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Infrared (IR) sensors based on epitaxially grown semiconductors face two main

challenges which are their prohibitive cost and the difficulty to rise the operating

temperature. The quest for alternative technologies which will tackle these two difficulties

requires the development of new IR active materials. Over the past decade, significant

progresses have been achieved. In this perspective, we summarize the current state of

the art relative to nanocrystal based IR sensing and stress the main materials, devices

and industrial challenges which will have to be addressed over the 5 next years.
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INTRODUCTION

Over the recent years, colloidal quantum dots (CQDs) have reached a first mass market application
with their use as light sources for displays. This application brought even more interest for
CQDs both at the academic and industrial levels. Among emerging applications, infrared (IR)
photodetection (Kershaw et al., 2013; Lhuillier and Guyot-Sionnest, 2017) is a field where
colloidal materials have a strong potential to bring cost disruption, especially because organic
semiconductors, often seen as the low-cost alternative to conventional semiconductors, are
ineffective in this range of wavelengths.

IR detection currently relies on two types of sensors. Quantum detectors are based on
photon-absorbing semiconductor materials. These can either be narrow band gap semiconductors
(InGaAs in the short-wave IR, InSb in the mid-wave and HgCdTe for both mid- and long-wave IR)
or semiconductor heterostructures (GaAs/AlGaAs, used in QuantumWell Infrared Photodetector
or QWIP, and InAs/GaSb in type II superlattices). These technologies are mature, present high
performances (i.e., high quantum efficiency, relatively low dark current, high uniformity, fast time
response), but suffer from an excessive cost (a typical IR camera costs 30 k−100 k€) and a low
operating temperature. As a result, access to this type of technologies remains restricted to defense
and scientific applications (mostly astronomy).

The second class of IR detectors is thermal detectors, sensitive to energy flux rather than
photon flux. Materials used for this kind of detectors see one of their physical property (typically,
their electrical resistance) changing upon absorption of IR radiation. Typical technologies are
bolometers and pyrometers. Their operation principles make them intrinsically slower than
quantum devices, and they present lower detectivity (signal to noise ratio) than their quantum
detector counterpart. On the other hand, they can be operated at room temperature and their cost
is significantly lower, ranging from 100€ to few k€ per focal plane array (FPA) and 1 to 10 k€ for
camera.

To bring IR detection to a mass market level, a technology combining both the performances of
quantum detector and the low cost of thermal detector needs to emerge. CQDs appear as promising
candidates to reach this goal. Beyond their tunable absorption from the near IR to the THz range
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(Goubet et al., 2018a), several significant proofs of concepts such
as mid-IR photoconduction (Keuleyan et al., 2011), background
limited photodiode (Guyot-Sionnest and Roberts, 2015) and
investigation of stability issues (Jagtap et al., 2018a) have brought
CQDs to a technological readiness level (TRL) above 3 which
is critical for the industry to start considering an emerging
technology.

The focus of this paper is intentionally limited to IR detection,
which means that we have excluded from the scope of this review
any solar cell application (Sargent, 2012). In this perspective,
we propose a road map of the main challenges that have to be
addressed by the community in order to transfer the IR CQD
technology to the industrial level.

DISCUSSION

Basic of IR Detection Using Nanocrystals
as Active Material
To start, we would like to discuss the basics of the transformation
of a colloidal nanocrystal solution into an IR sensor. Two type
of geometries have been explored: planar and vertical geometry,
see Figures 1A,C. The planar geometry is certainly the easiest
to implement, because this geometry is far less sensitive to the
film quality (i.e., film roughness and cracks do not lead to
electrical shorts in the device). The success of this geometry also
relates to the possibility to add a gate for the design of field
effect (photo)transistor (Talapin and Murray, 2005). Typically,
electrodes are prepared on a conventional substrate (Si/SiO2

typically). Interdigitated electrodes have been widely used as a
strategy to enhance the current magnitude. The film of CQD
is deposited on this substrate using methods such as spin
coating, dropcasting, dip coating or spray coating (Cryer and
Halpert, 2018). As is, the film of nanocrystal is insulating and a
ligand exchange step is necessary to increase the CQD electronic
coupling and achieve photoconduction. IR exposition is obtained
by top side illumination. Typical I-V curve from such planar
photoconductive device is shown in Figure 1B. The photosignal
relates to the modulation of the I-V curve slope. Field effect
transistor configuration (Lhuillier et al., 2014b) is interesting to
tune the majority carrier current and possibly enhance the signal
to noise ratio. The gating is typically obtained through the use of
the dielectric layer from the substrate or through the deposition
of a top side dielectric (Chung et al., 2012) or electrolyte (Lhuillier
et al., 2014b).

The second type of detector geometry that has been widely
explored is based on a vertical geometry. The typical stack of
layers relies on a transparent substrate (glass in the near infrared)
on top of which a transparent conductive layer is deposited.
ITO (indium tin oxide) and FTO (fluoride doped tin oxide) are
the most used material. An electron transport layer (ETL) is
then deposited: the most used material for CQD based device
are inorganic layers made of ZnO or TiO2. This layer generally
needs to be annealed at high temperature, which makes that it
is highly desirable to process it as a bottom layer (i.e., before
the CQD deposition). On the top of the ETL, the CQD layer
is deposited. The typical thickness of this layer range from 200

to 400 nm. This value is a trade-off: thicker layer might be
desirable to absorb more light since only 10–30 % of the light
are absorbed in those conditions (Cademartiri et al., 2006; Hens
and Moreels, 2012). However, thicker layers are difficult to build
due to the multiplication of deposition and ligand exchange
steps. Moreover, the short transport diffusion length makes that
photocarriers might not be collected in thicker layers. On the top
of the QD layer, a hole transport layer can be deposited. MoO3

has been intensively used in the case of CQD (Gao et al., 2011;
Chuang et al., 2014). Finally, a top metallic contact is deposited.
There are many possible alternative configurations to the one
described above with inverted geometry, as the combination
of a n and p type layer (Chuang et al., 2014) or graded band
gap configuration (Kramer et al., 2011) to funnel charges to
the contacts. In this vertical configuration, illumination is made
through the substrate, bottom contact and ETL. A typical IV
curve of such photodiode is shown in Figure 1D. The key
advantage of this configuration is to be able to operate the device
close to zero bias to reduce the dark current, by taking advantage
of the built-in electric field of the diode.

Now that the basic of CQD based IR detector design being
established, it is of utmost importance to remind the main figures
of merit relative to IR sensing (Rosencher, 2002). Responsivity
(in A/W) is the first figure of merit which translates the
ability of the active layer to transform a light signal into an
electrical signal. This quantity directly relates to the external
quantum efficiency (efficiency to convert incident photons into
electrical current) and to internal quantum efficiency (efficiency
to convert absorbed photons into electrical current, in other
word the external quantum efficiency normalized by the device
absorption). One of the key specificities of IR is the limited
signal-to-noise ratio. Indeed, because of the narrow energy
transition involved in the IR, thermal activation competes with
photon activation of the carriers. This results in a dark current
which can be a significant fraction of the total current. The
relevant contribution of the dark current to noise is its spectral
distribution (in A.Hz−1/2), Hence, the quantity involved in the
ultimate figure of merit of an IR detector is the detectivity
(signal to noise ratio expressed in cm.Hz1/2.W−1 or Jones).
Currently, all convincing reports relative to the measurement
of noise in nanocrystal arrays have led to 1/f noise as the
prevailing contribution (Lai et al., 2014; Liu et al., 2014; De Iacovo
et al., 2017). It is a very common habit to observe detectivity
value reported assuming that noise is shot noise limited (mostly
because there is an analytical expression for shot noise and none
for 1/f noise), however this leads to a huge overestimation of
the device detectivity. Finally, another important figure of merit
which differentiates detectors from solar cells is the device time
response. To take full advantage of photon detectors, faster time
responses that the ones reported for thermal detectors (≈10ms)
are highly desirable. In the following we discuss state of the
art results and expected performance targets for SWIR, MWIR,
and LWIR range of wavelengths. We will now discuss the main
challenges to address in order to bring the CQD technology to the
industrial level. We have sorted those in three main categories: (i)
material, (ii) device and (iii) camera integration challenges, see
Figure 2.
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FIGURE 1 | (A) Scheme of a photoconductive device in planar geometry. (B) I-V curve of a photoconductive device under dark condition and under illumination.

(C) Scheme of a photodiode in vertical geometry. TCO, ETL and HTL stands respectively, for transparent conductive oxide, electron transport layer and hole transport

layer. (D) I-V curve of a photodiode under dark condition and under illumination.

Material Challenges
IR Absorption: Interband vs. Intraband Transitions
Among all criteria to build an IR detector, design IR absorption
appears as the first challenge to tackle. Three wavelength bands
appear promising for applications: short-, mid- and long-wave
infrared.

Short-Wave Infrared (SWIR) extends from 800 nm to 1.7µm,
and up to 2.5µm for extended SWIR. In this range, the
objective for CQD-based detectors is to offer an alternative
to InGaAs. As stated earlier, these technologies offer top-level
performances. However, their cost, without being prohibitive,
remains far above comparable technologies in the visible range.
Moreover, the perspectives of cost disruption are limited for such
a mature technology. In this range of wavelengths, applications
are typically active imaging, night glow assisted imaging and
tissues imaging. Among possible colloidal materials to be used
in this range of wavelengths, two materials have reached a
large enough maturity: lead chalcogenides (Sargent, 2008) (PbS
and PbSe, mostly) and HgTe (Kovalenko et al., 2006; Keuleyan
et al., 2011; Green and Mirzai, 2018). In those materials,
IR absorption is obtained through interband transitions, see
Figure 3A.

In the Mid-Wave Infrared (MWIR: 3–5µm), blackbody
emission of room-temperature objects starts to prevail over

reflection of other light sources, hence opening the field of
thermal imaging. In this range, HgTe is by far the most
investigated material (Kovalenko et al., 2006; Keuleyan et al.,
2011; Tang et al., 2016) thanks to its tunable interband IR
transition, see Figure 3D. Another strategy to achieve low-energy
transition in the MWIR is to use intraband transitions (see
Figure 3B; Deng et al., 2014; Jagtap et al., 2018b; Kim et al.,
2018). In this case, the transition occurs in the first levels of the
conduction band, hence doped semiconductors are necessary.
Again, mercury chalcogenides are themost investigatedmaterials
for photodetection thanks to self-doping (Deng et al., 2014;
Jagtap et al., 2018b; Kim et al., 2018).

Long-Wave Infrared (LWIR: 5–30µm) is the optimal range
to perform thermal imaging of room-temperature objects
since their blackbody emission maximum lies around 10µm.
Addressing such low energy with interband transitions is
extremely challenging since the confinement energy needs to
be so small that the required size of nanocrystals becomes
incompatible with colloidal stability or monodispersity.
Intraband (Park et al., 2018) and plasmonic transitions (Luther
et al., 2011; Agrawal et al., 2017; Coughlan et al., 2017; Askari
et al., 2018; Liu et al., 2018) (achieved at a higher doping level)
in doped nanocrystals, see Figure 3C, are interesting for two
reasons: (i) addressing long wavelengths from the MWIR to the
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FIGURE 2 | Illustration of the main challenges that need to be addressed to bring the field of IR nanocrystals to a mature level for thermal imaging.

THz range while keeping the colloidal stability of the material
and (ii) because doping of nanocrystals might not be limited to
toxic material.

Surface Chemistry
Beyond the nanocrystal synthesis, the control of surface
chemistry is a critical step toward the design of photoconductive
thin films. Initial long capping ligands, which ensure the
nanometer size growth and preserve the colloidal stability, need
to be stripped from the surface to increase the inter-CQD
coupling (i.e., to reduce the inter CQD tunnel barrier) and obtain
reasonable carrier mobility. For most of the reported devices the
ligand exchange remains based on a solid state ligand exchange
(i.e., performed on the film), typically using ethanedithiol as
capping ligand (Lhuillier et al., 2013). This undoubtedly limits
the carrier mobility in the 10−3 cm2V−1s−1 range and likely the
associated photoresponse. Introduction of inorganic ligands such

as As2S3 appears as an interesting path to obtain higher film
mobility (Lhuillier et al., 2013; Yakunin et al., 2014; Tang et al.,
2016; Cryer and Halpert, 2018). It is nevertheless as important
to boost mobility as preserving a good CQD surface passivation,
especially for the design of photodiode, and more work needs
to be done in this direction. In the case of ink preparation,
CQD ends up being ligand-exchanged and suspended in polar
solvent with high boiling point, raising some questions relative
to the film preparation. Indeed, most of the devices are currently
prepared using dropcasting (Tang et al., 2018) or spin coating.
The latter method is difficult to implement using high boiling
point solvent, in addition to a dramatically low efficiency (i.e.,
90% of the material is wasted). Among alternative methods, dip
coating (Chernomordik et al., 2017) and spray coating (Chen
et al., 2013; Wang et al., 2015; Cryer and Halpert, 2018) have
also been reported. The choice for a given method also impacts
the preparation of the QD ink: low concentrations are used
for dropcasting (10 mg/mL), while higher concentrations (50
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FIGURE 3 | (A–C) are respectively, the scheme for interband, intraband, and plasmonic transitions in nanocrystals. (D) Absorption spectra for mercury chalcogenide

(HgSe and HgTe) nanocrystals of various sizes.

mg/mL) are used for spin coating in non-polar solvent and even
higher in the case of spin coating from polar solvent. There is
probably no perfect method for deposition and each involved
team has to pay the price of time-consuming optimization for
this step.

Another main challenge relative to the use of mercury
chalcogenides relates to the softness of the material. As a result,
any annealing step (to boost the mobility or as part of a
lithography process) leads to sintering of the nanocrystal film.
This induces an increase of the CQD effective radius which
broadens the absorption cut-off and, even worse, dramatically
increases the dark current (through a reduction of the effective
band gap). Thus, core-shell objects with an external material
which is able to sustain temperatures around 160◦C (i.e., typical
baking temperature of lithography resist such as polymethyl
methacrylate) without aggregation will be of utmost interest.
Introduction of core-shell structure may also lead to longer
living photocarriers which is highly desirable for photodetection.
A first study has been done in this direction by coupling
HgTe and HgSe materials in heterostructured nanocrystals
(Goubet et al., 2018b). However, growing such shell remains
quite challenging because HgX compounds are grown at
low temperature (100◦C typically), while conventional shell
materials are synthetized at high temperature (200◦C and
more). Currently all reported HgX based core-shell materials
remain based on the room temperature Colloidal-Atomic
Layer Deposition (C-ALD) process (Robin et al., 2016; Shen
and Guyot-Sionnest, 2016; Sagar et al., 2017), which appears
to be suboptimal procedure (Lhuillier et al., 2014a). Shell
growth method specific to soft materials will have to be
developed.

Material Toxicity
Material toxicity is probably one of the most difficult issues to
address. As stated previously, the field remains driven by lead and
mercury chalcogenides, which are actually the same material as
the ones used in current IR detection technologies. For sure, the
introduction of low toxicity compounds will be a breakthrough
in the field. In the visible range of wavelengths, a large effort
has been devoted to the synthesis of InP as an alternative to
CdSe as light source for display. On the other hand, colloidal
narrow band gap III-V materials (InAs Franke et al., 2016; Grigel
et al., 2016; Srivastava et al., 2018 and InSb Maurice et al., 2013;
Chang et al., 2014) remain poorly mature with a too limited
amount of reports and none dedicated to IR detection further
than the SWIR. First issue is due to the more covalent character
of III-V materials with respect to II-VI materials. As a result,
more reactive precursors need to be used which leads to a higher
degree of synthesis complexity. Second, the availability of stable
pnictogen precursors is decreasing for narrow band gapmaterials
mostly due to their atomic radius increasing.

Narrow band gap interband transitions are more likely to
be observed using heavy elements (higher Z value comes with
a denser density of states, which are more likely to present a
narrow band gap in the vicinity of the Fermi level). However,
materials in the bottom part of the periodic table are also toxic.
Certainly, a switch toward intraband transition is the promising
path to achieve heavy metal free IR detection. This strategy is
nevertheless currently limited to the MWIR and LWIR and the
level of performance is by far not as good as their interband
counterparts. Ag2Se, thanks to its spectral vicinity with HgSe
has recently generated some interest for MWIR detection (Sahu
et al., 2012; Park et al., 2018; Qu et al., 2018), although detection
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performances remain for now several orders of magnitude below
than what have been reported with HgX compounds.

Another class of material that may appears as promising to
achieve infrared absorption are strongly-doped semiconductors
with plasmonic absorption in the infrared. This is typically the
case of copper chalcogenides (Dorfs et al., 2011; Kriegel et al.,
2012; Coughlan et al., 2017), oxide nanoparticles (Kanehara
et al., 2009; Buonsanti et al., 2011; Della Gaspera et al., 2013;
Ghosh et al., 2014; Schimpf et al., 2015; Runnerstrom et al.,
2016; Tandon et al., 2017) or doped silicon (Gresback et al.,
2014; Zhang et al., 2017). Plasmonic nanoparticles tend to have
a much higher cross section (≈10−13 cm−2/particle) that the
one associated with interband or intraband transitions (10−15-
10−14 cm−2/particle range). However, their very short living
photocarrier (<1 ps) might strongly balance the absorption
enhancement. The investigation of (photo)transport properties
in those materials needs to be pushed further.

Scale-up for Production
When it comes to mass market application, a first question to
consider is how much material will be necessary. Let’s assume
that the objective is to provide to every car sold in Europe (≈20
million unit per year) an IR sensor dedicated to night-driving
assistance. Typical device will have a 1 cm2 size for a thickness of
a few hundreds of nm (400 nm for the calculation). Let’s assume
further a density of 10 for the material with a film filling of 0.64,
corresponding to a randomly close-packed film. Moreover, we
can account for the poor efficiency of deposition method such as
spin coating where 90% of the material is wasted. A single device
thus requires 2.6mg of active material. This means that around
50 kg of HgTe will be necessary to saturate the targeted market.
It is worth pointing that this amount is actually quite small and
material supply is not an issue. This strongly contrasts with solar
cell applications, where much larger devices (m2) are necessary
and where consequently material supplying (in particular Te,
for which supply short fall is expected 10 years from now) and
toxicity become critical issues.

Large scale synthesis of quantum dots (Protière et al., 2011)
and more particularly mercury chalcogenides at the 10 g scale
has already been reported (Lhuillier et al., 2016). Thus, to reach
an annual production of 50 kg, batches reaching a few 100 of g
will be needed. This is probably a step where small and medium
size companies producing nanocrystals should be involved to
take advantage of the know-how developed for wide band gap
materials (i.e., CdSe and InP).

Regarding the material production cost, it was recently
evaluated by (Jean et al., 2018) that PbS CQDs present a
fabrication cost in the 10 to 60 $/g range. Thus, even assuming
that for HgTe the fabrication cost will be in the upper range of
this estimation, the cost of active material per device remains
extremely low (0.15 $). We can conclude that contrary to solar
cells, the material cost is here not a limiting factor.

Device Challenges
Electronic Structure and Band Alignment
As stated earlier, the most promising colloidal materials for IR
detection are lead and mercury chalcogenides. Knowledge of the

electronic structure of these material remains limited compared
to the one reached for silicon and III-V semiconductors, and
most electronic structure parameters are known within a limited
accuracy, even for the bulk. Once under colloidal form, we
add on the top of that quantum confinement, dependence of
the electronic spectrum with surface chemistry and surface
traps. As a result, the electrical landscape of our active material
remains quite blurry. It is consequently difficult to design
device with carefully-optimized band alignments and ohmic
contacts. A significant effort will have to be done to provide
to the community data relative to the electronic structure
of the infrared colloidal materials in a quite systematic way
(material, size, surface chemistry). First results in this direction
have been reported using combination of IR spectroscopy
and electrochemistry (Chen and Guyot-Sionnest, 2017) or
photoemission measurements (Martinez et al., 2017), but more
will be needed.

As critical is the investigation of carrier dynamics in these
narrow band gap materials especially for the understanding
of current performances limitations. Methods based on time-
resolved optical spectroscopy are difficult to transfer in
the IR due to an intrinsically low PL efficiency of IR
nanocrystals and due to less advanced optical setups in the
IR. Development of alternative methods will be required.
Again, some preliminary results in this direction have been
obtained using time resolved photoluminescence (Keuleyan et al.,
2014b), transient absorption (Melnychuk and Guyot-Sionnest,
2018), time resolved photoemission (Spencer et al., 2013;
Livache et al., 2017) and transient photocurrent measurements
(Gao et al., 2016; Livache et al., 2018; Martinez et al.,
2018). There are nevertheless not enough data to depict
the full range of dynamics in this material from Auger
recombination at short time scale to long-lived traps at long time
scale.

Thanks to the understanding of the electronic spectrum, the
objective will be the design of new photodiodes, accounting
for specificity of IR and colloidal material. While in the
SWIR, exploiting the concept developed for solar cell was
still a reasonable assumption (Jagtap et al., 2018a), this is no
longer the case for longer wavelengths. Alternatives to current
electron (mostly ZnO and TiO2) and hole transport layers
(MoO3) will have to be developed. This is even more true to
implement the concept of unipolar barrier, which role is to let
selectively one carrier flow, while preventing the other carrier
to circulate. This concept has been widely used for III-V and
II-VI semiconductor IR sensors (White, 1987; Savich et al.,
2011, 2013), but remains poorly used in the case or CQD based
devices. This might nevertheless be a time-consuming process
because the fragility of the IR CQDs will likely require the
development of specific carrier transport layer which doping and
band alignment will have to be finely tuned and experimentally
determined.

Device Performances
Since the main purpose of this road map is the design of
effective IR-sensing devices, it is certainly worth determining
which level of performances seems to be a reasonable goal to

Frontiers in Chemistry | www.frontiersin.org 6 November 2018 | Volume 6 | Article 575

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


Livache et al. Nanocrystal Based Infrared Photodetectors

achieve for colloidal-based IR detectors in each specified range
of wavelengths.

SWIR

For wavelengths up to 1.7µm, the key competitor is the InGaAs
technology which performance is again very unlikely to be
beaten. Thus, CQDs appear promising for (i) cost disruption
and (ii) extending the range of wavelengths toward the so-
called extended SWIR (2.5µm cut-off wavelength) (Jia et al.,
2018). InGaAs succeeded to achieve extremely low dark current
(<20 fA at 20◦C for a 15µm pixel). Because CQD based
devices reported so far are not reaching such low dark current
densities, operational scenarii with high photon flux seem more
appropriate. This typically relates to active imaging (Geyer et al.,
2013), flame detection (Iacovo et al., 2017) and biological tissues
imaging for which reasonably fast detection is necessary (sub-
ms is mandatory and µs is probably a more appropriate target)
and already reported (Lhuillier et al., 2013). Also note that
in the SWIR, room temperature operation or at least above
water freezing point has to be achieved to preserve the low-
cost character of the device. Because this range of wavelengths
is fairly easy to reach using PbS CQDs and because of the
relatively easy device characterization at such wavelengths, very
high performance devices (up to kA.W−1 for responsivity and
detectivity reaching 1013 Jones at 1.4µm) have been achieved
(Yakunin et al., 2014). Device demonstration also includes
imaging systems (Calvez et al., 2011; Klem et al., 2015).

MWIR

In this range, targeted applications are thermal imaging (Tang
et al., 2018) and gas sensing (Chen et al., 2017). Current
bulk-based imaging devices (typically based on InSb and
HgCdTe) have presently no road map for operating temperature
above 180◦C. This clearly sets a first objective. In the scope
of preserving low-cost, it likely suggests that only Peltier
cooling should actually be used, bringing the targeted operating
temperature around 250K. Recently reported reduced Auger
effect (Melnychuk and Guyot-Sionnest, 2018) in HgTe CQDs
compared to their bulk HgCdTe equivalent raises great hope to
achieve this goal. In terms of performances, detectivity in the few
109 Jones at room temperature and reaching 1010 Jones at 250K is
a clear objective which will bring CQD based technologies above
what can be achieved using thermal sensors. Huge progresses
in this direction have been reported this year. This includes
responsivity above 1A.W−1 (Tang et al., 2018), detectivity above
109 Jones at room temperature (Cryer and Halpert, 2018) and
NETD (noise equivalent temperature difference) down to 14 mK
(Tang et al., 2018). In the MWIR, the device complexity lags
far behind what has been achieved in the SWIR with just a
few photodiodes (Guyot-Sionnest and Roberts, 2015; Ackerman
et al., 2018) and only one report for focal plane array integration
(Buurma et al., 2016).

LWIR

When long wavelengths (8µm and more) start being involved,
the number of reported devices quickly drops (Keuleyan
et al., 2014a). It consequently becomes difficult to set some

objectives of performance. One key difficulty in this range of
wavelengths comes from the fact that it is unlikely that non-
cryogenic operating temperatures can be achieved. Thus, the
cost disruption brought by the CQDs is not as important as
in the MWIR. Since the operating temperature of conventional
IR camera in the 8–12µm range is around 90K, it is likely
that operating temperature for CQD based device around 150K
will be desirable, with a detectivity remaining above 1010 jones.
Preserving a fast response is also key aspect to compete with
bolometers. Regarding the THz range, there is currently no
available data.

Device Geometry and Emerging Strategies
Among current difficulties relative to colloidal materials, one key
limitation remains connected to the short carrier diffusion length
(50 to 100 nm typically) which is shorter than typical absorption
length (close to 10µm Lhuillier et al., 2012 for a band edge in
the MWIR), due to the low carrier mobility. In other words,
photogenerated carriers are only collected in the vicinity of the
electrodes, while the bulk of the film leads to photogenerated
charges that end up being trapped. In this sense, strategies to
enhance the light-matter coupling are necessary. The objective
of this strategy is to concentrate the incident electromagnetic
field on the thin optically absorbing layer of CQDs. Some early
results have been reported with the introduction of colloidal gold
nanorods (Chen et al., 2014) or of resonators (Yifat et al., 2017;
Tang et al., 2018). The development of such plasmonic resonance
has also been used to obtain polarized emission and imaging
system (Le-Van et al., 2016; Yifat et al., 2017).

Another interesting development that has been reported
relates to the design of multicolor detectors. This includes
visible and MWIR (Lhuillier et al., 2014b), MWIR/LWIR (Tang
et al., 2016) and MWIR/MWIR (Cryer and Halpert, 2018)
sensors. However it remains unclear if bicolor technology can be
compatible with low fabrication cost.

Finally, it is worth mentioning a strategy which has been
explored over the last 5 years to boost the device photoresponse
is the coupling of the nanocrystals with a 2D material. Graphene
is the first to have been explored. Gigantic responsivities (107

A.W−1) have been reported (Konstantatos et al., 2012; Sun et al.,
2012) but the concept was unsuccessful because the dark current
was even larger than in a conventional film of CQDs. The
concept was then revisited by replacing graphene by MoS2 to
introduce a gap and reduce the dark current. Simultaneously, the
absorption was pushed from telecom range to longer wavelengths
by replacing the PbS CQDs by HgTe nanocrystals (Huo et al.,
2017). This strategy keeps suffering from two main limitations,
which are the fast saturation of the optical response (responsivity
is only large under zero photon flux) and large memory effects
(i.e., long time response).

Focal Plane Array
Pixel Downsizing and Coupling to Read Out Circuit
When it comes to building a focal plane array, the pixel size
matters. Most of current devices reported in the literature are
based on a chip with several individual devices, each of them
being typically around 1 mm2 area. When such size is far too
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small in the case of solar cells where m2 are required, it is
also far too big for use in cameras, where the pixel should be
ideally just above the targeted wavelength to improve image
quality. Current IR technologies present pixel sizes in the 10 to
50µm range. These values are actually limited by technology and
more specifically by the indium bump hybridization to the read-
out circuit, which becomes very complex for size below 10µm.
There is, in this sense, a true opportunity for quantum dots
here (Malinowski et al., 2017). Because the active layer can be
directly deposited on a CMOS read-out circuit, demonstration
of pixel sizes below 10µm will bring a significant advantage to
CQDs. This nevertheless has still to be demonstrated and also
raises new questions such as the ability to design large scale
homogeneous films while preventing pixel cross-overs. In the
hypothesis where optical coupling between pixels will prevent the
use of a continuous film of CQD, the film will have to be etched
to effectively split the pixels (Lhuillier et al., 2016). In this case,
the material will have to sustain a lithography step (i. e., high
temperature exposure and exposition to solvent).

Stability and Encapsulation
Long term stability of CQD based device is a problem which has
been mostly swept under the rug. It is conveniently admitted that
stability of CQDs is higher than the one of organic materials,
however there is a clear lack of data regarding this question.
Probably absorption is a much more robust property than
photoluminescence, nonetheless lead chalcogenides get oxidized
and quickly get a PbO shell, whenmercury chalcogenides are also
air sensitive (Lhuillier et al., 2013; Jagtap et al., 2018a) even if the
exact mechanism remains unclear. Two paths can be followed
to address this question: either tuning the surface chemistry to
make the CQDs stable in air, or processing the material in air-
free conditions followed by the encapsulation of the CQD-based
device below a protective layer. Handling of CQDs in glove box
has become more or less the regular procedure in the field. Far
less work has been devoted to the question of encapsulation.
Certainly, concepts from the field of organic electronics and
CQD based solar cells (Tan et al., 2017) can be reused. This
include deposition of encapsulation polymers such as CYTOP,
ALD (atomic layer deposition) deposition of thick alumina layer
(Ihly et al., 2011) or nanoparticle shelling (Durmusoglu et al.,
2017). Nevertheless, it is critical to consider that current PbX
and HgXmaterials are synthetized at low temperature (<150 and
<100◦C, respectively) and that processing them at temperatures

higher than their growth temperature will undoubtedly lead to
a significant sintering and its associated dark current rise. As a
result, specific low temperature methods need to be developed.
Recently (Jagtap et al., 2018a) have reported the low temperature
deposition of a combination of water-proof (PMMA and PVDF)
and oxygen-proof (PVA) layers, leading to stability over at least
3 months. This is comparable to the stability obtained for solar
cell based on PbS CQDs (Chuang et al., 2014). Longer stability
investigation (at least up to 1 year) under realistic operational
environment will have to be done to confirm the potential of the
technology.

CONCLUSION

Thanks to 10 years of intensive research, IR CQDs have

undoubtedly reached a maturity level where they can be

considered as a possible alternative to historical semiconductors

for IR sensing. Main achievements include full tunability of the

absorption over the IR range, BLIP photodiode, demonstration

of CQD based focal plane array in both SWIR and MWIR range.

We have tentatively listed the main technological challenges that
still need to be addressed to fully transfer this technology to
industry.
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