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Abstract

Route optimization of hazardous materials transportation is one of the basic steps in ensur-

ing the safety of hazardous materials transportation. The optimization scheme may be a

security risk if road screening is not completed before the distribution route is optimized. For

road screening issues of hazardous materials transportation, a road screening algorithm of

hazardous materials transportation is built based on genetic algorithm and Levenberg–Mar-

quardt neural network (GA-LM-NN) by analyzing 15 attributes data of each road network

section. A multi-objective robust optimization model with adjustable robustness is con-

structed for the hazardous materials transportation problem of single distribution center to

minimize transportation risk and time. A multi-objective genetic algorithm is designed to

solve the problem according to the characteristics of the model. The algorithm uses an

improved strategy to complete the selection operation, applies partial matching cross shift

and single ortho swap methods to complete the crossover and mutation operation, and

employs an exclusive method to construct Pareto optimal solutions. Studies show that the

sets of hazardous materials transportation road can be found quickly through the proposed

road screening algorithm based on GA-LM-NN, whereas the distribution route Pareto solu-

tions with different levels of robustness can be found rapidly through the proposed multi-

objective robust optimization model and algorithm.

Introduction

Hazardous materials refer to products with flammable, poisonous, and corrosive properties

that can cause casualties, damage to properties, and environmental pollution, and require spe-

cial protection in the process of transportation, loading, unloading, and storage. In recent
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years, hazardous materials transportation accidents have occurred frequently, causing vehicle

damages, fatalities, and environment pollution. Distribution route optimization of hazardous

materials refers to the design of a safe and efficient distribution plan based on existing trans-

portation network according to the characteristics of hazardous materials and transportation

requirements. The result of this study can provide a direct reference for relevant decision-mak-

ing departments. Preventing hazardous materials transportation accidents is crucial. Thus,

research on hazardous materials distribution route optimization has great significance.

Many scholars have investigated hazardous materials transportation issues. Zografos and

Davis proposed a multiple criteria shortest path problem and used an optimized target pro-

gram to obtain the solution [1]. Karkazis and Boffey established a route optimization model of

hazardous materials transportation with the aim of minimizing population risk and cost, and

used branch and bound algorithm to perform numerical experiments [2]. Helander and Mela-

chrinoudis combined the route problem with the expected number of hazardous materials

transportation fatalities, and realized route optimization design of hazardous materials trans-

portation [3]. Akgun et al. identified that studies on route choice problem of hazardous materi-

als transportation had an important significance, and proposed a method to generate

candidate route sets [4]. Kara and Verter designed a double goal and double deck program-

ming model to obtain the least number of hazards and the shortest transportation route [5].

Zografos and Androutsopoulos defined the hazardous materials transportation problem as a

double-objective route problem, the goal of which is to minimize the risk and cost, and pro-

posed a new heuristic algorithm [6]. Meng et al. established a multi-objective route optimiza-

tion model of hazardous materials with time constraints, and used dynamic programming

method to solve the problem based on the case study [7]. Liu et al. built a fuzzy comprehensive

evaluation model using multilevel fuzzy comprehensive evaluation method to optimize the

transportation route [8]. Akgun et al. established a route optimization model to minimize the

risk and cost, considered the effect of road attributes on the risk, and performed relative exper-

iments [9]. Erhan Erkut and Osman ALP built a hazardous materials transportation model in

which three factors are considered, namely, accident rate, population exposure number, and

running time, and proposed quasi-polynomial dynamic programming algorithm to solve the

model [10]. Dadkar et al. realized that the diversity of transport routes can provide the oppor-

tunity for the driver to switch routes to avoid the same population at risk, established route

optimization model, and applied heuristic algorithm to solve the model [11]. Erkuta and

Gzara proposed a model similar with [4] that completed the transport network decision of sin-

gle origin destination point by minimizing transportation risk and transportation costs [12].

Shen studied the multi-objective route optimization problem of hazardous materials through

analyzing actual accident cases [13]. Renee and Mary established a new transportation risk

analysis model and Bayesian network decision model based on the existing hazardous materi-

als transportation data, which have a certain auxiliary function for transportation network

optimization [14]. Verma built a double-objective optimization model with the aim of mini-

mizing the risk and cost, and implemented cost boundary algorithm to solve the problem [15].

Jassbi et al. investigated the multi-objective optimization framework of hazardous materials

transportation, which includes the shortest mileage, the least number of residents, the mini-

mum social risk, and the minimum accident probability [16]. Vasiliki Kazantzi et al. estab-

lished a transportation route optimization model of hazardous materials with transportation

risk and cost considered, and applied the Monte Carlo method in simulation. The results of

the study have a specific reference value for the optimization design problem of transportation

network with single origin destination point [17]. Xie and Travis Waller proposed advanced

labeling algorithm to solve the double-objective transportation route optimization model with

single origin destination point [18]. Das et al. examined the transportation route problem of
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transportation network with limited capacity, and found non-dominated solutions from the

multi-objective algorithm for multiple starting and end points transportation network [19–

20]. Ma et al. analyzed the transportation route choice problem under certain and uncertain

environments, and proposed the multi-objective route planning model of certain environ-

ment, multi-objective route chance constrained model, and multi-objective route opportuni-

ties dependent model of uncertain environment [21–23]. Pradhananga et al. built a double-

objective transportation route optimization model with time window where minimum trans-

portation time and transportation risk are considered as the optimization objective, and

designed a heuristic algorithm of searching Pareto optimal solution [24].

In view of the abovementioned studies, some interesting results are obtained in the trans-

portation network optimization of hazardous materials. However, three problems are found as

follows:

(1) The abovementioned research results have a certain degree of adaptability for transporta-

tion route optimization of single origin destination point, but do not have strong adaptabil-

ity for multiple origin destination points.

(2) Not all road sections are suitable for hazardous materials transportation. Hence, road

screening is necessary to remove road sections unsuitable for hazardous materials transpor-

tation before the distribution route optimization. Otherwise, the obtained optimization

scheme may cause critical security risk. The road screening route choice algorithm should

be built because the roads are not determined by road situation or decision-maker experi-

ence. The algorithm can provide a security based network for route optimization and low

complexity of solving the model.

(3) The transportation risk value of each road section should be determined before distribution

route optimization of hazardous materials. However, the value is uncertain because of the

limitations of the statistical data method and time-variant characteristics of transportation

risk. When the risk is assumed for a certain or a random number, which is considered as

the initial condition. Models are then built by using traditional optimization methods or

stochastic chance-constrained programming method. The effect of uncertain data on the

quality and feasibility of the model is not considered in these methods. Thus, the obtained

optimization scheme poses significant risk in practical applications.

Ben and Nemirovski indicated that small uncertain input data may incur considerable costs

in the practical application of traditional optimal solution [25–26]. For hazardous materials

transportation network, the losses are the money and fatalities. The robust optimization model

and robust optimal solution are expected to solve this problem. The robust optimization

method is a powerful tool for solving the uncertain optimization problem, which describes

uncertainty by the set. Obtained robust solutions are feasible for any elements of the set, and

have good adaptability to uncertainty. Therefore, analyzing the uncertainty of hazardous mate-

rials transportation risk, introducing the robust optimization theory to establish the robust

optimization model, designing a protective solving method of uncertain data, and obtaining

robust optimization solutions of distribution route by calculation are necessary. The adaptabil-

ity of distribution plan for uncertainty can be improved to ensure that the optimized transpor-

tation network can effectively protect the safety of lives and property.

The distribution route optimization problem of hazardous materials is a typical multi-

objective optimization problem. Designing suitable multi-objective algorithms is important.

Niche Pareto genetic algorithm (GA) [27], non-dominated sorting GA [28], and strong Pareto

evolutionary algorithm [29], are representative algorithms. These algorithms have improved

solving efficiency for special problems. However, these algorithms cannot be applied directly
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for a specific problem. Hence, this paper designs a new multi-objective GA based on route

optimization characteristics of hazardous materials transportation.

The rest of this paper is organized as follows: Section 2 studies the road screening algorithm

of hazardous materials alternative route selection; Section 3 builds a transportation route

multi-objective robust optimization model of hazardous materials; Section 4 designs a new

multi-objective GA; Section 5 presents a case study; Section 6 provides the conclusion.

Study of hazardousmaterials transportation road screening

The necessity analysis of road screening and the screening method
summary

The obtained optimization scheme may contain road sections unsuitable for hazardous mate-

rials transportation if transportation route optimization was performed before road screening.

Road screening by using scientific methods and removing unsuitable road sections for hazard-

ous materials transportation can guarantee the feasibility of transportation route optimization

and vehicle scheduling optimization results, and reduce the difficulty of providing solutions to

the problem (because of fewer road sections in the initial transport network). Therefore, study-

ing the road screening problem of hazardous materials is necessary.

In this paper, a genetic Levenberg–Marquardt neural network(NN) that combines the advan-

tages of genetic algorithm(GA) with Levenberg–Marquardt (LM) method, and is based on the

analysis of various computing methods is built. First, the weights and threshold of the neural net-

work are initialized by GA. Then, the neural network is trained and tested using the LMmethod.

Finally, transportation network road screening is performed using the tested GA-LM-NNmodel

to accelerate the convergence rate, improve prediction accuracy, and complete the road screening.

Road screening index system of hazardous materials transportation

According to the transportation characteristics of hazardous materials and statistical data on

traffic accidents, the index set of transportation route screening system is determined as C =

{c1,c2,. . .,c15} decision objective D = {d1,d2,d3}, where c1 is the road width of unilateral motor

vehicle; c2 is the number of small radius horizontal and vertical curves (Note: horizontal curve

radius less than 100 m and vertical curve radius less than 500 m are called small radius); c3 is

the minimum horizontal curve radius of road, the unit of which is m; c4 is the minimum verti-

cal curve radius of road, the unit of which is m; c5 is the length of longitudinal slope more than

4%, the unit of which is m; c6 is the maximum longitudinal slope gradient; c7 is the width of

central strip, the unit of which is m (Note: if there is a fence separating, c7 = 0.2 m; if no fence

or green belt separating exists, c7 = 0; if a green belt separating exists, c7 is the actual width); c8
is the designed speed, the unit of which is km/h; c9 is the quality of pavement (the quality of

pavement is divided in three kinds: good, medium, and general, where the corresponding val-

ues of c9 are 1, 2, and 3 successively; if the pavement is unqualified, it can be directly set to be

excluded from the driving section); c10 is the clear degree of traffic signs and markings in the

section (the degrees of traffic signs are divided in three: good, medium, and general, where the

corresponding values of c10 are 1, 2, and 3 successively; if some sections do not have traffic

signs and markings, it can be set to be excluded from the driving section); c11 is the number of

limit value in the alignment index (highway and urban road design specifications require that

five linear indexes, including the minimum half plane curve, the minimum length of plane

curve, the minimum radius of vertical curve, vertical curve length, and the maximum longitu-

dinal slope with limitation, can be lower than the general limit value. Thus, the values still con-

formed to the standards, but accident risks still exist); c12 is the number of intersection and
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entrance of the interference section; c13 is the width of the emergency parking area, the unit of

which is m; c14 is the road traffic control environment (the road traffic control environment is

divided in three: good, medium, and general, where the corresponding values of c14 are 1, 2,

and 3 successively); c15 is the section average saturation; di refers to the status of road safety,

which is divided into three levels: good safety, general safety, and bad safety, by using (1, 0, 0),

(0, 1, 0), and (0, 0, 1) to measure (state of traffic safety can be determined according to the his-

torical data of traffic accidents in each section)[30].

A neural network model of hazardous materials screening system

According to the above established prohibited section screening system, 15 input parameters

and 3 output parameters are presented in the system. In this paper, we used a three-layer neu-

ral network and the specific structure of the neural network is 31–3–15 based on empirical for-

mula. The neural network diagram is shown in Fig 1.

Date dimensionless processing

The dimension of decision index in transportation road screening system is different. Three

types of index, including benefit, cost, and interval, are used. Dimensionless processing of

these data is needed before inputting the neural network.

Suppose the matrix composed of the collected data is X = (xij)m×n, i = 1,2,. . .,m, j = 1,2,. . .,n,

where xij is the actual value of attribute j in data set i,m is the number of sets, n is the number

of condition attributes. Supposemax
1�i�m

xij ¼ aj, where aj is the maximum value of attribute j;

max
1�i�m

xij ¼ bj, bj is the minimum value of attribute j. The situations of the benefit, cost, and

interval types are stated as follow.

Situation 1: for the benefit type attribute index (the larger the index value, the better), the

conversion formula is as follows:

yij ¼
xij � bj
aj � bj

ð1Þ

Situation 2: for the cost attribute index (the smaller the index value, the better), the conver-

sion formula is as follows:

yij ¼
aj � xij
aj � bj

ð2Þ

Fig 1. Road screening LM neural network model structure of hazardous materials transportation.

https://doi.org/10.1371/journal.pone.0198931.g001
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Situation 3: for the interval type attribute index (index value falling into a certain range is

the best condition), the conversion formula is as follows:

yij ¼

1�
q1 � xij

maxðq1 � bj; aj � q2Þ
; xij < q1

1�
xij � q2

maxðq1 � bj; aj � q2Þ
; xij > q2

1; q1 � xij � q2

ð3Þ

8

>

>

>

>

>

<

>

>

>

>

>

:

Where [q1, q2] is the stable interval of the attribute index.

In the sections screening system of hazardous materials, benefit indexes are c1, c3, c4, c7, and

c13, the value of which is processed by dimensionless formula 1; cost indexes are c2, c5, c6, c9, c10,
c11, c12, and c14, the value of which is processed by dimensionless formula 2; and interval

indexes are c8 and c15, the value of which is processed by dimensionless formula 3.

Screening system optimization for hazardous materials transportation
based on genetic algorithm

The screening system of the prohibited section for hazardous materials uses GA to optimize

the initial weight and threshold value of the neural network. Thus, the optimized neural net-

work model is better than the traditional neural network to perform road screening.

Population initialization. Each individual is a binary string that includes connection

weights input and hidden layers, threshold of hidden layer, connection weights hidden and

output layers, and threshold of output layer by using binary encoding. All weights and thresh-

olds coding are connected as individual coding because each weight or threshold is coded by

M-bit binary code.

Fitness function. When the neural network model is used to predict the section, the

norm of the sample forecasting value and expected value error matrices are outputted as the

objective function to make the residuals of the prediction value and expected value as small as

possible. Fitness assignment function is used to sort fitness value.

Selection operator. Selection operation is used to simulate the biological phenomenon of

selecting the normal optimization. The selection operator of the GA uses stochastic universal

sampling (SUS). SUS provides extensions of zero bias and minimal individual. Set npointer as

the number of selected individuals at the same interval distance. The distance of selecting the

pointer is 1/npointer, and the position of the first pointer is determined by the uniform ran-

dom number of [0, 1/npointer].

Crossover operator. Crossover operation simulates the reproductive phenomenon in the

process of biological evolution through the intersection of two chromosomes to produce a new

excellent variety. The crossover operator of the genetic algorithm adopts the single-point

crossover operator.

Mutation operator. Mutation operation simulates genetic mutations caused by natural

factors in the biological genetic environment. Mutation genes are produced by a certain proba-

bility, and the genes of mutation are selected by using randommethod. In the system with

binary-encoded chromosome, a gene of a chromosome is changed randomly from 1 to 0, or

from 0 to 1. The diversity of population in genetic types can be ensured by using mutation

operation to search in the space as large as possible and avoid being trapped in a local solution.

Thus, a high quality of the optimal solution can be achieved.

Road screening and route optimization for hazmat transportation
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Neural network training for screening system of hazardous materials
transportation based on LM algorithm

LM algorithm is the combination of the gradient descent and Gauss–Newton methods, which

use the approximate two-order derivative information. LM algorithm does not require exces-

sive adjustment parameters, and its running speed is faster than the gradient descent method.

When the LM algorithm is used to train the neural network, the weight adjustment formula is

shown as follows:

DW ¼ ðJTJ þ mIÞ
�1
JTE ð4Þ

where ΔW is the weight correction; E is the error; J is the Jacobian matrix of the error to weight

differential; μ is a scalar identifying the learning method, which is Newton method or gradient

method[31]. The research shows that the LMmethod can effectively solve the limitations of

the traditional back-propagation neural network (BPNN) and shorten the training time.

Road screening procedures for the prohibited section of hazardous
materials based on GA-LM-NN

Step 1: determine the screening index system for prohibited section of hazardous materials.

Step 2: collect historical data and dimensionless processing of the input data.

Step 3: determine the structure of neural network.

Step 4: optimize the initial weights and thresholds of the neural network for prohibited section

screening system by GA.

Step 5: train and test the weights and thresholds of the neural network by using the LM

method. If the test is not qualified, return to step 3; otherwise, proceed to step 6.

Step 6: road screening of prohibited section in the transportation network based on trained

GA-LM-NN model.

Step 7: identify the prohibited section set and alternative transportation sections set of hazard-

ous materials.

The flow chart of the algorithm is shown in Fig 2.

Establishing the multi-objective optimization model and algorithm, and compiling the cor-

responding calculation program to determine the specific transportation route are necessary

after obtaining the alternative transportation sections of hazardous materials.

Multi-objective robust model of hazardousmaterials transportation
vehicle routing

Problem description

The distribution route optimization of hazardous materials implies the existence of a hazard-

ous materials distribution center and multiple customers that require multiple vehicles distri-

bution coordination to complete all distribution tasks. All vehicles are required to start from

the distribution center. Each vehicle can serve multiple customers, and each customer needs

one vehicle to be serviced. Each vehicle must return to the distribution center after completing

the distribution task. Data information uncertainty in route optimization of hazardous materi-

als transportation refers to the uncertainty of transportation time and transportation risk

Road screening and route optimization for hazmat transportation
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because decision-makers consider several influencing factors where the errors are caused by

prediction methods and measurement tools.

Fig 2. Screening process of prohibited section of hazardous materials based on GA-LM-NN.

https://doi.org/10.1371/journal.pone.0198931.g002
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The issue of hazardous materials transportation is more complex and requires higher safety

requirements compared with general goods transportation. Thus, setting the minimum total

risk in transportation of hazardous materials is necessary. Reducing transportation cost and

resources consumption are essential in hazardous materials transportation. However, the

length of transportation time is related directly to transportation cost. Long transportation

time will increase the risk of hazardous materials transportation, thus setting a short transpor-

tation time is necessary. Therefore, for the hazardous materials vehicle routing problem, this

paper can find several scientific routing scheme through the optimization of transportation

risk and transport time to deliver hazardous materials safely and quickly to the customer

demand point.

Model building

Model assumption. Assuming that the supply of hazardous materials distribution centers

is adequate, vehicle loading capacity is provided and the demand of each customer is specified,

multiple vehicles of the distribution center can service the customer, the transportation risk

and transportation time is identified among the customer demand points, and the customer

demand point and distribution center is recognized but it is an uncertain number as interval

number.

Symbol definition. The definition of the set is shown in Table 1.

The definition of parameters is shown in Table 2.

Multi-objective robust optimization model of hazardous materials
distribution route

min Z1 ¼
X

i2S

X

j2S

X

k2V

rijxijk

þ max
fCr
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[fmrgjCr
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i
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X
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X
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ð5Þ

min Z2 ¼
X

i2S

X

j2S

X

k2V

tijxijk

þ max
fCt

i
[fmtgjCt

i
�Ji;jC

t
i
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i
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C
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X

j2Ct
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_
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X
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X

k2V

X

mt2Jt
i
C
t
i

ðGt
i � bGt

icÞt
_

imtximtkg
ð6Þ

Table 1. Set definition.

Set Definition

S1 Set of customer demand point, where S1 = {i|i = 1, 2,. . .,n}
shows that the number of customer demand points is n and the sequence number of nodes set is 1, 2,. . .,n

S All nodes set in the transportation network, where S = S0
S

S1

V Available transportation vehicle set in the hazardous materials distribution center, where V = {k|k = 1, 2,. . .,K}

E Road section set among nodes

qi Demand of customer demand point i

Jri Set of columns where all uncertain data ~r ij belonging to the ith row of the variable risk matrix, where jJri j � n

c
r
i Set of column subscript j of uncertain data ~r ij of line i in the variable risk matrix ~r ij

J ti Set of columns where all uncertain data ~t ij belonging to the ith row of the variable time matrix, where jJ ti j � n

c
t

i Set of column subscript j of uncertain data ~r ij of line i in variable time matrix ~t ij

https://doi.org/10.1371/journal.pone.0198931.t001
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s.t.

X

i2S

giyki � L; 8k 2 V ð7Þ

X

k2V

yki ¼ 1; 8i 2 Si ð8Þ

X

i2S

xijk ¼ ykj; 8j 2 S;8k 2 V ð9Þ

X

j2S

xijk ¼ yki; 8i 2 S;8k 2 V ð10Þ

X ¼ ðxijkÞ 2 S ð11Þ

S ¼ fðxijkÞjui � uj þ nxijk � n� 1; 1 � i 6¼ j � ng ð12Þ

max
ði;jÞ2E

frijxijkg � r; 8k 2 V ð13Þ

max
ði;jÞ2E

f
X

i2S

X

j2S

rijxijk �
X

i2S1

ri0xi0kg � R;8k 2 V ð14Þ

xijk ¼ f0; 1g; 8i 2 S;8j 2 S;8k 2 V ð15Þ

yki ¼ f0; 1g; 8i 2 S;8j 2 S;8k 2 V ð16Þ

where the objective function (5) expresses the minimization of hazardous materials trans-

portation risks. The objective function (6) expresses the minimization of hazardous materials

Table 2. The parameter definition.

Parameter Definition

L Maximum load of transport vehicles

~r~ij Variable transport risk from customer demand points i and j, where ~r ij 2 ½rij; rij þ r̂ ij�ðr̂ ij � 0Þ

rij Transportation risk nominal value from customer demand points i and j

r̂ ij Deviation of the variable transport risk to its nominal value from customer demand points i and j,
where r̂ ij � 0

tij Travel time nominal value from customer demand points i and j

t̂ ij Deviation of variable travel time to its nominal value from customer demand points i and j, where

t̂ ij � 0

~t ij Variable transport risk from customer demand points i and j, where ~t ij 2 ½tij; tij þ t̂ ij�ð̂t ij � 0Þ

G
r
i Parameter Gr

i 2 ½0; jJri j� to adjust robust risk of robust discrete optimization method and control the
risk degree of conservatism, where decimal is permitted

bGr
i c Maximum integer less than G

r
i

G
t
i Parameter Gt

i 2 ½0; jJ ti j� to adjust robust time of robust discrete optimization method and control the
time degree of conservatism, where decimal is permitted

bGt
ic The maximum integer less than G

t
i

https://doi.org/10.1371/journal.pone.0198931.t002
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vehicle travel time. Constraint (7) expresses that the total tasks of vehicle k is not more than

vehicle capacity. Constraint (8) expresses that task i is completed by one vehicle. Constraint

(9) expresses the relationship of two variables. Constraints (11) and (12) are the branch elimi-

nation constraints, and

ui ¼
t Demand point i served by the hazardous materials transport vehicles with t step

0 otherwise

(

,

uj ¼
t Demand point jserved by the hazardous materials transport vehicles witht step

0 otherwise

(

Constraint (13) expresses that the transportation risk of each section must be less than or equal

to threshold r set by decision makers. Constraint (14) expresses that the transportation risk of

each route must be less than or equal to threshold R set by decision makers, whereas Con-

straints (15) and (16) express the decision variables constraint.

Each objective function of the above multi-objective robust model corresponds to parame-

ter Γ. The purpose is to control the degree of conservatism of the solution. For example,

G
r
icontrols the risk conservative degree and reflects the decision maker’s risk preferences.

When G
r
i ¼ 0, the max part objective function is equal to 0, and the model is the most sensitive

to uncertain information, that is, when the weight of a road section changes in the transporta-

tion network, the optimal solution of the model is expected to change; with Gr
i increasing grad-

ually, sensitivity of the model to uncertain information is reduced and the obtained solution is

robust[32].

In this part, the adjacency matrix of uncertain risk of transportation and time among the

nodes is changed into one-dimensional matrix, specificallym = (i−1)n+J(1�i�n, 0�j�n),

decision variables xij = xm, uncertain transportation risk ~r ij ¼ ~rm, uncertain transportation

time ~t ij ¼ ~tm, and other corresponding basic data are changed in the form of subscriptm. Cer-

tain uncertain parameters and set of parameters are changed through one-dimensional trans-

formation. Theoretically, the corresponding transportation time also changes if the

transportation risk between the two nodes changes. The robustness control parameters of

transportation time and risk are controlled by using a control parameter for easier handling,

that is, their values and change are consistent. Robustness control parameter Γ is in the interval

[0, n2] after change because of 0�m�n2, which is defined by one integer. In general, the trans-

portation risk and transport time nominal values between the two nodes decrease withm

increasing and whenm = (i−1)n+i(1�i�n), r̂m ¼ 0 and t̂m ¼ 0. Objective functions (5) and

(6) of the robust model contain “max” extreme value problem, which are not beneficial for

solving intuitively, applying the equivalent transformation of the expression containing max is

necessary. Set feasible solution set Xvrp to satisfy all constraints, and robust discrete optimiza-

tion criterion of the literature [33] will be used to change the multi-objective robust optimiza-

tion model of hazardous materials distribution route in solving the following nominal

problem.

Objective function is as follows:

RðrÞ ¼ Ĝr̂ l þminð
X

n2

m¼1

rmxm
þ
X

l

m¼1

ðr̂m � r̂ lÞxmÞ ð17Þ

TðtÞ ¼ Ĝ t̂ l þminð
X

n2

m¼1

tmxm
þ
X

l

m¼1

ð̂tm � t̂ lÞxm
Þ ð18Þ
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Constraint condition is as follows:

x 2 Xvrp ð19Þ

Then, the optimal objective function value can be obtained as R� ¼ minl¼1;���n2þ1 RðlÞ and

T� ¼ minl¼1;���n2þ1 TðlÞ.

Improvedmulti-objective GA

Multiple objectives of multi-objective optimization may be in conflict with each other, which

is different from single-objective optimization. The improvement of a sub-goal will lead to a

decrease in another sub-target, that is, multiple sub-goals achieving optimum are impossible.

Therefore, multi-objective optimization obtains a non-inferior solution set, the elements of

which are called Pareto optimal or non-inferior optimal solutions. The Pareto optimal solution

can also be interpreted as no solution exists better than at least one of the goals and not worse

than other goals. The elements of the Pareto optimal solution set are not comparable to each

other in terms of all objectives. Using the obtained Pareto set, decision makers selected one or

many solutions from the Pareto optimal solutions as the optimal solution of multi-objective

optimization problem according to other information or personal preference. Therefore, the

main task of solving multi-objective optimization problem is to obtain widely distributed

Pareto optimal solutions. In this paper, a multi-objective GA is designed to solve this model

according to the multi-objective robust optimization model characteristics. The algorithm

uses an improved selection strategy to complete the operation, applies partial matching cross

transposition and single ortho swap methods to complete the operation of crossover and

mutation, and employs the selected method to construct the Pareto optimal solution set.

The flow chart of the algorithm is shown in Fig 3.

Chromosome encoding and decoding

In this section, natural number coding method is used. For example, the network containing

one hazardous materials distribution center with number 0 and nine customers point, the ini-

tial population is generated by using the random generating method where the sequence 0 9 7

5 1 8 4 2 6 3 is one chromosome. This encoding method can ensure that each customer

demand point is visited only one time. The model requires multiple vehicles to complete distri-

bution services, and hence, the obtained chromosomes by this encoding must be decoded.

Greedy strategy is used to decode the chromosome, and the specific method is as follows: cus-

tomer demand points are inserted in the route according to the sequence of genes in the chro-

mosome if it does not violate the load constraints. If load constraints are violated, another

vehicle is required to service the customer. For example, the demands of nine customers: 2, 3,

3, 2, 2, 3, 4, 4, and 5 tons, and the maximum vehicle load is 8 tons, thus the decoding of chro-

mosome is as follows:

Route of vehicle 1: 0!9!7!5!0;

Route of vehicle 2: 0!1!8!4!0;

Route of vehicle 3: 0!2!6!0;

Route of vehicle 4: 0!3!0.

Improved elite selection operation

Step 1: Individual symbol domain, non-dominated set paretos, structure set paretos1, non-bad

target set nds1, nds2 of population are initialized.
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Step 2: Sorting population and different individuals of the population are replicated to con-

struct set paretos1. The current non-dominated individuals obtained by exclusion method

are inserted into non-dominated set paretos. The individual paretos and paretos0 (Pareto

pool, storing all non dominated individuals) are placed in pareto pool, thereby ensuring

that individuals of the Pareto pool are non-dominated individuals.

Step 3: Goal number i is generated randomly. Roulette selection is conducted based on objec-

tive function i for the entire population. Selected individuals are labeled in the correspond-

ing marker domain flag[i], and the individuals copied to a non-dominated objective set

Fig 3. Flow diagram of the improved multi-objective GA.

https://doi.org/10.1371/journal.pone.0198931.g003
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ndsl. When comparing the individuals based on the elite retention rules, if an individual is

the elite, the elite of the elite set aims is replaced as the individual.

Step 4: Goal number j is generated Randomly. Roulette selection is conducted based on objec-

tive function j for the entire population. Select individuals are labeled in the corresponding

marker domain flag[j]. If a label is present in the marker domain for an individual, the indi-

vidual will be copied to a non-dominated objective set ndsl. If two labels are present in the

marker domain for an individual, the individual will be copied to the non-dominated objec-

tive set nds2. When comparing individuals under based on the elite retention rules, if an

individual is the elite, the elite of elite set aims is replaced as the individual.

Step 5: The two individuals in the elite set aims to the next generation is copied.

Step 6: Non-inferior individuals are chosen. If N>|aims|+|paretod0|+|nds2|+|nds1|, all indi-

viduals of paretos0, nds2 and nds1 must be copied to the next generation, and generating

randomly N−|aims|−|paretod0|−|nds2|−|nds1| individuals placed in the next generation,

then exit is conducted. If N = |aims|+|paretod0|+|nds2|+|nds1|, all individuals of paretos0,

nds2 and nds1 need to be copied to the next generation, then exit is conducted. If N>|aims|

+|paretod0|+|nds2|, all individuals of paretos0 and nds2 are needed to be copied to next

generation, and generating randomly N−|aims|−|paretod0|−|nds2|, individuals in nds1

placed in next generation, then exit is conducted. If N = |aims|+|paretod0|+|nds2|, all indi-

viduals of paretos0 and nds2 are needed to be copied to the next generation, then exit is

conducted. If N>|aims|+|paretod0|, all individuals of paretos0 must be copied to next gen-

eration, and generating randomly N−|aims|−|paretod0| individuals in nds2 placed in the

next generation, then exit is conducted. If N = |aims|+|paretod0|, all individuals of paretos0

are needed to be copied to the next generation, then exit is conducted. Otherwise, generat-

ing randomly N−|aims| individuals in paretos0 placed in the next generation. In the pro-

cess, N, |aims|, |paretod0|, |nds1| and |nds2| express the size of the population, the size of

elite set, the number of non-dominated individuals in the pareto pool, the individual num-

ber of non-inferior target set nds1 and the individual number of non-inferior target set

nds2, respectively.

Crossover operation

The partial match crossover shift method is used to complete the crossover operation. Specific

steps as follows:

Step 1: Amating area is chosen randomly in two selected chromosomes, such as

A = 0 9 7 I 5 1 8 4 I 6 3,

B = 0 6 5 I 9 2 1 7 8 I 4 3.

Step 2: Mating area of chromosome B is inserted into chromosome A, and mating area of chro-

mosome A is inserted into chromosome B. For example, the two chromosomes in step 1 are

changed into such as

A' = 0 9 2 1 7 8 I 9 7 5 1 8 4 2 6 3,

B' = 0 5 1 8 4 2 I 6 5 9 2 1 7 8 4 3 after step 2.

Step 3: Customer demand points, which are the same as that of mating area in the self-mating

region of chromosome A' and B', are deleted and chromosomes obtained are A" = 0 9 2 1 7

8 5 4 6 3, B" = 0 5 1 8 4 2 6 9 7 3.
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Mutation operation

The single ortho swap method is used to complete the mutation operation: two different gene

positions are selected randomly in parental chromosomes, and the position of the swap start-

ing and ending are determined based on the sequence of two genes. If the number of gene

between the starting and ending positions is even, all odd numbered genes in this range and its

right genetic exchange are used. If the number is odd, the last odd numbered gene is not

changed, and the remaining odd numbered gene and its right genetic exchange are used.

Constructing pareto optimal set

The exclusive method is used to construct the non-dominated set as follows:

Step 1: The non-dominated set paretos and constructive set paretos1 are initialized.

Step 2: All different individuals of population pops are copied to paretos1 in order.

Step 3: The different individuals of constructive set paretos1 X are compared with other indi-

viduals Y after them. If X dominates Y, then Y is removed from constructive set paretos1; if

Y dominates X, X is removed, then exit is conducted, and the next comparison is begun.

After comparison, X is non-dominated and X is copied to non-dominated set paretos if X is

not dominated by any other individual.

Step 4: The value of X is assigned by that of the individual behind it in constructive set

paretos1.

Step 5: Steps 3 and 4 are repeated, until individual X is the last one of constructive set paretos1.

Step 6: The last individual of paretos1 is copied to non-dominated set in paretos.

The individuals of the non-dominated set constructed by the above method, in any case,

are non-dominated. However, this is only the non-dominated set of the current generation.

We know that non-dominated individuals of the current generation are not global; thus, each

individual of the current non-dominated set paretos should be compared with all individuals

of paretos0 (pareto pool, which stores all non-dominated individuals until the present) to

judge whether it is the global non-dominated individual, and then we implement the corre-

sponding operation.

Case study

We study the Zhengzhou coal materials supply and marketing company, which is responsible

for distributing explosives for the 15 coal mines of Zhengzhou Coal Group in China, such as

Dragon, Cui Miao, Lu Gou, and so on. The company uses joint distribution method in which

a vehicle can service multiple spots. A total of 32 roads are in the distribution area, and these

roads must be selected to complete optimal distribution route choice. The maximum load of

each vehicle is 8 tons, and supply is adequate. A total of 15 demand points are used, which are

shown in Table 3.

Data on the 32 roads are collected and processed via dimensionless processing, the results

of which are shown in Table 4. The values can be used as input data of neural network. In

Table 3. Demand points of all customers.

Customer demand points 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Demand (ton) 2.5 1 4 2 2 3.5 2 3.5 2.5 1 4 3.5 1 3 2.5

https://doi.org/10.1371/journal.pone.0198931.t003
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addition to collecting data in the table, collecting the historical data of traffic accidents and

traffic safety from the local traffic police, traffic bureau, and other departments is also neces-

sary. Serious or severe traffic accidents occurred in roads R24, R25, R27, R29, and R32 recently,

and hence these roads are considered as unsafe roads. General traffic accidents occurred in

roads R22, R23, R26, and R31 recently, thus, there roads are generally safe roads. General traf-

fic accidents occurred in in roads R20, R21, R28, and R30 recently, and hence, these roads are

viewed as safe roads.

Transportation route of hazardous materials are selected based on the constructed

GA-LM-NN screening algorithm. The transfer function of neural network hidden layer neu-

ron uses S tangent function tansig () and transfer function of output layer neurons uses S loga-

rithmic function logsig () because the output mode is 0–1, to meet the requirements of

network output expressly. The optimizing the screening system is attained via genetic algo-

rithm. The parameters of the genetic algorithm are set as shown in Table 5.

Table 4. Road attribute data.

Road c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14 c15

R1 0.015 0.75 0.080 0.207 0.75 0.8 0.08 1 1 1 1 1 1 1 1

R2 0 0.5 0.195 0.138 0.85 1 0.2 1 0.5 0.5 0.75 0.75 0.88 0.5 1

R3 0.508 0.25 0.310 0.138 0.5 0.5 0 1 0.5 0.5 0.5 0.5 0.88 0.5 1

R4 0.754 0.25 0.540 0.483 0.65 0.7 0.6 1 1 1 0.75 1 1 1 1

R5 0 0 0 0 0 0 0 0.5 0 0 0 0.25 0 0 0.5

R6 1 1 0.885 1 1 1 1 0 1 1 0.75 1 1 1 0

R7 0.569 0.75 0.540 0.310 0.75 0.5 0.08 1 0.5 0.5 0.75 0.75 0.8 0 1

R8 0.631 0.25 0.310 0.241 0.5 0.8 0.6 1 0.5 0.5 0.25 0 1 0 0.5

R9 0.015 0.75 0.057 0.034 0.5 0.4 0.08 0.5 1 1 0.75 0.75 0 1 0.5

R10 0.754 0 1 1.172 0.5 0.8 1 0 0.5 0.5 0.25 0.25 1 1 0

R11 0.031 1 0.195 0.552 0.25 1 0.4 1 1 1 0.75 0.75 1 1 1

R12 0.266 0.5 0.425 0.483 0 0.6 0.08 1 1 0.5 0.25 0.5 0.8 0.5 0.75

R13 1 1 0.885 1 1 1 1 0 1 1 0.25 0 0 0 0.25

R14 0.028 0.25 0.195 0.069 0.85 1 0 1 0.5 1 0 0.25 0 0 0.5

R15 0 0 0.137 0.241 0.5 0.5 0 1 0 0.5 0.25 0.25 0 0 0.5

R16 0.031 0 0.080 0.138 0.05 0.7 0 1 0.5 1 0.5 0.5 0 0.5 0

R17 0.262 0.75 0.310 0.655 0.6 0.9 0.08 1 1 0.5 0.75 0.75 0.88 0.5 1

R18 0.508 0.75 0.540 0.966 0.25 0.9 0.6 0 1 0.5 1 1 1 1 0.5

R19 0.262 0.5 0.252 0.931 0.9 0.9 0.6 0 1 1 1 1 0 1 0.5

R20 0.508 0.75 0.885 0.655 0 1 0.8 0 1 1 0.75 1 1 1 1

R21 1 1 1 1 0.95 1 1 0 0.5 1 1 1 1 1 1

R22 0.508 0.75 0.942 0.931 0.75 0.9 0.8 1 0.5 0.5 0.5 1 1 0 1

R23 0.508 1 0.977 0.897 0.65 0.9 0.8 1 0 0.5 0.75 1 1 1 0.5

R24 0.262 0.5 0.461 0.621 0.2 0.8 1 1 0.5 1 0.75 0.75 0.88 0.5 0

R25 0.262 0.5 0.483 0.690 0.1 1 1 1 1 0.5 0.75 0.75 0.8 0.5 1

R26 0.231 0.25 0.333 0.759 0.115 1 0.08 1 1 0.5 0.5 0.75 0 0.5 0.5

R27 0.231 0.5 0.207 0.931 0.905 1 0 1 0 0.5 0.5 0.75 0 1 1

R28 0.538 0.75 0.885 0.724 0.886 0.9 0.8 1 1 1 1 1 1 0.5 1

R29 0.538 0.75 0.954 0.621 0.1 1 0.8 1 1 1 1 1 1 1 1

R30 1 1 1 0.999 0 1 1 0 1 0.5 1 1 1 1 1

R31 0.508 0.75 0.425 1 0.1 0.9 0.6 1 0.5 1 1 0.75 1 1 1

R32 0 0.25 0.092 0.038 0 1 0.08 0.5 0 0.5 0.25 0.25 0 0.5 1

https://doi.org/10.1371/journal.pone.0198931.t004
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Optimized weights and thresholds are obtained after genetic algorithm. The minimum

error is err = 0.074296. The evolution curve obtained is shown in Fig 4.

Optimized screening system neural network model is trained and tested. The R20–R29 data

are used to train the neural network, whereas R30–R32 data are used to test the accuracy of

neural network model. Simple calculation shows that 558 weights and 34 thresholds are pres-

ent in the neural network. Therefore, the number of genetic algorithm optimization parame-

ters is 592. The norm of samples test error is regarded as a measure of the generalization ability

of the network (network quality), and the individual fitness value is calculated via error norm.

The smaller the error norm, the greater the individual fitness value, and the more excellent

individuals are present.

After the optimal initial weights and threshold are obtained via GA; the initial weights and

thresholds are introduced into the network to draw the training error curve, forecasting value,

forecast error, and training error. The simulation program is compiled, and the results of the

GA-LM-NNmodel simulation are compared with the results of BPNNmodel.

By comparison, the test sample error after optimization of initial weights and thresholds is

reduced from 1.251 to 0.074296, and the error of training samples is reduced from 0.36186 to

0.091869. Therefore, the road screening GA-LM-NN model, which is optimized by GA, has

caused significant improvement in accuracy, compared with the pure BPNNmodel.

Transportation road screening is simulated based on the GA-LM-NNmodel, and the trans-

portation road set obtained is {R1, R2, R3, R4, R7, R9, R11, R12, R17, R19, R20, R21, R22, R23,

R26. R28, R30, R31}. Transportation risk and transportation time between points are calcu-

lated based on the set, as shown in Tables 6–7. The two tables show the risk nominal and time

nominal values, respectively. Some deviations occur in obtaining the nominal value because of

various reasons. Set transportation risk deviation is r̂mð0 � r̂m < 0:5rmÞ, and transportation

Table 5. Operating parameters of genetic algorithm.

Parameter name Population size Maximum genetic generations Binary digit of variable Crossover probability Mutation probability

Value 40 80 10 0.7 0.01

https://doi.org/10.1371/journal.pone.0198931.t005

Fig 4. Error evolution curve.

https://doi.org/10.1371/journal.pone.0198931.g004
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time deviation is t̂mð0 � t̂m < 0:5rmÞ. The nominal value and deviation consist of the basic

data of transportation route multi-objective robust model of single distribution center.

We set the size of population PopSize = 200, Evolutionary generation MaxGen = 200,

Crossover rate CrossRate = 0.95, and Mutation rate MutationRate = 0.1. The Pareto solution

set with different robust control parameters can be obtained by calculation, which are shower

in Tables 8–11 and Fig 5.

Tables 8–10 show the optimal solution set with robustness control parameters Γ = 0, Γ 20

and Γ = 40, respectively. Ordered string of chromosome decoding route refers to the chromo-

some decoding sequence based on greedy strategy of multi-objective genetic algorithm, in

which each 0 shows a vehicle, and natural numbers behind 0 show the customer demand point

Table 6. Nominal transport risk value of hazardous materials.

rij 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 40 80 53 97 81 74 64 103 98 93 52 100 90 76 61

1 40 0 41 46 65 50 51 110 71 48 40 40 66 77 80 82

2 80 41 0 83 51 87 72 65 44 83 95 96 76 61 102 91

3 53 46 83 0 107 105 78 50 72 56 101 54 95 99 110 110

4 97 65 51 107 0 83 67 58 61 99 41 66 46 88 43 40

5 81 50 87 105 83 0 105 59 59 81 89 99 91 74 54 92

6 74 51 72 78 67 105 0 73 72 107 92 47 82 67 92 83

7 64 110 65 50 58 59 73 0 80 65 50 55 70 97 76 110

8 103 71 44 72 61 59 72 80 0 93 64 51 86 74 44 89

9 98 48 83 56 99 81 107 65 93 0 75 50 107 50 104 89

10 93 40 95 101 41 89 92 50 64 75 0 61 70 44 108 88

11 52 40 96 54 66 99 47 55 51 50 61 0 50 102 98 81

12 100 66 76 95 46 91 82 70 86 107 70 50 0 53 52 98

13 90 77 61 99 88 74 67 97 74 50 44 102 53 0 73 51

14 76 80 102 110 43 54 92 76 44 104 108 98 52 73 0 75

15 61 82 91 110 40 92 83 110 89 89 88 81 98 51 75 0

https://doi.org/10.1371/journal.pone.0198931.t006

Table 7. Nominal transport time value of hazardous materials.

tij 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 143 97 79 120 136 146 141 107 57 91 157 44 112 133 100

1 143 0 54 173 169 117 88 106 92 159 84 104 78 178 81 144

2 97 54 0 119 67 147 158 96 110 165 43 180 120 47 114 67

3 79 173 119 0 158 128 132 67 158 57 55 144 84 172 80 87

4 120 169 67 158 0 59 143 157 139 124 145 75 60 40 48 153

5 136 117 147 128 59 0 160 69 56 118 42 56 104 146 136 116

6 146 88 158 132 143 160 0 50 101 68 138 80 101 72 121 115

7 141 106 96 67 157 69 50 0 128 62 111 175 138 170 66 87

8 107 92 110 158 139 56 101 128 0 65 180 104 180 53 128 53

9 57 159 165 57 124 118 68 62 65 0 101 171 46 166 80 72

10 91 84 43 55 145 42 138 111 180 101 0 148 97 68 128 125

11 157 104 180 144 75 56 80 175 104 171 148 0 103 105 124 129

12 44 78 120 84 60 104 101 138 180 46 97 103 0 160 156 128

13 112 178 47 172 40 146 72 170 53 166 68 105 160 0 141 119

14 133 81 114 80 48 136 121 66 128 80 128 124 156 141 0 92

15 100 144 67 87 153 116 115 87 53 72 125 129 128 119 92 0

https://doi.org/10.1371/journal.pone.0198931.t007
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Table 8. Pareto solution set of robust control parameters Γ = 0.

Chromosome decoding route Transportation risk Transportation time

0 6 7 9 0 15 14 4 0 3 10 5 0 11 12 0 1 2 13 8 952 1695

0 13 8 5 10 0 7 6 9 0 11 1 2 0 12 3 0 4 14 15 1099 1649

0 14 4 5 10 0 12 1 2 13 0 11 8 0 6 7 9 0 15 3 1045 1657

0 11 12 0 14 4 5 10 0 1 2 13 8 0 7 6 15 0 9 3 983 1680

0 15 4 12 0 14 7 5 10 0 1 2 13 6 0 11 8 0 3 9 868 1781

0 14 5 7 10 0 11 6 0 1 2 13 8 0 15 4 12 0 3 9 810 1877

0 15 4 12 0 14 5 7 10 0 11 6 0 1 2 8 13 0 3 9 793 1945

0 14 7 5 10 0 1 2 13 8 0 3 9 0 15 4 12 0 11 6 871 1738

0 3 9 0 15 4 12 0 7 14 5 10 0 1 2 13 6 0 11 8 851 1856

https://doi.org/10.1371/journal.pone.0198931.t008

Table 9. Pareto solution set of robust control parameters Γ = 20.

Chromosome decoding route Transportation risk Transportation time

0 1 2 13 10 9 0 15 14 4 0 6 8 0 11 12 0 3 7 5 1021 2398

0 1 2 13 10 9 0 8 6 0 11 12 0 15 14 4 0 3 7 5 1084 2280

0 1 2 13 10 9 0 6 8 0 11 12 0 14 4 15 0 3 7 5 993 2423

0 10 8 9 0 15 4 14 0 2 1 6 13 0 11 12 0 3 7 5 1188 2172

0 10 8 9 0 15 14 4 0 1 2 13 6 0 11 12 0 3 7 5 1196 2144

0 1 2 13 10 9 0 4 14 15 0 6 8 0 11 12 0 3 7 5 1057 2345

0 12 1 2 10 0 6 11 0 13 8 9 0 4 14 15 0 5 7 3 1643 2038

0 10 2 1 12 0 6 9 13 0 15 14 4 0 11 8 0 3 7 5 1187 2196

0 13 8 9 0 12 10 1 2 0 15 4 14 0 6 11 0 3 7 5 1226 2073

0 1 2 13 10 9 0 14 4 15 0 6 8 0 11 12 0 3 7 5 993 2451

https://doi.org/10.1371/journal.pone.0198931.t009

Table 11. Objective optimal solutions of robust control parameters Γ = 0, Γ = 20 and Γ = 40.

Optimal route Γ = 0 Γ = 20 Γ = 40

Optimal risk route 0 15 4 12 0 0 1 2 13 10 9 0 0 14 5 7 0

0 14 5 7 10 0 0 6 8 0 0 11 12 0

0 11 6 0 0 11 12 0 0 9 13 2 6 0

0 1 2 8 13 0 0 14 4 15 0 0 3 1 10 0

0 3 9 0 0 3 7 5 0 0 15 4 8 0

Optimal time route 0 13 8 5 10 0 0 12 1 2 10 0 0 2 1 13 8 0

0 7 6 9 0 0 6 11 0 0 6 11 0

0 11 1 2 0 0 13 8 9 0 0 14 4 5 10 0

0 12 3 0 0 4 14 15 0 0 15 3 0

0 4 14 15 0 0 5 7 3 0 0 7 9 12 0

https://doi.org/10.1371/journal.pone.0198931.t011

Table 10. Pareto solution set of robust control parameters Γ = 40.

Chromosome decoding route Transportation risk Transportation time

0 13 2 1 5 10 0 11 3 0 14 4 9 0 7 15 8 0 6 12 1367 2254

0 9 12 4 0 11 6 0 3 7 5 0 15 13 14 0 8 2 1 10 1155 2615

0 13 2 1 5 10 0 11 3 0 9 7 6 0 15 8 4 0 12 14 1307 2278

0 6 13 2 4 0 14 7 10 0 15 9 0 11 12 0 1 3 0 5 8 1183 2436

0 2 1 13 8 0 6 11 0 14 4 5 10 0 15 3 0 7 9 12 1860 2093

0 14 5 7 0 11 12 0 9 13 2 6 0 3 1 10 0 15 4 8 1115 3169

0 5 8 9 0 3 11 0 7 4 12 0 15 14 13 10 0 2 1 6 1295 2337

0 13 2 4 1 10 0 5 8 15 0 6 11 0 14 3 0 7 9 12 1433 2140

https://doi.org/10.1371/journal.pone.0198931.t010
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and order. For example, the first decoding sequence of Table 8 means it needs 5 vehicles, and

each vehicle corresponds to a sub route, respectively: 0!6!7!9!0, 0!15!14!4!0,

0!3!10!5!0, 0!3!10!5!0, 0!11!12!0, 00!1!2!13!8!0. All transportation

vehicles start from the distribution center 0, through demand points, and finally return to dis-

tribution center 0. Pareto solutions are not comparable with each other from Tables 8–10.

Determining the optimal solution can be difficult, and decision makers need other conditions

to select suitable routes in Pareto solution sets with high robustness. Fig 5 shows optimal

Pareto solution set distribution with robust control parameters Γ = 0, Γ 20 and Γ = 40, thereby

illustrating that Pareto solutions are found by multi-objective genetic algorithm. Table 11

shows Pareto extreme solutions (two endpoints of Pareto curve) of Pareto solution with robust

control parameters Γ = 0, Γ 20 and Γ = 40, namely, the corresponding transportation vehicle

route of Tables 8–10 when each single objective is optimal, respectively. Table 11 shows that

when the robust control parameter Γ increases, the Pareto solutions become more robust.

The strength Pareto genetic algorithm (SPEA) is used to test the efficiency of the improved

multi-objective genetic algorithm. The algorithm parameter and Pareto optimal solution set

selection strategy are the same as those of the improved multi-objective genetic algorithm

designed in this paper. The results are shown in Table 12. Compared with SPEA and under dif-

ferent values, the mean values of two objective functions obtained from the improved multi-

objective genetic algorithm designed in this paper are better, and the operation time is

reduced. The results show that the improved multi-objective genetic algorithm designed in

this paper can not only obtain a more satisfactory solution, but also has faster convergence

speed compared with the traditional genetic algorithm.

Fig 5. Pareto optimal solution distribution of robust control parameters Γ = 0, Γ 20 and Γ = 40.

https://doi.org/10.1371/journal.pone.0198931.g005

Table 12. Performance comparison between improved multi-objective genetic algorithm and SPEA.

Optimization objective Improved multi-objective genetic algorithm SPEA

Γ 0 20 40 0 20 40

Mean value of risk objective 919 1159 1339 1018 1271 1428

Mean value of time objective 1764 2252 2415 1895 2366 2571

Run time/(s) 4 6 8 5 7 11

https://doi.org/10.1371/journal.pone.0198931.t012
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Conclusion

Optimization of distribution route is an important link to ensure safe transportation of hazard-

ous materials. Scientific and reasonable distribution route design of hazardous materials can

make hazardous materials reach the customer demand point safely, quickly, and economically.

However, the optimized scheme may incur serious security risks if road screening is not car-

ried out before route optimization. This paper extensively studies the problem of road screen-

ing for hazardous materials transportation, and builds road screening algorithm based on

GA-LM-NN and the multi-objective robust optimization model of transportation route with

adjustable robustness based on Bertsimas. The improved elitist selection strategy is used to

complete choice operation, partial matching cross shift method, and single ortho swap method

is used to complete crossover and mutation operation. The Pareto optimal solution set is con-

structed based on the exclusive method. The study shows that the proposed GA-LM-NN road

screening algorithm can determine quickly the suitable transportation section sets of hazard-

ous materials. Furthermore, transportation path multi-objective robust optimization model

and algorithm can determine rapidly the Pareto solution set of different robustness transporta-

tion route. Finally, decision makers can choose suitable transportation routes from better

robust Pareto solutions based on actual situation or preferences through a case study.

The establishment of the visual road screening for hazardous materials transportation and

route robust optimization platforms based on geographic information system will be the focus

of future research.
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