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Abstract—This paper presents an automatic road-sign detection
and recognition system based on support vector machines (SVMs).
In automatic traffic-sign maintenance and in a visual driver-
assistance system, road-sign detection and recognition are two of
the most important functions. Our system is able to detect and
recognize circular, rectangular, triangular, and octagonal signs
and, hence, covers all existing Spanish traffic-sign shapes. Road
signs provide drivers important information and help them to
drive more safely and more easily by guiding and warning them
and thus regulating their actions. The proposed recognition system
is based on the generalization properties of SVMs. The system
consists of three stages: 1) segmentation according to the color
of the pixel; 2) traffic-sign detection by shape classification using
linear SVMs; and 3) content recognition based on Gaussian-kernel
SVMs. Because of the used segmentation stage by red, blue, yellow,
white, or combinations of these colors, all traffic signs can be
detected, and some of them can be detected by several colors.
Results show a high success rate and a very low amount of false
positives in the final recognition stage. From these results, we
can conclude that the proposed algorithm is invariant to trans-
lation, rotation, scale, and, in many situations, even to partial
occlusions.

Index Terms—Classification, detection, hue, hue saturation
intensity (HSI), road sign, support vector machines (SVMs).

I. INTRODUCTION

T RAFFIC-SIGN detection and recognition have been an
important issue for research recently. Traffic signs have a

dual role: First, they regulate the traffic and, second, indicate the
state of the road, guiding and warning drivers and pedestrians.
These signs can be classified according to their color and shape,
and both these characteristics constitute their content, as shown
in Table I. The visibility of traffic signs is crucial for the drivers’
safety. For example, very serious accidents happen when drivers
do not notice a stop sign, as pointed out in [1]. Of course, many
other accidents are not related to traffic signs and are due to
factors such as the psychological state of drivers. The causes
for accidents that are related to traffic signs may be occlusion
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TABLE I
MEANING OF SPANISH TRAFFIC SIGNS ACCORDING

TO THE COLOR AND SHAPE

or partial occlusion of the sign, deterioration of the sign, or
possible distraction of the driver. This work is twofold: First,
the algorithm that is described here can be used to evaluate the
signaling of the road for maintenance purposes, and second, in a
future application, it can be used for driver-assistance systems.

It is interesting to pay attention to some of the common prob-
lems that are involved in traffic-sign detection. These problems
are analyzed, and a test set has been reported in [2] and [3]. The
first problem to be overcome is caused by the variable lighting
conditions of the scene in a natural environment. These dif-
ferent conditions are brought about by changes in the weather
(producing bright spots and shadows), the time of the day or
night, and the state of the road sign itself subject to deterioration
or vandalism. Another problem to surpass is the possible rota-
tion of the signs. Although the perfect position for a road sign
is perpendicular to the trajectory of the vehicle, many times, the
sign is not positioned that way. Therefore, an automatic system
must be able to detect signs in many positions and, hence, must
be invariant to rotation and translation. The next problem is
related to traffic-sign size because we find signs of different
dimensions, although officially, there are only three normal
sizes for nonurban environments. Due to the method that we
follow to capture the signs, we get an image sequence as we
approach the sign. Thus, our aim is to implement an algorithm
to detect the sign as soon as it becomes visible. For this reason,
we cannot accept a system that only detects signs of a specific
size. The last problem that we describe here has been mentioned
previously. Occlusions often occur because objects such as
trees, other signs, or vehicles can reduce the visibility of the
signs and, in conclusion, make the detection system fail. In this
paper, we overcome these problems with a high success rate.

Finally, the number of different signs is quite large. They
are summarized in Fig. 1(a)–(f), where all signs that are em-
ployed in Spain are illustrated. Due to this amount, we have to
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Fig. 1. Traffic-sign database. (a) Danger. (b) Prohibition. (c) Obligation.
(d) Warning and information. (e) Priority. (f) End of prohibition.

develop strategies to divide the recognition process into differ-
ent groups.

The organization of this paper is given as follows: Section II
focuses on previous research works. We will present first the
traffic-sign detection process and then the traffic-sign recog-
nition of the inner area in correspondence to the previously
detected sign, with respect to the most relevant techniques that
are developed for this purpose.

Fig. 2. Algorithm description.

The structure of Section III consists of an exhaustive de-
scription of detection and recognition stages, which follows the
algorithm shown in Fig. 2. The complete process is triggered
by color segmentation of the frame, where the system will
search objects with similar colors as traffic signs, i.e., red,
blue, white, and yellow, as presented in Section III-A. Once all
objects representing possible candidates have been extracted,
some features such as size or aspect ratio are analyzed using a
table of all the geometric shapes in which traffic signs are de-
signed. Therefore, only the objects that are not discarded in this
selection step are analyzed in posterior modules. As the number
of different traffic signs is quite large, shape classification is
performed prior to the recognition module using the distance to
borders (DtBs) as input vectors (as presented in Section III-B)
in order to improve computation time in the next stage of recog-
nition. As traffic signs can appear at many different angles to the
camera’s optical axis, each blob of interest is rotated until they
are all aligned in the same way before the classification process
begins. Every image is processed in the same way; if no suitable
objects that correlate in either color and geometric properties
are found, another frame is analyzed. Section III-C deals with
the recognition module. Both modules, i.e., shape classifica-
tion and traffic-sign recognition, are implemented with SVMs,
which is a novel technique in this field. In the complete system,
the possible outputs of both modules are determined by color.
By establishing the color first, only some geometric shapes
and only a subset of the traffic-sign database are then liable
to be considered in the classification and recognition stages.
Therefore, those objects with similar colors as traffic signs
(for example, cars and buildings), which hence represent noisy
objects for our system, are rejected with high probability in one
of these three selective stages: 1) geometric feature selection;
2) shape classification; and 3) recognition of the inner area.
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Fig. 3. Hue–saturation histogram for red signs.

Results that are illustrated in Section IV will confirm the
robustness of the proposed algorithm. Finally, conclusions will
be presented in Section V.

II. STATE OF THE ART

Traffic-sign recognition algorithms are divided, in most
cases, into two stages: 1) detection and 2) recognition.

In many works, the first block of the detection system
consists of a segmentation stage by thresholding with a given
color space to extract the sign color from the image. Direct
thresholding over the red green blue (RGB) space is seldom
used because it is very sensitive to lighting changes. Thus, in
[4], a color ratio between the intensity of the specific RGB
color components and the sum of intensity of RGB is used to
detect strong colors in the image. A different relation between
the RGB components is employed in [5], where one component
is taken as a reference. Although other spaces are used, for
example, the YUV system is considered in [6] to detect blue
rectangular signs, the most frequently employed space is the
hue saturation intensity (HSI) system because color informa-
tion, which is encoded with hue and saturation components,
presents low variations for objects of interest with a similar
color. In [7], proper thresholds on hue and saturation bands
are fixed to extract the red and blue colors. In [8], a nonlinear
transformation over hue and saturation is employed to enhance
the desired colors in the image (red and blue) using two lookup
tables for every color for which we are looking. A similarity
measurement between the hue component and the previously
stored hue values of particular colors in road signs is calculated
in [9], and this measurement is fed into a perceptual analyzer
that is implemented by a neuronal network.

Nevertheless, there are some works where thresholding is not
applied directly using a specific color space. Thresholding by
looking for chromatic and achromatic colors is applied in [10]
by a simple vector filter (SVF). The SVF has characteristics
that can extract the specific color and eliminate all the outlines
at the same time. Normalized error between the luminance
component and RGB components is obtained in [8], computing
an energy function in order to identify the inner area of the sign.

Fig. 4. Hue–saturation histogram for blue signs.

Fig. 5. Hue–saturation histogram for yellow signs.

Other methods for detection have been developed based on
edge detection. Many robust-shaped detectors such as Hough
circle transform are slow to compute over large images. Nev-
ertheless, some recent works (see [11] and [12]) have im-
plemented a fast algorithm based on radial symmetry that is
adapted to triangular, square, diamond, octagonal, and circular
shapes. It operates on the gradient of a grayscale image and
exploits the nature of shapes that vote a center point for circular
signs and a line of votes in the case of regular polygons. The
main advantage of this method is that it is able to run in real
time. As it detects shapes based on edges, the algorithm is
robust to changing illumination.

In [13], a technique based on genetic algorithms is proposed
to recognize circular traffic signs by using only the brightness
of an input image, which is obtained in the form of a binary
image with the help of a smoothing and a Laplacian filter. In
[14], two neural networks (NNs) are developed to extract color
and shape features. Both these features are applied to a hue
component and a gradient image, where the centers of specific
color regions and the centers of certain fixed shapes are given.
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In [15], the Bayes classifier chooses a color class based on the
maximum conditional probability of each color, where equal
a priori probability for each of the five colors (red, yellow,
green, blue, and white) is assumed.

Once the candidate regions have been separated from the
image, some research has gone into classifying the candidate
signs according to their shape. The classification criterion can
be based on the idea of dividing the possible groups of traffic
signs by color and shape, such as red circular, red triangular,
and blue circular. In [5], different methods using the extracted
corners are applied to the traffic-sign shapes, and in [14], color
extraction is complemented with shape features using two NNs.
Another method is used in [15]. After segmentation using a
Bayes classifier, the scale-invariant feature transform that is
presented in [16] is applied after the key points, which are going
to represent each object that have been determined.

In the recognition stage, an NN is used for the classification,
following the Adaptive Resonance Theory paradigm in [17].
In [6], the identification of signs is carried out by a normalized
correlation-based pattern matching using a traffic-sign data-
base. In [18], the proposed sign recognition system consists
of a nonlinear correlator. The scene and the reference pattern
are both Fourier transformed and nonlinearly modified. The
correlation plane between the input and the reference signs is
obtained by the inverse Fourier transform. In [19], the recog-
nition is done using matching pursuit (MP) in two processes:
1) training and 2) test. The training process finds a set of the best
MP filter bases for each road sign. The testing process projects
the input unknown road sign to a different set of MP filter bases
to find the best match.

Instead of recognition of road-sign symbols, a framework for
detecting text on road signs from video is presented in [20]. The
system finds a number of discriminative feature points, which
are easy to track, in the current video using the detector of Shi
and Tomasi.

Although many works are applied in a single-frame way, in
[14], the detection system is sensitive to some particular image
size, and a Kalman filter is used to track a sign through the
frames until it is sufficiently large to be recognized as a specific
standard sign. A more recent work [9] presents an automatic
road-sign detection and recognition system that is based on a
computational model of human visual recognition processing.
The system consists of three major components: 1) sensory;
2) perceptual; and 3) conceptual analyzers. The sensory ana-
lyzer extracts the spatial and temporal information of interest
from video sequences. The extracted information then serves
as the input stimuli to a spatiotemporal attentional NN in the
perceptual analyzer. If the stimulation continues, the focuses of
attention will be established in the NNs where the used features
indicate the color horizontal projection of the road sign; they
indicate good results because of the tracking system although
they consider that road signs are always composed of a color
rim with a black/white interior. The detected sign is normalized
and correlated with all of the prototypes in [8]; a horizontal and
vertical displacement of ±3 pixels is allowed.

In order to reduce the computation time, in [19], color is used
as a priori information, and the possible road location is limited
to certain designated regions.

Fig. 6. Sign model as a contribution of two parts. (a) Original image.
(b) and (c) Segmentation masks by red and achromatic colors. (d) Extracted
sign. (e) Outer and (f) inner regions of normalized sizes.

III. SYSTEM OVERVIEW

In this paper, we present a system for detection and recog-
nition of traffic signs that has been successfully applied to
Spanish traffic signs. The detection and recognition system
consists of three stages.

1) Segmentation: Candidate blobs are extracted from the
input image by thresholding using HSI color space for
chromatic signs. At the same time, white signs are de-
tected with the help of an achromatic decomposition.

2) Shape classification: Blobs that are obtained from seg-
mentation are classified in this stage using linear SVMs.
According to the color that has been used in the segmen-
tation, only some given shapes are possible. For example,
signs that are segmented using the red clues can be
circular, triangular, or octagonal.

3) Recognition: The recognition process is based on SVMs
with Gaussian kernels. Different SVMs are used for each
color and shape classification.

A. Segmentation

As pointed out in Section II, different color spaces have been
used to segment traffic signs in outdoor images. The difficulties
that we encounter in this image segmentation are related to
illumination changes and possible deterioration of the signs.
We believe that the hue and saturation components of the HSI
space are sufficient to isolate traffic signs in a scene working
with fixed thresholds. To obtain these thresholds, we have built
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Fig. 7. Segmentation results.

Fig. 8. Segmentation results.

the histograms of hue and saturation for red, blue, and yellow
of manually segmented signs, as shown in Figs. 3–5. Here, the
hue and saturation components take values ranging from 0 to
360 and from 0 to 255, respectively. At this point, we must
consider that the response to varying wavelength and intensity
of standard imaging devices is nonlinear and interdependent
[21]. Due to this reason, the images from which we analyze the
hue and saturation components of traffic signs have been taken
under different weather and lighting conditions using several
cameras with different configurations in order to get well-suited
thresholds.

Unfortunately, the hue and saturation components do not
contain enough information to segment white signs. The im-
age’s achromatic decomposition then helps to detect white
signs in a way similar to the method that is described in [10]
according to

f(R,G,B) =
(|R − G| + |G − B| + |B − R|)

3D
(1)

where R, G, and B represent the brightness of the respective
color, and D is the degree of extraction of an achromatic color,
and in our case, we get the best segmentation results by setting
D to 20. An f(R,G,B) of less than 1 represents achromatic
colors, and an f(R,G,B) of greater than 1 represents chro-
matic colors.

After the segmentation stage, image pixels may belong to
any of the four color categories, i.e., red, blue, yellow, and/or
white, and are grouped together as connected components
called blobs. Most common signs present a red rim and an
inner white region [see Fig. 1(a), (b), and (e)], except when
the road is under construction, where the inner area is yellow.
This characteristic led us to consider the signs as a possible
sum of two contributions corresponding to their chromatic and
achromatic segmentation masks, where both parts (see Fig. 6)
are processed independently in the complete system.

Fig. 9. DtBs for a triangular shape.

The segmentation of candidate traffic signs in scenes that are
taken at night is similar to that of the ones that are captured
during daylight, except for one consideration: White signs are
not well isolated at night by the aforementioned achromatic
decomposition. This is due to the color that we perceive from
a reflective traffic sign when it is illuminated by the vehicle’s
headlamp. For this reason, achromatic signs were segmented at
night by the hue and saturation components, taking into account
that the distribution of the hue components is, in this case, so
similar to that of the same component for yellow signs. The
difference between both colors, i.e., white and yellow, at night
is given by saturation.

All candidate blobs are analyzed in a selection process, and
some of them are discarded according to their size or aspect
ratio because, given a camera of known focal length, we can
impose some limits on the size of objects that we are interested
in, i.e., small blobs and big blobs are rejected as noise and
noninterest objects, respectively. The limits for both criteria,
i.e., size and aspect ratio, were empirically derived based on
road images. Thus, the thresholds for the size criterion are fixed
at specific percentages with respect to the minor dimension
of the images to be analyzed, and only those objects whose
dimensions are delimited between one 20th and two thirds
will be processed. On the other hand, objects with an aspect
ratio of greater than 1.9 and less than 1/1.9 are rejected. Once
the segmentation process is completed, we obtain the blobs of
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Fig. 10. Tree structure of the classification. The structure shows how the segmentation color determines the possible shapes of the BoI.

Fig. 11. Translation invariance. (a) and (b) Original images. (c) and (d) BoIs of (a) and (b). (e) and (f) DtB vectors of (c) and (d).

interest (BoI) or, in other words, possible traffic signs. Since
traffic signs are regular polygons or circles, their corresponding
bounding box is a rectangle whose aspect ratio is greater than 1
when the camera’s optical axis is not perpendicular to the sign,
producing a perspective distortion.

Figs. 7 and 8 show the original, segmented, and BoI images
for two images of our test set. In Fig. 7, some small blobs and a
big blob corresponding to the sky have been removed. In Fig. 8,
a blob corresponding to the upper part of a car has been re-
moved for its unsuitable aspect ratio. As we mentioned before,
all traffic signs are regular polygons, and their ideal position
is perpendicular to the direction of driving. Nevertheless, signs
do not always appear in the ideal position, and because of that,
each candidate blob in the image is rotated in our system to

a reference position before the shape classification in order to
obtain a rotation-invariant method.

B. BoI Shape Classification

The blobs that were obtained from the segmentation stage
are classified in this stage according to their shape using linear
SVMs. SVMs were introduced by Vapnik [22], [23], and some
extensive introductions about SVMs can be found in [24]
and [25]. The formulation of SVMs deals with structural risk
minimization (SRM). SRM minimizes an upper bound on the
Vapnik Chervonenkis dimension, and it clearly differs from
empirical risk minimization, which minimizes the error on the
training data. Although SVMs were developed for and have
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Fig. 12. Rotation 2-D invariance. (a) and (b) Original images. (c) and (d) BoIs of (a) and (b). (e) and (f) DtB vectors of (c) and (d).

been often used to solve binary classification problems, they
can also be applied to regression. For shape classification, we
use linear SVMs. In the case of two separable classes, the train-
ing data are labeled {xi, yi}, where i = 1, . . . , l, yi ∈ {−1, 1},
xi ∈ {Rd}. In our case, the vectors xi are the DtBs, as we will
describe later, the values yi are “1” for one class and “−1” for
the others, d is the dimension of the vector, and l is the number
of training vectors. If a hyperplane {w, b} separates the two
classes, the points that lie on it satisfy x · wT + b = 0, where
w is normal to the hyperplane, |b|/‖w‖ is the perpendicular
distance from the hyperplane to the origin, and ‖w‖ is the
Euclidean norm of w. In the separable case, the following
constraints hold:

yi(xi · w
T + b) − 1 ≥ 0 ∀i. (2)

The points for which the equality in (2) holds give us the scale
factor for w and b or, equivalently, a constant difference of the
unity. These points lie on both hyperplanes H1 :xi ·w

T+ b=1
and H2 : xi · w

T + b = −1. Hence, the margin between the
two data sets is simply 2/‖w‖. The margin between both
sets can be maximized by minimizing ‖w‖2/2 subject to the
constraints of (2). If we introduce positive Lagrange multipliers
(αi, where i = 1, . . . , l)—one for each of the inequality con-

straints (equal to the number of training vectors)—the objective
now is to minimize Lp given by

Lp =
1

2
‖w‖2 −

l
∑

i=1

αiyi

(

xi · w
T + b

)

+
l

∑

i=1

αi. (3)

Once the optimization is completed, we simply determine on
which side of the hyperplane a given test vector x lies. That
is, to classify it to one class (“1”) or to the other (“−1”), the
decision function is given by

f(x) = sgn(x · wT + b). (4)

When data sets are nonseparable, we can introduce further
cost by introducing positive slack variables ξi, i = 1, . . . , l in
the constraint, i.e.,

yi

(

xi · w
T + b

)

− 1 ≥ ξi ∀i. (5)

A natural way to assign extra cost for errors is to change the
objective function to be minimized from ‖w‖2/2 to ‖w‖2/2 +
C(

∑

i ξi)
k, where C is a parameter to be chosen by the user. A

larger C corresponds to assignment of higher penalty to errors.
In this paper, we present DtBs as feature vectors for the

inputs of the linear SVMs, as introduced in [2]. DtBs are the
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Fig. 13. Rotation 3-D invariance. (a) and (b) Original images. (c) and (d) BoIs of (a) and (b). (e) and (f) DtB vectors of (c) and (d).

distances from the external edge of the blob to its bounding
box. Fig. 9 shows these distances for a triangular shape where
D1, D2, D3, and D4 are the left, right, upper, and bottom DtBs,
respectively.

Four DtB vectors of 20 components are obtained, and they
feed specific SVMs depending on the previous color extraction
because the segmentation color determines the possible geo-
metric shapes (see Fig. 10), as mentioned previously. We note
that the octagonal shape is easily confused with the circular one
at medium–high distances, and for this reason, a simple way of
characterizing octagonal signs is to consider them as circular
and try to identify their message in the recognition stage. That
way, an extracted blob by red color feeds four DtB SVMs to
classify the shape as a circle (“1”) or not (“−1”) and another
four SVMs to classify the shape as a triangle (“1”) or not
(“−1”). Thus, four favorable votes are possible for each shape.
A majority voting method has been applied in order to get the
classification with a threshold; therefore, if the total number of
votes is lower than this value, the analyzed blob is rejected as
a noisy shape. In case of a tie, linear SVM outputs of favorable
classification are used to decide which is the candidate shape.

The proposed method is invariant to translation, rotation, and
scale. First, it is invariant to translation because it does not mat-
ter where the candidate blob is. Thus, in Fig. 11, the vectors of
two signs that are placed in very different positions present high

similarity. Second, the detection process is invariant to rotation
because, before obtaining DtB vectors, the most external pixels
of each blob are detected to determine the original orientation,
and after this, all blobs are oriented in a reference position. In
conclusion, samples of DtB vectors show a similar evolution
for each geometric shape. Figs. 12 and 13 show the vectors for
different rotations. Finally, the method is invariant to scale due
to the normalization of the DtB vectors to the bounding-box
dimensions. Fig. 14 shows the vectors for the same sign that is
observed at different distances as we approach it.

Moreover, since four feature vectors are obtained to char-
acterize every blob, this method is quite robust to occlusions.
Fig. 15 shows the results of a correct shape classification of
signs under partial occlusions. The robustness of the system
against occlusions will be analyzed later in Section IV. Results
showing these properties were reported in [2].

C. Recognition

Once the candidate blobs are classified into a shape class, the
recognition process is initiated. Recognition is implemented by
SVMs with Gaussian kernels. For the training process of SVMs,
we used the library LIBSVMS [26].

Linear SVMs have been briefly described in Section III-B.
However, in many cases, the data cannot be separated by a
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Fig. 14. Scale invariance. (a) and (b) Original images. (c) and (d) BoIs of (a) and (b). (e) and (f) DtB vectors of (c) and (d).

linear function. A solution is to map the input data into a
different space Φ(x). Due to the fact that the training data
are used through a dot product, if there was a “kernel func-
tion,” so that we satisfy K(xi,xj) = 〈Φ(xi),Φ(xj)〉, we can
avoid computing Φ(x) explicitly and use the kernel function
K(xi,xj).

In this paper, we have used a Gaussian kernel as follows:

K(xi,xj) = e−
‖xi−xj‖2

2σ2 (6)

and the decision function for a new input vector is

f(x) = sgn

(

Ns
∑

i=1

αiyiK(si,x) + b

)

(7)

where Ns is the number of support vectors, and si are the
support vectors. In this case, the sum cannot be reduced to a
single dot product.

The recognition stage input, in our case, is a block of 31 ×
31 pixels in grayscale image for every candidate blob; therefore,
the interior of the bounding box is normalized to these dimen-
sions. In order to reduce the feature vectors, only those pixels
that must be part of the sign (pixel of interest, PoI) are used.
For instance, for a circular sign, only pixels that are inside the
inscribed circle, which belong to the normalized bounding box,

are computed in the recognition module. Fig. 16 shows the PoI
for two signs whose shapes are circular and triangular.

Different one-versus-all SVMs classifiers with a Gaussian
kernel are used, so that the system can recognize every sign.
Both the training and test are done according to the color and
shape of each candidate region; thus, every candidate blob is
only compared to those signs that have the same color and shape
as the blob to reduce the complexity of the problem.

The amount of training samples per class varies between 20
and 100. We use an average of 50 training patterns for each
class, but only some of them define the decision hyperplane as
support vectors. Figs. 17 and 18 show the support vectors that
define the decision region for a “No overtake” traffic sign when
objects are extracted by achromatic segmentation. Of course,
the training set includes samples of noisy objects that could be
confused with traffic signs by the recognition module. To search
for the decision region, all feature vectors of a specific class
are grouped together against all vectors corresponding to the
rest of classes (including here noisy objects), following the one-
versus-all classification algorithm previously mentioned.

In Table II, we present the optimum values for regularization
parameters in SVMs C and g, where C is the cost parameter
for the slack constraints in (5), and g is the inverse of 2σ2 in
the kernel function in (6). An exhaustive search was performed
in order to find the values where the total number of errors
in the training process was the lowest. In the test phase, we
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Fig. 15. Occlusions. (a) and (b) Original images. (c) and (d) BoIs of (a) and (b). (e) and (f) DtB vectors of (c) and (d).

Fig. 16. PoIs in white. (a) Circular and (b) triangular.

Fig. 17. Positive support vectors for the “No overtake” traffic sign by achro-
matic segmentation.

assign each BoI the traffic-sign class for which the system
obtains the highest value when evaluating the decision function.
The threshold values for discarding a blob as noise have been
fixed at zero for the decision functions of all SVMs. However,
this value can be modified in order to change the false alarm
probability and the lost probability.

In the traffic-sign database, there is a set of triangular signs
whose pictograms present a high level of similarity at low
resolution (see Fig. 19). As the recognition module of our
system works with blobs that are normalized to 31 × 31 pixels,

Fig. 18. Negative support vectors for the “No overtake” traffic sign by
achromatic segmentation.

it is not easy to discern between them. This is why, in this paper,
as a first approximation, we have reorganized these signs within
a unique training set, which will be represented by the sign that
is shown in Fig. 19(a).

IV. RESULTS

In our experiments, test sequences have been recorded with a
video camcorder (Canon MVX30i) fixed onto the front wind-
shield of a vehicle while driving at usual speed. The video
sequences were first converted into “.bmp” images using the
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TABLE II
OPTIMUM VALUES FOR PARAMETERS OF ONE-VERSUS-ALL SVMs

EMPLOYED IN THE RECOGNITION STEP

Fig. 19. Set of similar signs. (a) Representative sign of the set. (b) Junction
with minor road ahead. (c) Minor road from the right ahead. (d) Minor road
from the left ahead. (e) Minor road joins from the left ahead. (f) Minor road
joins from the left ahead.

TABLE III
SUMMARY OF RESULTS

software DVGrab 1.7.1 The size of each image is 720 × 576
pixels, and the time between two successive captured frames
is 0.2 s.

Currently, in our research, we are particularly concerned with
automatic inventory control of traffic signs. For this reason,
sequences are run as batch processes. The code to implement
the whole algorithm was C, and we achieve a mean processing
time of 1.77 s per frame on a 2.2-GHz Pentium 4-M, where the
frame dimensions are 720 × 576 pixels.

Several video sequences with the results are available at
http://roadanalysis.uah.es/page_files/publications.html. All se-
quences that are shown have been captured driving at usual
speed over a stretch of approximately 4 km and during both
the day and at night. In addition, these images cover a wide
range of weather conditions: sunny, cloudy, and rainy weather.
Sequences 1, 2, and 3 correspond to a sunny lighting day,
sequence 4 corresponds to a rainy day, and, finally, sequence 5
was captured at night.

By inspecting the obtained results, we can say that all signs
have been correctly detected in each of the five sequences at
least twice. Table III summarizes the results that were generated

1DVGrab is a software digital video for Linux, and it can be downloaded
from http://kinov.org.

in the processing of video sequences: 1) the number of frames
to analyze in each sequence; 2) the number of traffic signs
that appear in each sequence; 3) the number of detections of
traffic signs that have been identified correctly (obviously, each
sign is detected multiple times in the sequence); 4) noisy blobs
that are detected by color and shape and have been rejected by
the recognition module; 5) false positives at the output of the
system; and 6) confused recognition cases. The situations of
confused recognition can be attributed to long distances from
the sign to the camera or to a poor lighting, in the case of
night visibility, as the illumination depends on the vehicle’s
headlamp. If we consider future tracking performance, we can
establish the criterion that a candidate traffic sign is dismissed
if it appears in only one frame of the sequence. Thus, each
traffic sign will be correctly detected if it is identified at least
in two frames of the sequence. An important conclusion from
the results is that false alarms do not appear in the same
sequence several times, and so they should be rejected by the
tracking algorithm. In this respect, Fig. 20 illustrates some
examples of correct recognition process although the traffic
sign is not identified in all frames of the sequence. In each
analyzed image, if there are any BoI, both the shape that is
assigned to each BoI and the specific recognized traffic sign are
represented. Since, as we explained in Section III-A, a sign can
be processed as a sum of two contributions (the rim or outer
area and the inner area), the same sign can be detected and
recognized once or twice. The shape is always drawn in white
color over the bounding box’s coordinates, and the identified
sign is represented by a synthetic template in the original image.
To make the presentation clearly visible, both representations
are done independently for every segmentation color.

Figs. 21 and 22 show two subsequences of the experimental
results of the sequence S1, where only eight frames of the route
are shown in every case. In Fig. 21, the circular sign is classified
and recognized successfully from Fig. 21(d)–(h) by the red
color and from Fig. 21(f)–(h) by achromatic segmentation. Note
that one or two white contours are drawn in each frame as
a result of the shape classification. Thus, the external outline
corresponds to segmentation by the red color, and the inside
contour corresponds to the achromatic segmentation.

Fig. 23 illustrates that our system also works when the signs
are not placed perpendicular to the movement of the vehicle
(3-D rotations). Although almost all traffic signs are only
affected by affine distortion, our system can detect signs that
also present perspective distortion. Thus, even if a sign appears
oriented with no ideal position, it can be detected. In addition
to the mentioned 3-D rotation, the invariance to translation is
supported by the fact that for traffic signs, we search for the
whole image, as shown in Figs. 21 and 22. Furthermore, in the
same figures, it is illustrated how the system is generally able
to recognize objects with so many different scales as standard
traffic signs.

Fig. 24 shows an example of road-sign detection and recog-
nition at night. Comparing Figs. 21 and 24, we can observe
that the results are similar during both day and night because
the material of the road signs is highly reflective at night.
Fig. 25 illustrates that our system also works when arrays of
two or more traffic signs exist in the image. Here, the system
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Fig. 20. Examples of recognition process including incorrectly recognized frames. (a)–(d) Recognition with misdetection in (b) and (c). (e)–(h) Recognition
with confused classification in (e).

Fig. 21. Experimental results with eight frames for a circular road sign. The size of each image is 720× 576 pixels, and the time between two successive images
is 0.2 s.

isolates the different signs and works by recognizing each sign
independently.

The main task in our work is to evaluate the signaling of
the road. Hence, in order to reduce the false alarm probability,
we have fixed a criterion for discarding small blobs whose di-
mensions are under 31 × 31 pixels. Obviously, as we approach
the signs, the segmentation of the sign becomes better, and the
output values of recognizing SVMs are greater than that under
normal conditions.

In order to test the behavior of our system to occlusions, a set
of signs were manually manipulated to provoke occlusions of

different levels in different directions with a circular and a tri-
angular traffic sign. We introduced occlusions with a synthetic
circular mask over original images whose color components
were assigned with random values between 0 and 255. To test
the area that is covered in occlusions, we considered three
different sizes. Consequently, the diameters of the occlusion
masks were fixed at one half, one third, and one fourth of
the larger dimension of the corresponding bounding box (see
Fig. 26). Then, eight orientations were analyzed for every mask
with increases of 45◦, i.e., the same mask was shifted and in
that way was placed in these different positions, as illustrated
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Fig. 22. Experimental results with eight frames for a triangular road sign.

Fig. 23. Experimental results with 3-D rotation.

Fig. 24. Experimental results at night.

Fig. 25. Experimental results with array road signs.
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Fig. 26. Masks of occlusion. Three sizes are used to test the robustness of the system against occlusions with different areas covered. (a)–(c) Masks whose
diameters are one half, one third, and one fourth of the major dimension of the bounding box, respectively.

Fig. 27. Displacements followed by a mask for the first orientation.

in Fig. 27. The recognition success probabilities are 93.24%,
67.85%, and 44.90% for the small, medium-sized, and large
masks, respectively.

By inspecting the results, we can conclude that the worst
results in the recognition stage with occlusions are obtained
when the occlusion mask is placed in the middle of the pic-
togram’s inner area and, obviously, when the size of the mask
is increased.

V. CONCLUSION

This paper describes a complete method to detect and recog-
nize traffic signs from a video sequence, taking into considera-
tion all the existing difficulties regarding object recognition in
outdoor environments. Thus, our system can be useful for the
maintenance of traffic signs.

Two main modules have been developed based on the ca-
pability of SVMs as a novel technique in pattern recognition:
a first module for shape classification based on linear SVMs
and a second one that was developed with Gaussian kernels for
recognition of the inner area. Although a tracking method has
not been developed yet, we have considered a candidate sign as
valid in a sequence if it is detected and recognized in at least
two frames of a sequence. Otherwise, it is considered to be a
false alarm.

Experimental results indicate that our system is accurate
because it allows us to detect different geometric shapes, i.e.,
circular and octagonal, and triangular and rectangular, and
works correctly in difficult situations, for example, when array
signs appear on the scene or when images are taken under night
illumination. Moreover, as we have seen before, the system is
invariant to rotations, changes of scale, and different positions.
In addition, the algorithm can also detect signs that are partially

occluded. However, some improvements remain as tasks for the
future.

• We must recognize rectangular route-guidance signs for
navigation whose pictograms can present very different
icons.

• In Fig. 20(b) and (c), the sign is not detected due to
the similarity of the sign and the background. A new
segmentation method can be developed based on analysis
of color similarity between neighbor pixels and not be
strictly oriented to the segmentation of color.

• Since our main application is the maintenance of traffic
signs, we hope to extract all the information about the
state of traffic signs in future works, such as the level of
deformation, angle of rotation, and conservation state.

• Obviously, a real-time implementation is an improvement
for future works; in this way, two main issues arise to
reduce processing time per frame. The first is to pack
recognition information, leading to a reduction of the nec-
essary feature space dimensions. The second is a possible
reduction of the frames’ dimensions to be analyzed.
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