88 

projects (US Army, 2013). CIM models represent horizontal construction as combinations of triangulated surfaces 89 

defined by dynamic design objects such as alignments, profiles, and design cross sections. This enables extraction of 90 

individual model surfaces defining the finished grade of activity layers typically found in road construction. In current 91 

practice, CIMs are used mostly for design visualization and automated guidance of earthwork equipment (Schneider, 92 

2013). Since CIM model surfaces can be very large and complex, an interesting problem to consider is how to best 93 

divide them into smaller sections to allow incremental progress detection. 94 

The computer graphics, medical imaging, and robotics fields regularly deal with spatial subdivision of 95 

complex 3D spaces. Rasterization and voxelization are two popular methods for accomplishing this task. Rasterization 96 

uses a perspective-projection of 3D objects onto a 2D plane and then divides this projection into a regular grid. In 97 

computer graphics a grid of picture elements (pixels) is used. Voxelization divides 3D space into a network of 98 

regularly-spaced cuboid volume elements (voxels). A common voxel organizational structure known as the octree 99 

recursively divides a cube-bounded 3D space into eight sub-cubes down to a specified subdivision threshold (criteria 100 

are typically dimension-based or occupancy-based). Voxels are the smallest subdivision, or the ‘leaves’, of this 101 

hierarchical tree structure. The octree structure allows rapid searching and indexing of 3D space, and implicitly 102 

describes how various objects are distributed within complex 3D scenes (Watt, 2000). These benefits make octrees an 103 

attractive option for use in detecting 3D design surfaces in as-built point cloud data, but the trade-off between accuracy 104 

and efficiency must be kept in mind. For example, an octree of finer resolution (i.e. smaller leaf voxel size) more 105 
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accurately represents a 3D object but at the expense of increased memory usage and slower voxel traversal operations 106 

(Watt, 2000). 107 

In summary, the basic building blocks for implementing an improved automated progress monitoring 108 

approach exist in current practice. LiDAR and photogrammetry are viable means for obtaining survey-quality as-built 109 

data on large construction sites, while CIM provides the basis for a digital comparison of the as-built data with the as-110 

planned state. Detecting the CIM design layers in as-built data is the next unsolved problem in realizing this 111 

automation. This paper proposes and evaluates a novel model-guided and sparse hierarchical space partitioning 112 

approach for accomplishing road design layer detection in discrete regions of as-built point cloud data. The following 113 

section reviews recent research relevant to this task. The proposed solution is then described in detail and evaluated 114 

using both synthetic and real-world data from the construction of a residential road in Cambridge, UK. Finally, the 115 

researchers summarize the experimental results, draw conclusions, and discuss future research goals. 116 

BACKGROUND 117 

The specific technical problem addressed in this paper is detection of road design surfaces in as-built data to support 118 

automated progress monitoring. The following review evaluates related methods proposed in recent studies based on 119 

their level of automation and applicability for layered road design surfaces.  120 

A group of related studies focused on detecting building construction design objects using as-built PCD 121 

collected by laser scanning (Bosché, 2010; Kim et al., 2013; Turkan et al., 2014; Kalasapudi et al., 2017),  122 

photogrammetry (Golparvar-Fard et al., 2015; Tuttas et al., 2014; Braun et al., 2015), or both (Han et al., 2018). Design 123 

object detection in the 3D data was accomplished in different ways. This study divides the automated design surface 124 

detection approaches into two main categories: (1) point-correspondence and (2) space partitioning. The following 125 

sub-sections review the literature in these two categories before examining the sparse research specifically related to 126 

transportation design surfaces. 127 

Point Correspondence Approaches 128 

Point-correspondence approaches (Bosché, 2010; Kim et al., 2013; Turkan et al., 2014) generate as-planned point 129 

clouds from 3D model elements and search for the nearest as-built correspondences within a threshold distance to 130 

determine if an as-planned point is present in the as-built scene. Design surface triangulation vertices are sparse, so 131 
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as-planned point clouds must be either subsampled on the design surface to closely match the density of the as-built 132 

cloud (e.g. Kim et al., 2013), or the as-built points must be projected onto the nearby surfaces before selecting the 133 

nearest projection as the correct as-planned point location (e.g. Bosché, 2010). The researchers mostly used thresholds 134 

on the number of confirmed point correspondences to determine if a model element was detected. These methods 135 

showed promise for automatically detecting planned structural building elements in 3D PCD, particularly when 136 

factoring in a-priori connectivity and construction sequencing information like Kim et al. (2013). However, they 137 

focused on all-or-nothing detection of the individual components. Such an approach works well for detecting relatively 138 

small components constructed within a progress monitoring cycle (e.g. a column), but fails to capture the kind of 139 

incremental progress needed to support effective project control on road construction sites with very large design 140 

surfaces. 141 

Space Partitioning Approaches 142 

Other researchers partitioned registered as-built/as-planned scenes and identified points falling into the partitioned 143 

regions to facilitate object detection. Some used the boundaries of each structural element model (e.g. a square column) 144 

to conduct this partitioning (e.g. Zhang & Arditi, 2013). More commonly used approaches partition the 3D space 145 

containing the as-built/as-planned scene using voxels. Some (Tuttas et al., 2014; Braun et al., 2015) built an octree 146 

over the as-built PCD and searched for points within orthogonal distance thresholds of rasterized planar segments (e.g. 147 

rectangles or triangles) extracted from each structural element’s constituent surfaces. Although this approach is not 148 

“all-or-nothing,” it does limit the detection decision to each planar surface segment that makes up the design object. 149 

Consider the effect of this on a road design surface that has very large planar regions (think of a large stretch of flat 150 

highway) as well as areas where the surface orientation changes in much smaller intervals (think of a banked highway 151 

around a curve). In this case, the surface detection would happen in uneven and inconsistent intervals along the length 152 

of the road, resulting in progress reports that are difficult to interpret and act upon. 153 

An approach that more consistently partitioned larger and/or more complex scenes (Golparvar-Fard et al., 154 

2015) voxelized the entire 3D space containing the registered as-is/as-built scene before traversing the voxels (twice: 155 

once each for as-planned and as-built data) from various unordered camera positions and labelling them based on the 156 

presence of design elements and as-built points. This method made use of ubiquitous daily job site images for as-built 157 

data collection, and even enforced visibility and visual consistency constraints to account for static and dynamic 158 
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occlusions in the scene. However, the uniform nature of the implemented voxelization is ill-suited for large and 159 

closely-layered road design surfaces. Consider the notional case illustrated in Figure 1, showing a longitudinal (y-z) 160 

2D section of a small asphalt road design region. Realistic design layer thicknesses are represented to scale with the 161 

voxel size shown, approximating the design specifications for the road construction site evaluated later in this paper. 162 

With a notional 10 cm leaf voxel size, the thin upper design surfaces occupy the same voxel in multiple instances. As-163 

built point and as-planned surface occupancy in this case would not be sufficient to identify which design surface is 164 

found in the as-built scene, presenting a problem for the detection approach used by Golparvar-Fard et al. (2015). 165 

Voxelizing the scene at 1/5 the previous resolution (2 cm shown in Figure 1) can address this concern, but results in 166 

a 125x increase in the total number of voxels that need to be traversed and analysed. Using a smarter space partitioning 167 

approach, like an octree that only subdivides branch cells containing as-planned data, can reduce this complexity but 168 

other issues still remain. First, use of regular cuboid voxels small enough to distinguish between thin asphalt layers 169 

requires extremely high-density as-built data. For example, a 2 cm leaf voxel size in Figure 1 would alleviate the 170 

problem of voxels occupied by multiple design layers, but would require as-built data with a spatial resolution of at 171 

least 2,500 pts/m2 to ensure at least one point could be found in each voxel along the road corridor, not accounting for 172 

noise and measurement error. This limits the data collection options to the most expensive and time-consuming 173 

methods (Table 1) that are more susceptible to occlusions due to the ground-level perspective. Second, the cubic-grid 174 

structure of the voxelization produces voxels that do not uniformly fit the design surfaces. In some instances, a surface 175 

intersects only the corner of a voxel while in others it cuts directly through the middle. As a result, as-built points 176 

corresponding to a specific design surface are only sought above the surface in some cases, while in others only the 177 

region below is considered. This could results in further inconsistencies with the object detection decision, particularly 178 

when voxelizing at finer resolutions to ensure unique as-planned voxel labels. 179 

Transportation-Specific Research 180 

Just one study sought to compare road design surface layers to as-built point cloud data (Kivimaki & Heikkila, 2015). 181 

This study, however, stopped short of true design surface detection as the matching of surveyed points to the relevant 182 

design surface was accomplished by assigning a specific code linking each point to a surface. Such point codes are 183 

only possible on terrestrial survey equipment where the exact nature of each point can be coded into the machine prior 184 

to taking the measurement. The authors concede that manual matching of point clouds to surfaces is required for data 185 

that lack the point code information; a drawback on the efficiency and applicability of this approach. 186 
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Gaps in Knowledge, Objective, and Research Questions 187 

The existing body of research is heavily-skewed towards structural building components in as-built PCD. Surfaces for 188 

such components are typically characterized by relatively-small orthogonally intersecting planar sections (e.g. the 189 

faces of a concrete foundation wall). Road design surfaces are larger and more complex, typically involving changes 190 

in slope along both the longitudinal and transverse axes of the road corridor. The closely-layered construction, 191 

particularly in the thin upper asphalt layers, also differentiates road design surfaces from building structural 192 

components. These differences limit the applicability of existing building-focused detection methods on as-built data 193 

for road projects. Considering the state of practice and body of research reviewed in the preceding sections, we identify 194 

the following gaps in knowledge: (1) no method exists for automatically measuring progress on road construction 195 

projects, (2) existing methods for automatically detecting design surfaces in as-built data are not well-suited for 196 

identifying and distinguishing individual layered road design surfaces, (3) none of the proposed methods tackle 197 

incremental progress detection, and (4) there is no formal understanding of the challenges and limitations associated 198 

with adopting an automated progress monitoring approach on linear transportation projects. 199 

The objective of this study is to address gaps 2-4 by developing and testing a novel data structure for 200 

automatically and incrementally detecting layered road design surfaces in unlabelled as-built PCD. The authors 201 

examine the following research questions to accomplish this objective: (1) how can the 3D as-planned space be 202 

partitioned to allow for consistent and incremental road layer detection?, (2) how can as-built PCD be accurately 203 

classified within the partitioned regions, accounting for noise and uncertainty in the as-built scene?, and (3) what 204 

combination of design and/or input parameters will be required to produce the most desirable results? 205 

PROPOSED SOLUTION 206 

The authors propose a novel solution for detecting layered road design surfaces in discrete regions of as-built point 207 

cloud data. This solution implements a new model-guided and sparse hierarchical space partitioning data structure 208 

named BrickTree, a combination of the authors’ names and a nod to the rectangular cuboid shape of the leaf voxels in 209 

this structure. Figure 2 illustrates the key processes in implementing this approach. The inputs to this solution are (1) 210 

an as-built point cloud, scaled in real-world units and registered in the CIM model’s coordinate system, and (2) 211 

triangulated road layer surfaces extracted from the CIM model. The rest of this section describes in further detail the 212 

four processes of the proposed solution. 213 
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The BrickTree Data Structure  214 

The first step in generating the BrickTree applies a rigid-body transformation to the layered design surfaces, 215 

positioning them just above the global origin with the longitudinal direction of the road corridor aligned with the y-216 

axis and the transverse direction aligned with the x-axis. A 2D grid, named the projectGrid, is then created on the x-y 217 

plane below the registered and aligned design surface layers. The projectGrid serves as the basis of further partitioning 218 

as each square grid cell defines the x-y boundaries of a rasterBranch in the hierarchical tree structure (Figure 3). As 219 

such, each rasterBranch is a vertical projection of a projectGrid cell, and is defined within the hierarchy as a collection 220 

of leafVoxels. LeafVoxels are defined as 3D rectangular space partitioning elements that subdivide each rasterBranch 221 

region. The gridCellSize parameter determines the granularity of the incremental surface detection decision, which 222 

occurs at the rasterBranch level where only one design layer should be identified for a given dataset. Note that this 223 

could result in small classification errors in regions of transition between as-built layers, and selection of the 224 

gridCellSize parameter should consider this possible error in determining the acceptable level of granularity for the 225 

final progress report. The authors note that such errors (e.g. detecting a surface within a branch’s boundaries when 226 

only half of it is actually present) are common for all spatial partitioning methods, and generally deemed acceptable 227 

if properly controlled considering the inaccuracy and subjectivity of current progress monitoring practice. The 228 

gridCellSize is set to 0.5m and controlled for in the following experiments based on conversations with local project 229 

management personnel that indicated this would be an acceptable level of granularity for the final progress 230 

determination, allowing more detailed reporting of progress than the centreline increment methods used in current 231 

practice. 232 

Each rasterBranch is partitioned into leafVoxels at intersections with the layered design surfaces. The goal 233 

of this model-guided voxelization is to ensure each leafVoxel enables consistent searching for as-built points in the 234 

regions above and below their corresponding surface. This study constructs axes-aligned voxels, relying on the 235 

assumption that road surfaces can be reasonably approximated as flat within the regions defined by the gridCellSize. 236 

This simplifying assumption reduces the complexity of point-to-voxel assignment operations by limiting them to a 237 

series of simple indexing calculations in the x, y, and z-directions. The degree to which this assumption affects the 238 

performance of the proposed method and how well it generalizes to the possible combinations of road camber and 239 

grade is the focus of further research by the authors, and thus is not reported in this paper. 240 
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To construct the leafVoxels, the authors orthogonally project the projectGrid onto each surface, storing the 241 

centroid and normal direction of each projected grid cell for the following steps. The z-value of this centroid coupled 242 

with the searchDistance parameter defines the height of the constructed leafVoxels, while the horizontal limits of the 243 

grid cells define the voxel boundaries in the x and y directions. Selecting the optimal searchDistance value is a focus 244 

of experiments in the following section, but an important consideration is the thickness of the thinnest design layer as 245 

this sets an upper limit on the value in order to limit voxel overlap. The final step in constructing the BrickTree sets 246 

the upper z-limit of the outer 3D bounding box as the maximum point elevation of the voxels in the top surface layer. 247 

With the BrickTree constructed, the proposed solution moves on to the next step: populating the leafVoxels with as-248 

built data. 249 

Populating the BrickTree with as-built points 250 

There are two general strategies for assigning as-built points to a hierarchical space partitioning tree: (1) traverse the 251 

point cloud to determine where in the tree structure each point lies, or (2) traverse the tree structure to identify and 252 

assign points in the vicinity of each voxel. The axes-aligned leafVoxel structure allows points to be rapidly indexed 253 

and assigned to discrete 3D regions. For this reason, the authors chose to traverse the as-built cloud, directly assigning 254 

points to leafVoxels. Because the voxels are not evenly-spaced in the z-direction, rapid indexing only occurs at the 255 

branch level. For a given as-built point, 𝑝𝑝𝑏𝑏, the process calculates the branch index by comparing it to the origin 256 

(lower-left point) of the projectGrid, 𝑝𝑝𝑜𝑜, using the following equations where 𝑛𝑛𝑖𝑖_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the number of projectGrid 257 

cells in the x-direction. Note that the bracket notation used indicates floor-rounding to the nearest integer value. 258 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 = � 𝑝𝑝𝑏𝑏𝑖𝑖 − 𝑝𝑝𝑜𝑜𝑖𝑖𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔� (1) 259 

 260 

𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 = � 𝑝𝑝𝑏𝑏𝑏𝑏 − 𝑝𝑝𝑜𝑜𝑏𝑏𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔� (2) 261 

 262 𝑏𝑏𝑔𝑔𝑏𝑏𝑛𝑛𝑏𝑏ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 + 𝑗𝑗𝑖𝑖𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖 × 𝑛𝑛𝑖𝑖_𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (3) 263 

 264 

With the branch identified, the method then compares the z-component of the built point, 𝑝𝑝𝑏𝑏𝑏𝑏, to the z-limits of the 265 

leafVoxels to determine which, if any, to assign the point to. If an as-built point is detected inside a leafVoxel, the 266 

voxel is marked as ‘detected'. Note that this initial labelling is reviewed and updated in the subsequent branch 267 
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classification step. After the algorithm processes all as-built points falling within the BrickTree bounding box and 268 

applies the pointThreshold to label the leafVoxels, the branch classification processes begins. 269 

Branch classification 270 

Noise and other errors could result in multiple leafVoxels being marked 'detected' in the same rasterBranch. A 271 

classification decision must be made to correct this conflict as it’s only possible to detect one design surface per branch 272 

in an as-built scene. Sophisticated decision boundaries can be learned using supervised or unsupervised machine 273 

learning approaches, but these require a large number of training datasets from a variety of construction sites. While 274 

the authors aim to collect further data and explore machine learning based classification in future work, the current 275 

study implements a simple statistical threshold decision boundary as a proof of concept for the overall framework. 276 

Three possible rules are considered: maximum points (i.e. select the voxel with the most points), minimum distance 277 

(i.e. select the voxel with the minimum average orthogonal distance between its as-built points and the design surface), 278 

and minimum vertical variance (i.e. select the voxel whose points have the lowest variance in the z-direction). 279 

Regardless of the decision rule used, the algorithm labels each rasterBranch with the surface identified and updates 280 

the leafVoxel labels in the branch accordingly. The optimal classification rule out of the three considered is 281 

experimentally evaluated later in this paper. 282 

Outlier correction 283 

The final step in the surface detection process, outlier correction, aims to improve the final result’s accuracy using a 284 

priori knowledge of road construction operations. Specifically, the method assumes that road surfaces are generally 285 

not constructed with gaps or missing areas in the middle. The authors propose a neighbourhood consensus algorithm 286 

to accomplish this task. Two input parameters, neighbourDistance and consensusThreshold are used. The 287 

neighbourDistance parameter defines the size of the neighbourhood in which a branch classification is compared to 288 

that of its neighbours. Figure 4 illustrates different construction cases for the branch comparison ‘neighbourhood’. 289 

Implementing the different construction cases ensures the comparison region size remains constant no matter where 290 

the analysed branch lies on the projectGrid. The algorithm traverses the constructed neighbourhood, tallying branch 291 

classifications by surface identification. If the ratio of any surface’s tallied count to the total number of branches in 292 

the neighbourhood exceeds the consensusThreshold¸ a consensus is declared in the neighbourhood. The algorithm 293 

then compares and updates (if required) the analysed branch’s classification and leafVoxel labels. The optimal 294 
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consensusThreshold value and size of the outlier correction window, defined by the neighborDistance parameter, are 295 

explored in the experiments later in this paper. 296 

Construction and as-built data quality 297 

The proposed solution assumes an acceptable level of construction (𝜀𝜀𝑐𝑐) and as-built data measurement (𝜀𝜀𝑚𝑚) error. The 298 

authors divide these errors into the horizontal (𝜀𝜀𝑐𝑐,ℎ , 𝜀𝜀𝑚𝑚,ℎ) and vertical (𝜀𝜀𝑐𝑐,𝑣𝑣, 𝜀𝜀𝑚𝑚,𝑣𝑣) directions to describe their impact on 299 

the proposed method. Measurement errors also include noise, further divided into random noise, outliers, and 300 

occlusions. The BrickTree structure implicitly limits the influence of outliers and occlusions by only considering 301 

points within the leafVoxel regions. Points from low-level occlusions (e.g. equipment sitting on the road surface) could 302 

still trigger detection errors, but this type of noise is difficult to control on an active site. Additionally, the outlier 303 

correction step is designed to correct these errors as long as the occluded region is not much larger than the comparison 304 

neighbourhood. Consequently the following analysis of required input data quality only considers random noise (𝜀𝜀𝑖𝑖), 305 

which is assumed to be Gaussian and primarily affecting the vertical measurements. 306 

Horizontal errors (𝜀𝜀𝑐𝑐,ℎ and 𝜀𝜀𝑚𝑚,ℎ) could result in detection errors, mostly along the boundaries of the road 307 

corridor. The gridCellSize parameter defines the proposed solution’s sensitivity to horizontal error, with the following 308 

equation describing the relationship required to enable accurate detection: 309 

𝜀𝜀𝑐𝑐,ℎ + 𝜀𝜀𝑚𝑚,ℎ  < 𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖𝑔𝑔𝑔𝑔 (4) 310 

In practice, contract specifications dictate the acceptable level of construction error. The United Kingdom’s Highways 311 

Agency sets the tolerance for 𝜀𝜀𝑐𝑐,ℎ at 25 mm (Manual of Contract Documents for Highway Works, Volume 1, Series 312 

0700). Using the 0.5 m gridCellSize implemented in this study and the maximum acceptable 𝜀𝜀𝑐𝑐,ℎ, as-built data with 313 𝜀𝜀𝑚𝑚,ℎ less than 47.5 cm is required, which is achievable using any of the technologies listed in Table 1.  314 

Vertical errors (𝜀𝜀𝑐𝑐,𝑣𝑣, 𝜀𝜀𝑚𝑚,𝑣𝑣, and 𝜀𝜀𝑖𝑖) could result in detection errors within any branch of the BrickTree. The 315 

searchDistance parameter drives the proposed solution’s vertical error sensitivity, and is limited to a maximum 316 

distance equal to the thickness of the thinnest road design layer to avoid overlapping leafVoxels. Equation 5 describes 317 

the relationship between this parameter and the input data error required to enable detection: 318 

𝜀𝜀𝑐𝑐,𝑣𝑣 + 𝜀𝜀𝑚𝑚,𝑣𝑣 + 𝜀𝜀𝑖𝑖 < 𝑠𝑠𝑔𝑔𝑏𝑏𝑔𝑔𝑏𝑏ℎ𝐷𝐷𝑖𝑖𝑠𝑠𝐷𝐷𝑏𝑏𝑛𝑛𝑏𝑏𝑔𝑔 (5) 319 
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Again, contract specifications drive the acceptable 𝜀𝜀𝑐𝑐,𝑣𝑣 levels, with the UK’s Highway’s Agency defining the limits at 320 

+/- 6 mm for pavement, +/- 15 mm for base, and +/- 10 mm for subbase levels. Using the maximum allowable 𝜀𝜀𝑐𝑐,𝑣𝑣 of 321 

15 mm and a notional 4 cm searchDistance, most points would have to be within a vertical measurement error (𝜀𝜀𝑚𝑚,𝑣𝑣 +322 

 𝜀𝜀𝑖𝑖) of 2.5 cm to facilitate detection. In this case, unmanned aerial photogrammetry and low-level LiDAR are the only 323 

feasible data collection methods per Table 1. The following section experimentally tests the viability of the proposed 324 

solution and determines the optimal values for the various parameters and classification rules mentioned in this section. 325 

METHODOLOGY, EXPERIMENTS, AND RESULTS  326 

The authors generated simulated point cloud data to test the feasibility of the proposed solution prior to conducting 327 

further verification experiments on real-world data. The simulated data allowed isolation and testing of the proposed 328 

solution’s performance in the presence of typical construction and as-built measurement errors, while controlling for 329 

occlusions and clutter in the observed scene. Although occlusions are to be expected on a construction site, controlling 330 

for them in these initial experiments allowed the authors to focus on the performance of the proposed solution under 331 

the conditions in which it is designed to operate: when the measured surface is visible in the scene. Robustness to 332 

expected levels of occlusion, and strategies for addressing errors caused by such occlusions will be addressed in further 333 

research.  334 

Unmanned aerial photogrammetry was selected as the data collection technology for this study, based on its 335 

low cost, fast mobilization, and ability to meet required data quality thresholds. The authors developed a data 336 

simulation module to produce the synthetic aerial photogrammetry point cloud, using a 3D surface model of an in-337 

progress road site as the input (Figure 5). The model, developed using AutoCAD Civil 3D, was a 500-meter long 338 

undivided crowned road with -2% camber in the transverse direction to either side of the road’s centreline, and 2% 339 

grade in the longitudinal direction. Random construction errors were added to the surface layers within the allowable 340 

limits discussed in the previous section. 341 

Simulated Aerial Photogrammetry Data 342 

The aerial data simulation module aims to produce point clouds that are qualitatively similar to real-world aerial 343 

photogrammetry data in measurement error profile and point density. Error in photogrammetric surveying products 344 

depends on a wide range of factors, to include sensor quality, image resolution, range (i.e. how close the sensor is to 345 
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the scene), focal length, angle of incidence, percent overlap between adjacent images, level of texture in the scene, 346 

lens distortion, and the quality of camera calibration (Dai et al., 2014). A recent study (Slocum & Parrish, 2017) 347 

proposed an in-depth computer graphics workflow for generating simulated aerial photogrammetry data; a method 348 

that shows promise for isolating and analysing the contributing factors in photogrammetric error. However, the 349 

complexity of this approach was deemed unnecessary for the purposes of this study, and the authors opted instead for 350 

a simpler approach that models photogrammetric error as a function of Ground Sample Distance (GSD); a descriptor 351 

that accounts for sensor quality, resolution, focal length, and range. Focusing on these factors is a reasonable 352 

simplification, as a number of other contributing factors can be controlled using effective data collection planning and 353 

established sensor calibration routines. GSD describes the size of an image pixel projected onto the observed ground 354 

surface, and is calculated as (Pix4d, 2017): 355 

𝐺𝐺𝑔𝑔𝐷𝐷 =  
𝑤𝑤𝑐𝑐 ∙ ℎ𝑤𝑤𝐼𝐼 ∙ 𝑓𝑓 (6) 356 

where 𝑤𝑤𝑐𝑐 is the width of the sensor in meters, 𝑤𝑤𝐼𝐼 is the width of the image in pixels, ℎ is the data collection height in 357 

meters, and 𝑓𝑓 is the focal length in meters. A recent white paper on a state-of-the-art aerial photogrammetry system 358 

reported horizontal root-mean-square errors (RMSE) in the 1 – 7 pixel range (𝜇 = 2.7, σ = 1.5) and vertical RMSE in 359 

the 1 – 4.3 pixel range (𝜇 = 2.4, σ = 1.1) after analysing data produced at various heights and under differing 360 

weather/lighting conditions (Pauly, 2016). Using this as a guide, the aerial data simulation module generates each 361 

noisy point (𝑝𝑝𝑖𝑖,𝜀𝜀) in the following manner: 362 

𝑝𝑝𝑖𝑖,𝜀𝜀 =  𝑝𝑝𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑏𝑏𝑣𝑣�𝑖𝑖𝑏𝑏 + 𝜀𝜀𝑏𝑏𝑣𝑣�𝑏𝑏 (7) 363 

where 𝑝𝑝𝑖𝑖  ∈ 𝑃𝑃,  𝜀𝜀𝑖𝑖𝑏𝑏 ~ 𝑁𝑁(0, 2.7 ∙ 𝐺𝐺𝑔𝑔𝐷𝐷), and 𝜀𝜀𝑏𝑏 ~ 𝑁𝑁(0, 2.4 ∙ 𝐺𝐺𝑔𝑔𝐷𝐷). Here, 𝑃𝑃 is the set of points in the sampled cloud, 364 𝑣𝑣�𝑖𝑖𝑏𝑏 is a randomly-generated normalized vector in the xy-plane (〈𝑥𝑥,𝑦𝑦, 0〉) and 𝑣𝑣�𝑏𝑏 is the vector 〈0, 0, 1〉. 365 

To produce 𝑃𝑃, the algorithm randomly samples points on the input triangulated surface model (e.g. Figure 5) 366 

according to the user-specified density profile, defined by an input mean and standard deviation. This random 367 

sampling aims to mimic variations in point density attributable to changes in image texture while allowing the user to 368 

control the mode of these variations. This approach relies on the assumption that the as-built site contains sufficient 369 

texture for photogrammetric reconstruction, and that the density variations can be adequately described by a single 370 

normal distribution. Multimodal variations could be modelled by splitting the input surface into regions where 371 
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different materials are expected and assigning separate input parameters to each prior to simulation. Since this study 372 

is primarily focused on detecting asphalt road design layers, the uniform image texture within these regions should 373 

result in point densities that can be described by a unimodal normal distribution. The next section examines the 374 

veracity of this assumption. The simulated data produced for the purposes of this study was generated using a GSD of 375 

2 cm with a density distribution of 𝜇 = 200 pts/m2
 and 𝜎 = 1.5. 376 

Real World Data 377 

The authors collected as-planned data on two separate days during the construction of a residential road for a new 378 

development in Cambridge, UK. The asphalt road design included five distinct surfaces: (1) the formation (bottom of 379 

excavation), (2) a 520 mm thick sub-base layer, (3) a 125 mm thick base course, (4) a 65 mm thick asphalt binder 380 

course, and (5) a 40 mm thick asphalt wearing course. Autodesk's Civil 3D application was used to generate a 3D 381 

corridor model from the 2D design information provided by the contractor. The wearing course thickness limits the 382 

searchDistance parameter to a maximum of 4 cm, which requires most points to have a vertical measurement error of 383 

less than 2.5 cm to enable accurate detection.  384 

Trimble's UX5 fixed wing UAS conducted the aerial surveys, the details of which are provided in Figure 6. 385 

The authors used the following steps to plan the data collection: (1) Select a desired GSD to achieve the required 386 

accuracy, considering typical error ranges discussed in the previous section, (2) Select a desired data collection height 387 

using Equation 6, taking into consideration local aviation authority regulations and on-site structures, equipment, and 388 

obstructions, (3) Define the desired degree of overlap between adjacent images, (4) Plan the flight route to achieve 389 

the parameters defined in the previous three steps, and (5) Establish ground control point (GCP) targets throughout 390 

the site to enable accurate geo-referencing during post-processing. The authors used Trimble’s UX5 flight planning 391 

software to complete step 4, using a desired elevation of 70 m and target image overlap of 80% in both the longitudinal 392 

and transverse directions. Eight GNSS-surveyed GCP targets were distributed throughout the site. The authors 393 

performed photogrammetric post-processing of the collected images in Trimble's Business Center (TBC) aerial 394 

photogrammetry application. The process involved: (1) importing the images and synchronized on-board sensor data, 395 

(2) refining the sensor-defined camera positions using manual target observations in at least 3 images per GCP, and 396 

(3) conducting a dense photogrammetric reconstruction to produce the final survey products. One issue that can affect 397 

photogrammetric reconstruction quality on road sites is the potential for visual similarity between multiple regions 398 



16 

 

along the construction corridor, leading to errors in feature matching and calculation of external camera parameters. 399 

The employed method accounts for this by logging the UX5’s GPS, altimeter, and inertial measurement unit (IMU) 400 

sensor readings at each image location, and then enforcing a feature-matching constraint that declares positive matches 401 

can only occur between images with overlapping frames measured from their sensor-defined positions. The quality of 402 

the collected data is analysed and compared to the synthetic data in the following section. Figure 7 depicts the point 403 

clouds and ground truth conditions at the time of data collection. 404 

Comparing the Simulated and Real World Datasets 405 

The authors verified the simulated data’s suitability by comparing it to the real world data, specifically examining the 406 

point density and point-to-ground-truth-surface distance statistics. This was done by constructing histograms of the 407 

data for each metric; normal distributions were then fit to the histograms to describe and visualize the results (Figure 408 

8). Isolating photogrammetric measurement error in this case would require accurately modelling the construction 409 

error throughout the road corridor, which would in-turn require measurement and modelling techniques that introduce 410 

their own errors. To account for this, and make the following analysis an ‘apples-to-apples’ comparison, the authors 411 

computed the simulated data’s point-to-surface distances relative to the errorless design surfaces. Consequently, the 412 

point-to-surface distributions reported below are composite values that include both measurement and construction 413 

vertical errors along the length of the corridor. Points attributable to occlusions in the real-world data were manually 414 

cropped prior to performing the analysis in order to focus only on the quality of the road surface measurements. This 415 

comparison confirms that the simulated data reasonably approximates the real-world aerial photogrammetric data. The 416 

real-world vertical errors were within 𝜎𝐷𝐷𝐷𝐷𝑏𝑏1 = 1.5 𝑝𝑝𝑥𝑥 and 𝜎𝐷𝐷𝐷𝐷𝑏𝑏2 = 1.3 𝑝𝑝𝑥𝑥 respectively, both of which are within the 417 

expected ranges discussed above.  418 

Development Platform and Performance Measures 419 

The authors developed the proposed solution using an in-house coding platform named Gygax that allows for 420 

processing and visualization of both images and PCD, and incorporates the open-source Emgu CV and Point Cloud 421 

Library code libraries. The solution uses a combination of C++ and C# code written and compiled in Microsoft Visual 422 

Studio 2015. All experiments utilized a computer with 4.0 GHz Intel i7 processor, 32 GB RAM, a dedicated 1,280-423 

core GPU with 2 GB memory, and Windows 10 64-bit operating system.  424 
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This study used average precision (𝑝𝑝𝜇), average recall (𝑔𝑔𝜇), and the F score (𝐹𝐹1) to measure experimental 425 

performance by comparing the binary leafVoxel detection labels to the ground truth. The ground truth was developed 426 

by overlaying the project grid with the as-built data and manually labelling each branch with the observed design layer 427 

name. Equations 6-8 define these metrics for a model with 𝑔𝑔 design surfaces, where true positive (𝑇𝑇𝑃𝑃𝑏𝑏) is the number 428 

of leafVoxels correctly labelled as 'detected' in surface 𝑏𝑏, false positive (𝐹𝐹𝑃𝑃𝑏𝑏) is the number incorrectly labelled as 429 

'detected', true negative (𝑇𝑇𝑁𝑁𝑏𝑏) is the number correctly labelled as 'not detected', and false negative (𝐹𝐹𝑁𝑁𝑏𝑏) is the number 430 

incorrectly labelled as 'not detected'. 431 

𝑝𝑝𝜇𝜇  =
∑ 𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐=1∑ 𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐=1 (8) 432 

𝑔𝑔𝜇𝜇  =
∑ 𝑇𝑇𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐=1∑ 𝑇𝑇𝑃𝑃𝑐𝑐 + 𝐹𝐹𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐=1 (9) 433 

𝐹𝐹1  =
2 × 𝑝𝑝𝜇𝜇 × 𝑔𝑔𝜇𝜇𝑝𝑝𝜇𝜇 + 𝑔𝑔𝜇𝜇 (10) 434 

𝑝𝑝𝜇 measures the reliability of the positive-detection decision as the portion of leafVoxels labelled ‘detected’ that were 435 

detectable in the as-built scene. 𝑔𝑔𝜇 measures the proposed solution’s positive-detection effectiveness as the portion of 436 

detectable leafVoxels that were labelled as ‘detected’. Each of these metrics describes a different component of the 437 

proposed solution’s overall effectiveness and optimal performance is achieved when each is maximized. In practice, 438 

this is difficult because there are often trade-offs between precision and recall. 𝐹𝐹1 is the harmonic mean of 𝑝𝑝𝜇 and 𝑔𝑔𝜇, 439 

and is used to measure overall performance in the following experiments. 440 

Experiments on Synthetic Data 441 

The first experiments conducted on the synthetic data aimed to determine which branch detection deconfliction rule 442 

produces the best results, and how variations in the voxel height (searchDistance) affect those results. The authors 443 

conducted 20 trials for each decision rule tested (60 in total), varying the searchDistance between 0.1 and 2.0 cm in 444 

0.1 cm increments. As discussed previously, the wearing course’s 40 mm design thickness drove selection of the 445 

searchDistance values tested. Figure 9 shows the F1 Score achieved in each of these trials. The maximum point 446 

decision rule resulted in the highest F1 Score in each case. Additionally, the authors concluded that the minimum 447 

distance rule is not reliable for deconflicting branch detection decisions, as it demonstrated no ability to improve 448 

detection performance. Finally, the results in Figure 9 show a preference for the maximum-possible voxel height, 449 



18 

 

using a search distance of 2 cm in this case. Using the optimal decision rule (maximum point) and search distance (2 450 

cm), the authors recorded an average F1 Score of 91.0% with the misclassifications occurring almost exclusively in 451 

the upper-two design layers (77.1% and 80.8% F1 Scores respectively for the Binder and Asphalt Wearing Surface 452 

layers). This indicates that the normally-distributed measurement errors cause confusion in the classification decision 453 

for thinner layers. The following experiments aimed to correct these errors using the outlier correction step described 454 

in the previous section.  455 

To examine the influence of the design parameters on the outlier correction step’s performance, the authors 456 

conducted further trials iterating through neighbourDistance values from 1 to 10 while varying the 457 

consensusThreshold between 0.5 and 1.0 in increments of 0.05. The range of neighbourDistance values tested was 458 

determined experimentally to ensure an observable peak in F1 Score. The authors chose to use 0.5 as the minimum 459 

consensusThreshold assuming that the most likely scenario would involve a neighbourhood with just two surface 460 

layers under consideration at a time. Figure 10 shows the results of these experiments. Peak performance was achieved 461 

using a neighbour distance of 2 and consensus threshold of 60%, which resulted in an average F1 Score of 99.7%. The 462 

results confirm the utility of the proposed solution under ideal conditions, when the constructed surfaces are clearly 463 

visible. The following section examines the proposed solution’s performance on the real-world datasets.  464 

Experiments on Real-World Data 465 

The data collection surface on Day 1 was subject to a number of occlusions caused by a parked vehicle, a roller 466 

compacter, and multiple safety barriers associated with work related to other schedule tasks. Additionally, the 467 

contractor intentionally built three regions of the binder material to a lower-than-designed elevation. These regions 468 

corresponded to areas where connecting roads were awaiting their asphalt binder installation, during which time the 469 

contractor would correct the intentionally-low regions to provide a smooth connection. The initial real-world-data 470 

experiments eliminated these regions and occluded areas, in both datasets, from the analysis in order to isolate the 471 

method’s performance on regions where the ground truth surfaces are observable in the data. Strategies for dealing 472 

with these troubling regions are then discussed in subsequent paragraphs, and are the focus of continuing research. 473 

Figure 11 illustrates the location and type of some of the occlusions. The authors implemented the proposed solution 474 

on the Day 1 and Day 2 datasets using the optimal parameters from synthetic data testing. Table 2 summarizes the 475 

results of these experiments. The overall results show reasonably good performance, but further improvement is 476 
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needed. The reduced performance compared to the synthetic data is due to localized error regions in the ground-truth 477 

Asphalt Binder and Wearing Surface areas (Figure 12 highlights some typical examples). These localized errors could 478 

be due to unplanned deviations in surface elevation (i.e. construction errors) or systematic errors in the point cloud 479 

data. Regardless of the cause, a progress monitoring approach should be able to recognize which design layers these 480 

regions are supposed to belong to. This also holds true for the regions that are occluded or otherwise deviate from the 481 

design layer elevations. The following experiments examined how such regions could be accounted for using the 482 

proposed outlier correction method.  483 

Adjusting for error regions and occlusions 484 

The authors experimented with increasing the outlier correction method’s neighbour distance parameter to compensate 485 

for the error and occluded regions. The combinations of outlier correction parameters producing an F1 Score above 486 

95% in the synthetic data (as shown in Figure 10), were implemented on the Day 1 and Day 2 datasets for search 487 

distances greater than 2. The best overall performance resulted from a search distance of 7 with a consensus threshold 488 

of 55%. Table 3 shows the results for this combination, both with and without the occlusions accounted for in the 489 

performance calculations. Figure 13 illustrates the results. 490 

Processing Time 491 

The proposed solution took approximately 11 seconds to generate the incremental surface detection decisions for the 492 

200 m section of road analysed above, using a 5.5-million-point input cloud. Note that this does not include the 493 

BrickTree build time (~40 seconds), as this step only needs to be completed at project initialization or when the 494 

design is changed. The total cycle time (including BrickTree initialization, data collection, and post-processing) was 495 

approximately 3 hours, 35 minutes on Day 1, and 2 hours, 29 minutes on Day 2. The increased efficiency on Day 2 496 

was due mostly to better familiarity with the post-processing software and field equipment. The authors tested the 497 

proposed solution on additional synthetic data in order to evaluate how changes in the size of the as-built and as-498 

planned data affect its processing time, the results of which are summarized in Figure 14. Note that BrickTree 499 

initialization time (not shown) also increased linearly with projects size, with the 10-Lane, 500 m long road 500 

requiring 2 minutes, 8 seconds to initialize the data structure. 501 

SUMMARY AND CONCLUSION 502 
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Effectively monitoring construction progress can enable timely and effective project control decisions aimed at 503 

keeping a project on track. Unfortunately, current transportation project monitoring practice is manual, error-prone, 504 

inefficient, and ultimately contributes to the annual $114.3B in global cost overrun. Automating this process can 505 

improve overall project performance, and detecting design surfaces in digital as-built data is a key requirement for 506 

realizing such an automated approach. A number of recent studies proposed methods for conducting this detection on 507 

building structural components. Unfortunately, these methods are not well-suited for larger and more complex layered 508 

road design surfaces. The only related transportation-focused study required labelled as-built data, entirely skipping 509 

the automated surface detection process. 510 

This paper marks the first study specifically aimed at automatically detecting layered road design surfaces in 511 

unlabelled as-built point cloud data. The authors proposed and evaluated a novel model-guided space partitioning 512 

hierarchical tree structure, termed the BrickTree, for accomplishing this task. A simulated aerial photogrammetry point 513 

cloud was generated and used to test the performance of the proposed solution under ideal conditions not subject to 514 

occlusions or construction errors beyond acceptable levels. These initial experiments culminated in an average F1 515 

Score of 99.7%, while providing perspective on the best decision rule and outlier correction parameters to use for 516 

further testing. The solution was then tested on two real-world datasets, ultimately resulting in an average F1 Score of 517 

95.2%.  518 

It is important to note that the proposed solution does have limitations. This study focuses on progress 519 

monitoring, and as such does not aim to identify or classify construction errors. It requires the constructed surfaces to 520 

be mostly within established quality limits. The authors acknowledge the natural link between progress and quality, 521 

and note that large-scale quality measurement is inherent in the proposed leafVoxel populating and rasterBranch 522 

classifying steps, since as-built points lying outside the model-hugging voxel regions will not be considered. In this 523 

manner, road layers that are built with errors exceeding the acceptable thresholds in large areas will not be detected 524 

by the method, and this lack of detection could be used to highlight potential construction errors for further 525 

investigation by the project management team. Another limitation is that the proposed solution requires up-to-date 526 

design information that reflects field-level construction procedures. For example, consider the regions discussed 527 

earlier that were intentionally left lower than the design elevations to account for connection with intersecting roads 528 
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that had yet to be paved. Modelling this level of detail is possible, but requires close coordination between the design 529 

and construction teams. This study’s main contributions are: 530 

 (1) The BrickTree space partitioning hierarchical data structure, which has numerous advantages. First, the 531 

sparse nature of the hierarchical tree structure, utilizing a fixed tree depth where voxels are only generated at known 532 

surface geometry locations, reduces the complexity of tree traversal and search operations while simultaneously 533 

reducing memory usage compared to equivalent non-sparse voxelization approaches (Laine & Karras, 2011).  Second, 534 

the uniform fit of each voxel to its parent surface geometry, thanks to the model-guided construction topology, ensures 535 

a consistent detection framework across the entire surface. This improves the consistency of point-to-surface 536 

attribution and eliminates the need for an as-planned traversal of the tree structure (because it’s already known which 537 

design surfaces belong to which voxels). Third, the ability to adjust voxel shape allows for point searches in tighter 538 

vertical tolerances while maintaining broader horizontal ranges that enable consideration of sparser as-built point 539 

clouds. Finally, the layered vertical branch orientation enables logical reasoning about the presence of a design surface 540 

based on the status of the other voxels within the branch and its’ neighbours. 541 

(2) Empirical evidence supporting the optimal searchDistance parameter and branch classification decision 542 

rule to use when implementing the proposed solution. The authors noted a preference in the results for use of the 543 

largest searchDistance possible based on the thinnest design surface layer. However, further research is needed to 544 

identify how well these conclusions generalize when applied to different as-built and as-planned datasets. 545 

(3) A workflow for generating synthetic as-built road construction point cloud data that is qualitatively similar 546 

to real-world aerial photogrammetric data. The developed application allows the user to specify parameters controlling 547 

the synthetic point cloud’s noise/error and density distribution profiles while also modelling construction errors. This 548 

can be used to test the viability of a proposed method and/or its sensitivity to fluctuations in data quality. It can also 549 

be used to determine flight parameters and equipment requirements (using ground sample distance) for achieving the 550 

level of data quality needed for a given method. 551 

While the results reported here are promising, there remains room for improvement. The authors divide the 552 

remaining errors, as visible in the Day 1 results at the top of Figure 13, into two different categories. The first is 553 

confusion between the Asphalt Binder and Wearing Surface layers. These surfaces are separated by the thinnest 554 

margin, i.e. the thickness of the Wearing Surface layer, and are thus more susceptible to misclassification errors due 555 
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to noise in the PCD and construction errors near the acceptable limits. While more accurate and precise as-built data 556 

collection methods (e.g. laser scanning) could ameliorate this situation, UAS photogrammetry offers several 557 

advantages that warrant further investigation into methods for dealing with such misclassifications in the aerial PCD. 558 

The biggest advantages of UAS photogrammetry include the lower cost and ability to collect the data remotely. The 559 

latter advantage improves site safety by not exposing further personnel to the hazards inherent on a construction site, 560 

and ensures the data collection will not impede ongoing work. 561 

The second error category is confusion at the boundary between adjacent layers. Note that this issue did not 562 

emerge while testing the synthetic data using a smaller neighbour distance during outlier correction. However, as the 563 

authors increased the neighbour distance to accommodate larger error regions than modelled in the synthetic data, the 564 

boundaries between adjacent layers became less well defined. For example, consider Figure 13 which shows that the 565 

staggered boundary between the Base Course and Asphalt Binder layers in the Day 1 data is lost using the larger 566 

neighbour distance. A more sophisticated outlier correction method could potentially be used to account for initial 567 

classification errors while maintaining the boundary conditions in the as-built data. Both of these error categories will 568 

be further examined in the authors’ future research. 569 
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TABLES 673 

Table 1. Summary of accurate and dense spatial data collection technologies. 674 

Technology Cost Accuracy Density Strengths Limitations 

Manned aerial 

LiDARa,c,d 

$$ cm 10s - 100s Lighting invariance, 

large coverage area, 

non-intrusive 

Cost, mobilization 

time 

Unmanned aerial 
LiDARa,c,d

$ mm - cm 100s Lighting invariance, 

non-intrusive 

Battery life 

Unmanned aerial 
photogrammetrya,b,e

< $ cm 100s Cost, non-intrusive Battery life, daylight 

collection only 

Mobile LiDARa,c,f $ - $$ cm 100s - 1,000s Lighting invariance, 

coverage area 

Cost, intrusive, ground 

view more sensitive to 

occlusions 

Terrestrial LiDARa,g,h $ mm 100s - 10,000s Accuracy, density, 

Lighting invariance 

Coverage, intrusive, 

ground view more 

sensitive to occlusions 

Note: Cost ranges are up-front, $ indicates costs in the $10,000s and $$ indicates costs in the $100,000s. Density 675 

ranges are in pts/m2. The intrusive/non-intrusive assessment considers whether or not the technology requires on-site 676 

collection in the proximity of ongoing work, which has implications for safety and work productivity. 677 

Sources: aNCHRP (2013), bThe Survey Association (2016), cOlsen et al. (2013), dThe Survey Association (2015b), 678 
eDJI (2017), fLeica (2017), gTrimble (2015), hFaro (2017) 679 

680 

Table 2. Summary of initial results on the Day 1 and Day 2 datasets 681 

Dataset 𝑝𝑝𝜇 𝑔𝑔𝜇 F1 

Day 1 83.6% 82.8% 83.2% 

Day 2 84.7% 84.7% 84.7% 

Overall 84.2% 83.8% 84.0% 

682 

Table 3. Summary of final results on the Day 1 and Day 2 datasets without 683 

(and with) occlusions considered 684 

Dataset 𝑝𝑝𝜇 𝑔𝑔𝜇 F1 

Day 1 90.2% (83.6%) 89.8% (83.2%) 90.0% (83.4%) 

Day 2 99.9% (99.9%) 99.9% (99.8%) 99.9% (99.9%) 

Overall 95.3% (91.7%) 95.1% (91.5%) 95.2% (91.6%) 

685 



Figure Captions 
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Figure 1. Longitudinal road design section showing 2D projection of 10 cm voxel grid 

Figure 2. Proposed Surface Detection Process 
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Figure 4. Neighbourhood construction example for neighbourDistance = 1 
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Figure 6. UAS Flight Details 

Figure 7. As built point clouds and ground truth conditions 

Figure 8. Comparison of the real world and simulated datasets 

Figure 9. Performance for the tested search distances and decision rules 

Figure 10. Performance for each combination of outlier correction parameters tested 

Figure 11. Occlusions and deviations in the Day 1 data (ground truth surfaces shown) 

Figure 12. Localized error regions (circled) in the Day 1 dataset 

Figure 13. Day 1 and Day 2 surface detection results after increasing the searchDistance parameter 

Figure 14. Complexity of the proposed solution 
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Flight Information Day 1 Day 2

Avg. Flying Height AGL (m): 70.3 70.7

No. of Images: 224 251

Avg. Photo Scale: 1 : 4799 1 : 4883

Avg. GSD (cm): 2.29 2.33

Pre-Flight Setup (min) 45 27

Flight Duration (min) 11 12

Post Processing (min) 158 110

Figure 6. UAS Flight Details
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Figure 7. As built point clouds and ground truth conditions
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