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Abstract— A stereovision method is presented in this paper,
to compute reliable and quasi-dense disparity maps of road
scenes using in-vehicle cameras. It combines the advantages of the
"v-disparity" approach and a quasi-dense matching algorithm.
In this aim, road surface and vertical planes of the scene are
first extracted using the sparse "v-disparity" approach. The
knowledge of these global surfaces of the scene is then used
to guide a quasi-dense matching algorithm and to propagate
disparity information on horizontal edges. Both algorithms are
presented and compared. Then, our approach is presented and
examples of quasi-dense disparity maps are given. Finally, the
efficiency of the method is illustrated by the accurate positioning
of a bounding box around a vehicle in a bad contrasted video
sequence.

Keywords—ITS, stereovision, u-v disparity, quasi-dense
matching, bounding box

I. INTRODUCTION

Stereovision techniques aiming to analyse outdoor scenes

are numerous. Among them, some techniques are devoted to

in-vehicle obstacle detection [1]–[5]. Due to real-time con-

straints, most techniques rely on sparse matching techniques

to estimate depth maps of the scene. This type of techniques

poorly reconstruct the scene. Consequently, using a sparse

disparity map, a direct segmentation of the scene is hazardous.

To ensure a high rate of robustness, a solution is to use voting

techniques which have already shown good properties. That’s

why "v-disparity" approach [4] which enables to compute the

longitudinal road profile and to estimate the distance to objects

above the road surface has met a certain success and is now

widely used [6]–[8].

However, a generic and robust method based on stereovi-

sion, which provides an accurate lateral position of obstacles is

still missing. Indeed, using rectified images, sparse techniques

relying on horizontal gradients to match the stereo pairs can

not entirely reconstruct objects composed of both vertical

and horizontal gradients. Consequently, even using a robust

technique like a "u-disparity" approach, left and right sides of

obstacles are often disconnected leading to incomplete objects

segmentations.

A LIDAR is often used to fill this gap. Thus, combined

with a LIDAR which provides the lateral position of objects,

our system based on the "v-disparity" approach has proved

to be very efficient to detect near obstacles [9]. A collision

mitigation system has even been demonstrated with a great

success [10].

On the other hand, in the field of 3D reconstruction, some

techniques are devoted to the computation of dense disparity

maps [11]. However most of these techniques are very costly

to implement.

Lhuilier [12] developed a quasi-dense matching algorithm,

which can be considered as a in between method. Its principle

is first to compute a sparse disparity map and then to perform a

region growing in the disparity space to progressively densify

the disparity map.

In this paper, we propose a method which allows to compute

a quasi-dense and reliable disparity map, combining the "v-

disparity" semi-global approach and the quasi-dense matching

algorithm. In the following, both methods are successively

described. Then, the proposed approach is presented and is ap-

plied to the accurate estimate of the position of obstacles. The

techniques are illustrated by means of a bad contrasted road

sequence (foggy weather), because such weather conditions

are interesting to test the robustness of the different methods.

II. THE "V-DISPARITY" APPROACH

A. The Image of a Plane in the "v-disparity" Image

The stereovision algorithm uses the "v-disparity" transform,

in which the detection of straight lines is equivalent to the

detection of planes in the scene. In this aim, we represent the

v coordinate of a pixel towards the disparity ∆ (performing
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Fig. 1. Domain of validity of the study and coordinate systems used.
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Fig. 2. Overview of the "v-disparity" framework using a stereo pair under
foggy weather. (a) Left original image; (b) right original image; (c) rough
disparity map computed from images (a) and (b); (d) "v-disparity" image; (e)
extracted lines from the "v-disparity" image.

accumulation from the disparity map along scanning lines)

and detect straight lines and curves in this "v-disparity" image

(denoted by Iv∆
) [4].

This algorithm assumes the road scene is composed of set

of planes: obstacles are modelized as vertical planes, whereas

the road is supposed to be an horizontal plane (when it is

planar), or a set of oblique planes (when it is not planar), as

shown in Fig. 1.

According to the modeling of the stereo sensor given in

Fig. 1, the plane of equation Z = d, corresponding to a vertical

object, is projected along the straight line of Eq. (1) in Iv∆
:

∆ =
b

d
(v − v0) sin θ +

b

d
α cos θ (1)

The plane of equation Y = 0, corresponding to the road

surface, is projected along the straight line of Eq. (2) in Iv∆
:

∆ =
b

h
(v − v0) cos θ +

b

h
α sin θ (2)

The different parameters are as follows: (u, v) denotes the

position of a point in the image, (u0, v0) is the projection of

the optical center in the image, α is the ratio between the focal

length and the size of pixels, θ is the angle between the optical

axis of the cameras and the horizontal, h is the height of the

cameras above the ground and b is the distance between the

cameras (i.e. the stereoscopic base). Mathematical details can

be found in [4].

B. "V-disparity" Image Construction and 3D Surface Extrac-

tion

The algorithm performs a robust extraction of these planes

from which it deduces many useful information about the road

and the obstacles located on its surface. Fig. 2 illustrates the

outline of the process. From two stereo images (a) and (b), a

�✁ ✂ �✄✂
Fig. 3. (a) Improved disparity map (b) Results of obstacles areas detection.

disparity map I∆ (c) is computed (Sum of Square Differences

-SSD- criteria is used for this purpose along edges). The

disparity values are represented by a grey level. Then an

accumulative projection of this disparity map is performed to

build the "v-disparity" image Iv∆ (d). For the image line i, the

abscissa uM of a point M in Iv∆ corresponds to the disparity

∆M and its grey level iM to the number of points with the

same disparity ∆M on the line i : iM =
∑

P∈I∆
δvP ,iδ∆P,∆M

where δi,j denotes the Kronecker delta.

From this "v-disparity" image, a robust extraction of straight

lines is performed through a Hough transform. This extraction

of straight lines (e) is equivalent to the extraction of the planes

of interest taken into account in the modelization of the road

scene.

C. Disparity Map Improvement

In order to quickly compute the "v-disparity" image, a

sparse and rough disparity map has been built. This disparity

map may contain numerous false matches, which prevent us to

use it as a depth map of the environment. Thanks to the global

surfaces extracted from the "v-disparity" image, false matches

can be partially removed. In this aim, we check wether a pixel

of the disparity map belongs to any global surface extracted

using the same matching process. If it is the case, the same

disparity value is mapped to the pixel and leads to Fig. 3a.

Obstacles areas, that is to say objects above the road surface,

can be deduced using the same matching process. This leads

to Fig. 3b. Details of this process can be found in [13].

D. Lateral Position of Obstacles

In-vehicle stereovision approaches usually use a rectified

geometry, in order to minimize the computational cost. Indeed,

using such a configuration, matches are on same line of the

stereo pair. Hence, sparse techniques rely only on horizontal

gradients to match the stereo pairs. The disadvantage of this

sensor configuration is that disparity can not be computed on

horizontal edges. In this way, we can not entirely reconstruct

objects composed of both vertical and horizontal gradients,

like the backside of a vehicle for example.

To solve the problem, some solutions have been proposed

using symmetry [14]. However, such a method is not generic.

Labayrade [15] proposed to perform an accumulative projec-

tion of this disparity map along the horizontal axis, in order

to build a "u-disparity" image Iu∆. Unfortunately, even using
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Fig. 4. (a)(c) Results of "u-disparity" image Iu∆ computations using only
vertical edges; (b)(d)left and right sides of the vehicle are disconnected and
lead to incomplete bounding boxes.

a robust technique like "u-disparity", left and right sides of

obstacles are often disconnected leading to incomplete object

segmentations.

This problem is illustrated in Fig. 4. In this figure, we

present two images of a test video sequence and the corre-

sponding "u-disparity" images. The horizontal segments, which

correspond to the projection of the vehicle have some holes.

Hence, if we detect the different segments in order to position

a bounding box around the vehicle, this lead to incomplete

segmentations, which is problematic.

In the following, we are going to propose a solution based

on a quasi-dense matching algorithm to densify the disparity

map and solve this problem.

III. THE QUASI-DENSE MATCHING APPROACH

Lhuilier [12] developed a quasi-dense matching algorithm.

Its principle is first to compute a sparse disparity map and

then to perform a region growing in the disparity space to

progressively densify the disparity map.

A. Seed selection

The first step of the algorithm is the computation of a sparse

disparity map using the ZNCC correlation measure:

P
i

(

I(x + i)− Ī(x)
)(

I
′(x + ∆ + i)− Ī

′(x + ∆)
)rP

i

(

I(x + i)− Ī(x)
)2P

i

(

I ′(x + ∆ + i)− Ī ′(x + ∆)
)2

(3)

where Ī(x) and Ī ′ are the means of pixel intensities for

the window centered at x and ∆ is the considered shift. A

a

c

b B

A

C

Neighborhood of pixel a in I1 Neighborhood of pixel A in I2
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c

b
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Neighborhood of pixel a in I1 Neighborhood of pixel A in I2

Fig. 5. Definition of neighborhood N(a, A) of pixel match (a, A). It is a
set of matches included in the two 5 × 5-neighborhood N5(a) and N5(A)
of pixels a and A. Possible matches for b (resp. C) are in the 3 × 3 black
frame centered at B (resp. c).

cross correlation is then used to reduce the number of false

matchings.

B. Propagation

The idea consists in propagating the initial seeds in a way

similar to a region growing, guided not by a criterion of

homogeneity but by a score of correlation. All seed matches

are the starting point of concurrent propagations. At each stage,

a match (a,A) with the best ZNCC score is removed from the

current set of seed matches. Then new matches are searched

in the "match neighborhood" and are added to the current set

of seeds and to the set of accepted matches. The neighbors

of pixels a and A are taken to be all pixels within the 5 × 5
window centered at a and A (cf. Fig. 5). For each neighboring

pixel in the first image, the possible match candidates are

all pixels of a 3 × 3 window in the neighborhood of its

corresponding location in the second image. One thus incites

the gradient of displacements not to exceed a pixel.

Lhuillier also defines s(x) = max{|I(x + ∆) − I(x)|∆ ∈
N4(x)}, an estimate of the luminance roughness for the pixel

at x, which is used to stop propagation into insufficiently

textured areas a with s(a) < t and 0 ≤ I(a) ≤ 1. I(a) denotes

the normalized intensity value for the pixel at a of image I .

A typical value for t is 0.01.

C. Application to Road Scene Analysis

Compared to classical stereo images, typical road images

are textureless, especially when the road scene is bad con-

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 6. Comparison of roughness of (a) our road image under foggy weather;
(b) image used by Lhuillier; (c)(d) white pixels x where 0 < s(x) < 0.05;
(e)(f) white pixels x where 0 < s(x) < 0.01.



trasted like under foggy weather. To prove it, we compared

the roughness of two images. Fig. 6a is our bad contrasted

road image under foggy weather. Fig. 6b is a classical image

in computer vision and is used by Lhuillier [12] to illustrate his

algorithm. The areas, where pixels are low textured (0 < t <

0.05) and very low textured (0 < t < 0.01), are respectively

given in white in Figs. 6cd and Figs. 6ef. We can see in it

that the road surface is very low textured compared to the

classical image. Consequently, the propagation will be quickly

stopped on low textured areas and it will be difficult to recover

disparity information on the entire road surface.

We have applied the quasi-dense matching algorithm to our

bad contrasted stereo pair. The idea is first to compute a quasi-

dense disparity map and thereafter to compute the "v-disparity"

image, so as detect the road surface and the obstacles.

Thus, Fig. 7 gives different results of disparity map com-

putations using different values of t. The corresponding "v-

disparity" images are also given. We can state that if the

threshold t is too low, too much correlated matching errors

occur and prevent us to accurately detect the global surface of

the image using the "v-disparity" approach.

Indeed, in Fig. 7d, the straight lines corresponding to the

road shape and the vertical plane of the vehicle can be detected,

because correlated matching errors are not too numerous in

Fig. 7a. On the contrary, in Fig. 7e and Fig. 7f, the straight lines

corresponding to the road surface and the vertical segment are

too thick to be accurately detected. This is due to the fact that

the road is textureless. Consequently, ZNCC criteria is not

enough discriminant in order to ensure a good matching.

Finally, whereas the quasi-dense matching algorithm en-

ables to propagate disparity along horizontal edges, this ex-

periment shows that it is not adapted to compute a reliable

disparity map of a road scene.

IV. ROBUST AND QUASI-DENSE APPROACH

A. Problem Statement

On one hand, the "v-disparity" approach is quite robust,

thanks to the accumulation technique used. So far, the method,

which rely only on horizontal gradients to match the stereo

pairs, can not compute the disparity on the horizontal edges.

On the other hand, the quasi-dense matching algorithm allows

to propagate disparity information along both vertical and

horizontal edges. However, it is difficult to obtain a dense

and accurate disparity information on the road surface, be-

cause it is textureless (Fig. 6). The threshold t which stops

the propagation can be lowered. Unfortunately, this leads to

correlated errors. Thus, the road shape in the "v-disparity"

image is thicker, like the vertical objects. Road shape and

obstacles can not be accurately detected (cf. Fig. 7ef).

B. Computation of a Reliable and Quasi-Dense Disparity Map

To compute a better disparity map, we then propose to use

the advantages of both previously described methods. We use

the "v-disparity" approach to estimate the longitudinal profile

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 7. Results of the quasi-dense matching algorithm on our test images
for different values of t: (a) t = 0.05, (b) t = 0.02, (c) t = 0.01.
(d)(e)(f) corresponding "v-disparity" images. When the threshold t is lowered,
numerous correlated errors appear and straight lines in the "v-disparity" image
get thicker.

of the road and to detect the presence of obstacles. The quasi-

dense matching algorithm is used to propagate the disparity

information along the horizontal edges.

Thus, seed matches of the quasi-dense matching algorithm

are used to compute the "v-disparity" image, in order to extract

the road surface and the positions of the different vertical

planes of the scene. Then, we propagate the initial seeds like

Lhuillier does [12], except that for each match candidate we

check if it belongs to one of the planes of the "v-disparity"

image. If it is the case, the match candidate is added to the

current set of seeds and to the current set of accepted matches,

which is under construction. Otherwise, the match candidate

is removed from the current set of seeds.

Compared to the previous section, the propagation is done

after the computation of the "v-disparity" image. Because the

computation of this image rely on the matches of vertical

edges, its computation is robust as well.

In this way, we add a global constraint to the quasi-dense

matching algorithm. Thus, the number of correlated errors is

drastically reduced and the number of pixels belonging to a

global surface with known disparity is increased. Disparity

information can be propagated along the horizontal edges

without changing the estimated geometry of the scene.

C. Results

This method is illustrated in Fig. 8 for different values of

the threshold t. Reconstructed "v-disparity" images are given.

Contrary to Fig. 7, the number of matching errors is reduced

and dense disparity information is obtained on the road surface.

Reconstructed "v-disparity" images are good and do not differ

if the threshold t is lowered. However, as previously said,
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Fig. 8. Results of our method on our test images for different values of
t: (a) t = 0.05, (b) t = 0.02, (c) t = 0.01, (d) t = 0.001. (e)(f)(g)(h)
Corresponding "v-disparity" images.

disparity information in front of the vehicle is difficult to obtain

because the image is very low textured (cf. Fig. 6f). There

are remaining matching errors due to half occluded contours.

However, numerous methods are devoted to the detection of

such contours [16].

V. APPLICATION TO THE LATERAL POSITION OF

OBSTACLES

Once we have a quasi-dense disparity map, we can use it to

detect the lateral position of obstacles and compare the results

with those presented in section II-D.

A. Robust "u-disparity" Image Computation

Thanks to the proposed method, the disparity map is quasi-

dense, especially on the vertical objects, like on the vehicle of

our test image. We can now compute a quasi-dense and reliable

"u-disparity" image. A sample is given in Fig.9b. Compared

with Fig. 4, the obtained "u-disparity" image is much better,

because vertical and horizontal edges are taken into account

to compute it. Consequently, the lateral segmentation of the

object is easier.

B. Computation of a Bounding Box around Objects

To position an accurate bounding box around an object, we

need three parameters: the longitudinal position, the height and

the lateral position of this object. The longitudinal position of

S=0.01 Hautiere

(b)

(a)(c)

Fig. 9. Result of (a) "v-disparity" image (b) "u-disparity" image computations
using our modified quasi-dense matching algorithm. (c) This leads to the
computation of robust and precise bounding boxes around obstacles without
any arbitrary thresholds.

objects is given by the vertical plane in the "v-disparity" image.

The height is also computed thanks to the "v-disparity" image.

Details can be found in [15].

The lateral position is given by the "u-disparity" image.

Indeed, it is enough to detect the horizontal segment, which

is now quasi-dense, to ensure a good detection of the lateral

position of the vertical objects. Finally a good positioning of

the bounding boxes can be made, like in Fig. 9. Thus, using

this approach, the risk that the same object is split into different

bounding boxes is reduced.

C. Results

Our method has been tested using a bad contrasted video

sequence, where a vehicle is moving away. In Fig. 10, we give

some samples of this video sequence. Although the vehicle is

bad contrasted, the bounding box is correctly positioned, even

when the vehicle is quite far away.

We have also applied our technique to other types of scenes.

In Figs. 11ab, we present some results with a pedestrian and

a vehicle which illustrates the genericity of the approach. In

Figs. 11cd, we present some results with two cars on a paved

road, where classical disparity maps usually contain a lot of

false matches because of the periodic noisy texture of the road.

VI. DISCUSSION AND FUTURE WORK

The proposed approach enables to solve the problem of

disparity computation along horizontal edges, which is a

crucial problem for in-vehicle stereovision techniques. Hence,

it allows us to position some robust bounding boxes around

different types of road objects. There are three mainly remain-

ing problems to solve. Firstly, the choice of the threshold t

is currently arbitrary chosen. However, the computing time is

directly related to this value, which is a crucial point for such

a real-time application. Secondly, two close objects which be-

longs to the same "v-disparity" plane can be aggregated within

the same bounding box, because their respective segments in

the "u-disparity" image can be confused, in particular distant

obstacles. Thirdly, a strategy to mitigate the influence of half-

occluded contours in the computation of "u-disparity" images



Fig. 10. Examples of bounding boxes around a vehicle in foggy weather at
various distances. Although the vehicle is hardly visible and can be confused
with the sky, accurate bounding boxes are provided.

must be implemented. In the future, it is important to solve the

aforementioned problems. Then, the next step is a quantitative

assessment of the method compared with other state-of-the-art

schemes.

VII. CONCLUSION

In this paper, we present a stereovision based technique,

which enables to compute a quasi-dense and reliable disparity

map of road scenes. The method has the advantages of the "v-

disparity" approach and of a quasi-dense matching algorithm,

which allows us to propagate disparity information along

horizontal edges. The three different approaches are compared

and the robustness of our approach is demonstrated through

use of a bad contrasted video sequence under foggy weather.

Finally, this technique allows us to compute a quasi-dense "u-

disparity" image, which leads to a generic and robust method

to detect the lateral position of vertical objects. In the future,

we would like to use this disparity map in other applications,

such as contrast restoration.
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Fig. 11. Examples of bounding boxes around multiple objects: (a)(b) a car
and a pedestrian; (c)(d) two cars on a paved road, which is a typical periodic
noisy texture.




