
Research Article

Road Surface State Recognition Based on
SVM Optimization and Image Segmentation Processing

Jiandong Zhao,1 Hongqiang Wu,1 and Liangliang Chen2

1School of Mechanical and Electronic Control Engineering, Beijing Jiaotong University, Beijing 100044, China
2National Engineering Laboratory for Surface Transportation Weather Impacts Prevention,
Broadvision Engineering Consultants, Kunming 650041, China

Correspondence should be addressed to Jiandong Zhao; zhaojd@bjtu.edu.cn

Received 3 April 2017; Accepted 1 June 2017; Published 6 July 2017

Academic Editor: Xiaoming Chen

Copyright © 2017 Jiandong Zhao et al. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Adverse road condition is themain cause of tra�c accidents. Road surface condition recognition based on video image has become a
central issue. However, hybrid road surface and road surface under di	erent lighting environments are two crucial problems. In this
paper, the road surface states are categorized into 5 types including dry, wet, snow, ice, and water. �en, according to the original
image size, images are segmented; 9-dimensional color eigenvectors and 4 texture eigenvectors are extracted to construct road
surface state characteristics database. Next, a recognition method of road surface state based on SVM (Support Vector Machine) is
proposed. In order to improve the recognition accuracy and the universality, a grid searching algorithm and PSO (Particle Swarm
Optimization) algorithm are used to optimize the kernel function factor and penalty factor of SVM. Finally, a large number of actual
road surface images in di	erent environments are tested.�e results show that the method based on SVM and image segmentation
is feasible. �e accuracy of PSO algorithm is more than 90%, which e	ectively solves the problem of road surface state recognition
under the condition of hybrid or di	erent video scenes.

1. Introduction

According to statistics, 16.12% of tra�c accidents on the
highway are ascribed to slippery road conditions [1] since
2007 in China. By analysis of accidents’ characteristics, it can
be concluded that the tra�c accident rate increases under
the water, snow, ice, and freezing road surface conditions
and that road surface conditions greatly a	ect the highway
tra�c safety and transport e�ciency.�erefore, it is urgent to
carry out research on the road surface state recognition and
provide reference and theoretical basis for tra�c control and
meteorological management to ensure tra�c safety [2].

In the �eld of tra�c meteorology, the road surface state
can be categorized in dry, wet, water, snow, and ice types
according to di	erent forms of liquid on road surface. At
present, the road surface detection sensor is the main
entrance to obtain the information of road surface slippery
conditions. Cai et al. [3] used underground embedded road
surface condition detector to realize the recognition. Gailius
and Jacenas [4] collected the frictional noise between the tire

and the road surface and obtained the road surface charac-
teristics based on the noise spectrum analysis method. Qi et
al. [5] extracted road surface characteristics and anti-hold-
process parameters, according to the principle of maximum
proximity to identify the state of the road surface. Alonso
et al. [6] proposed a real-time acoustics road surface state
recognition system based on tire-road noise and used the
noise measurement system and the signal processing algo-
rithm for road surface state classi�cation, and �nally, precise
classi�cation of dry and wet road state was realized. Wang
et al. [7] proposed D-S evidence theory and arti�cial neural
networkmethod for recognition and prediction of tra�c state
level under adverse weather conditions. However, the road
surface sensor can only obtain the information of the section
and the maintenance is extremely inconvenient; hence the
actual e	ect is not ideal.

With the widespread application of road surveillance
cameras, more and more scholars pay attention to the image
processing technology of road surface slippery condition
recognition. Andreas and Wilco [8] extracted the gray scale
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feature of road surface image and designed the neural
network classi�er for road surface state recognition. Anis et
al. [9] analyzed the set and spectrumof road surface re�ection
image and described the correlation between the surface
texture and the friction coe�cient, by which the re�ection
image of designated location can bemonitored and identi�ed.
Chen [10] extracted low-order statistical features of road
surface images including gray level cooccurrence matrix
texture feature parameters and used linear discriminant
function to determine the road surface state. Ueda et al. [11]
and Yoda et al. [12] measured and analyzed the road sur-
face roughness, the proportion of low-frequency re�ection
signal components and high-frequency components, and the
average re�ection intensity to determine the state of the road
surface based on CCD camera technology. Yamamoto et
al. [13] applied the human-computer interaction method to
extract the gray scale value and temperature characteristics
parameters of the road surface for the road surface state
prediction, and measurement accuracy was tested to be
more than 80%. Muneo et al. [14] used vehicle camera to
collect tra�c information; the parameters of road surface
image polarization characteristics were utilized to establish
the road slippery condition evaluation model. Becchi et al.
[15] obtained the water condition video of the road surface;
the rain density judge values and image analysis results were
combined to evaluate the depth of water �lm on the road
surface, by which the road condition evolution pattern can be
forecasted. Fukui et al. [16] analyzed the slippery condition of
the road by calculating the brightness and spatial spectrum
of road surface images. Li et al. [17] extracted RGB, HIS,
and YUV of road surface images and established the road
surface state recognitionmodel based on improved BP neural
network. �e recognition accuracy rate of this model could
reach more than 85%. However, it was still on the theoretical
research stage with the small size of training sample. Liu and
Huang [18] collected wet road images and then designed a
SVM classi�er of road slippery state classi�cation. Among
them, the misjudgment rate of the dry state is slightly high,
while the recognition accuracy of snow state is slightly high.
Besides, the identi�cation of hybrid road surface statewas still
to be studied. Wan et al. [19] used the RBF neural network
model to discriminate the slippery conditions of di	erent
roads, and the recognition accuracywas 78.4%.Among them,
the recognition accuracy of dry and silt state is low, and the
recognition accuracy of snow and ice state is high.

Image feature extraction is a key step in image recog-
nition. Zhang et al. [20] extracted the eigenvector of RGB
color moment and the Munsell color moment from the
images. �e results show that the color moment feature can
describe the color characteristic of the image well. Shinde
et al. [21] extracted a variety of color features of images
to form a preprocessing database of color eigenvector and
then used machine learning to perform image classi�cation
experiments. �e experimental results show that the classi-
�cation accuracy can be achieved based on multiple color
feature databases. Bhave et al. [22] extracted the color feature
by calculating the average value of each color component
and then used gray level cooccurrence matrix to extract
texture eigenvectors. Based on the feature values above, image

state can be classi�ed. Haralick et al. [23] proposed some
easy-to-calculate texture eigenvectors based on the gray level
cooccurrence matrix. �e texture feature is used to identify
the aerial images. Experimental results show that the texture
feature is the applicability of image classi�cation. Mohanaiah
et al. [24] extracted the four image texture eigenvectors
based on the gray level cooccurrence matrix, including the
second moment, correlation, inverse moment, and entropy.
�e recognition experiments show that calculation time can
be saved and the recognition accuracy is high via these texture
features.

Reviewing the above literatures, it is found that the exist-
ing problems and development trends of image recognition
technology are as follows:

(1) Image recognition technology is the main technology
of road surface recognition.However, due to the com-
plexity of the road scene and the weak adaptability
of the vision system to the illumination change, the
road condition detection method based on machine
vision has the problem of weak adaptability, the
poor robustness of illumination, and low recognition
accuracy at present.

(2) �e identi�cation of the hybrid road surface state is
one of the main problems in this study.

(3) Using SVM, neural network, and other machine
learning methods to identify the road surface state is
the development trend.

(4) Extracting appropriate multidimensional color and
texture eigenvectors can help to improve the accuracy
of road surface state recognition.

�erefore, this paper presents a new method based on
SVM classi�er and image segmentation processing to solve
the problem of the small size of the sample and nonlinear
and high-dimension pattern recognition. First of all, the
comprehensive sample database of road surface state is
established by collecting road surface images in di	erent
scenes through a variety of ways. �en, 13-dimensional color
and texture eigenvectors are extracted to build the training
database of road surface state. Next, the optimal parameters
of the SVM classi�er are trained by the grid searching
optimization algorithm and the PSO algorithm, respectively.
�us two kinds of road surface state classi�cation models
are built and the performances of the two optimization
classi�cation models are compared. For the hybrid road
surface state recognition, the road surface state image is
segmented into blocks and the overall state of road surface
state is presented. Finally, the algorithm proposed is tested
and the ideal recognition results are obtained based on the
large-scale samples.

2. Eigenvectors Extraction of
Road Surface State from Images

�e road surface image information mainly includes color,
texture, shape, and other characteristics. In this paper, rep-
resentatively typical road surface state image samples are
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selected and color and texture eigenvectors are extracted, and
the road surface state image feature database can be formed
by researching color and the texture characteristics of road
state.

2.1. Extraction of Color Eigenvectors. Color eigenvectors of
road surface image are usually stable and not sensitive to size
or direction. Among them, the color moment feature has the
characteristics of translation invariance, rotation invariance,
and scale invariance, which can ensure the integrity of image
color information [20, 21, 25].�erefore, this paper adopts the
third-order color momentmethod to extract the road surface
image color feature. �e de�nitions are as follows:
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where � is the color channel and � is the gray value of image.�� is the �rst-order color moment of image �. �� is the second-
order color moment. �� is the third-order color moment. � is
the probability of the pixels with gray scale � occurrences in
the �th color channel of image.� is the total number of pixels
in the image. Equation (2) is a 9-dimensional color moment
vector, indicating the color feature of images, based on the
HSV (hue, saturation, and brightness) color model:

�color = [��, ��, ��, ��, ��, ��, ��, ��, ��] . (2)

2.2. Extraction of Texture Eigenvectors. Gray level cooccur-
rence matrix can better represent the texture information
[23, 26, 27]. In this paper, we choose the gray level cooccur-
rence matrix method to extract four commonly used texture
features of road surface images.

(1) Energy

ASM = ∑
�
∑
�
� (�, � | �, �)2 . (3)

Energy re�ects the texture thickness of image. When the
texture is coarse relatively, ASM is larger; on the contrary,
ASM is smaller, where �, � are gray scale values of pixels. �
is the spatial relationship between the two pixels. � is the
generated direction of the gray level cooccurrence matrix. �
is the number of occurrences of � and � pixels with the spatial
relationship �.
(2) Entropy

ENT = −∑
�
∑
�
� (�, � | �, �) log2� (�, � | �, �) . (4)

Entropy re�ects the amount of the image information.
When the image hasmore textures, the entropy value is larger.
If the image contains fewer textures, the entropy value is
smaller. If the image has no textures, the entropy value is close
to zero.

(3) Contrast

CON = ∑
�
∑
�
(� − �)2 � (�, � | �, �) . (5)

�e contrast re�ects the clarity of the image texture.
In images, the deeper the texture groove, the greater the
contrast, and the clearer the image texture visual e	ect.

(4) Correlation

COR = ∑
�
∑
�

(��) � (�, �) − �1�2�1�2 , (6)

where �1 = ∑�∑� � ⋅ �(�, �), �2 = ∑�∑� � ⋅ �(�, �), �12 =∑�∑� �(�, �)(� − �1)2, and �22 = ∑�∑� �(�, �)(� − �2)2.
Correlation value re�ects the correlation of local gray

scale in images. When the values of the matrix elements are
evenly equal, the correlation value is large. On the contrary,
when the values of the matrix elements are very di	erent, the
correlation value is small.

Based on the research above, a set of 13-dimensional road
surface state eigenvectors is determined as

feature = [��, ��, ��, ��, ��, ��, ��, ��, ��,ASM,ENT,
CON,COR] . (7)

3. Database Construction of
Road Surface State Feature

3.1. Image Samples Collection of Road Surface State. As shown
in Figure 1, we set up a road surface image acquisition exper-
imental system including the road surface image acquisition
camera, the hard disk video recorder, and the computer. �is
system can cover the entire road and achieve all-weather road
image acquisition.

�e basis of road surface state recognition is to establish
the road surface state feature database, which needs to collect
a large number of road surface state image samples through
various ways. Because of the simplicity of the road surface
images collected by the experimental system, we also use the
highway video surveillance resources, network resources, and
other video resources to collect road images to expand the
sample database.

3.2. Image Samples Database Construction of Road Surface
State. �e road surface state is divided into �ve types includ-
ing dry, wet, water, ice, and snow. According to the in�uence
of original images to samples database under the condition of
di	erent images size and lighting scenes, the original image
segmentation principle is proposed as shown in Table 1.
According to Table 1, original images are divided into blocks,
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Figure 1: Road surface images acquisition system.

Table 1: Image segmentation principle.

Size of images (px) Size of blocks (px)

100000 ≤ image < 1000000 80 × 80
1000000 ≤ image < 2000000 100 × 100
2000000 ≤ image < 3000000 200 × 200
3000000 ≤ image < 5000000 300 × 300
5000000 ≤ image < 8500000 500 × 500

and then the single state blocks are selected to construct the
road surface state samples, which e	ectively guarantee the
quality and purity of the road surface image database.

In this paper, 500 dry images, 500 wet images, 500 water
images, 500 snow images, and 500 ice images totaling 2500
images were collected to construct the sample database. Some
of the image samples are shown in Figure 2.

3.3. Database Construction of Road Surface State Feature.
Based on the road surface state image sample database, 500
samples were collected for each state, and the color and
texture eigenvectors were extracted to build the road surface
state feature database. Figures 3–6 show part of the color and
texture feature curves of 200 samples for each state.

As shown in Figure 3, the range of � �rst-order moment
of dry samples is [0.31, 0.93], the range of � �rst-order
moment of the wet samples is [0.48, 0.73], the range of� �rst-
order moment of water samples is [0.47, 0.88], the range of�
�rst-order moment of snow samples is [0.71, 0.94], and the
range of � �rst-order moment of ice samples is [0.41, 0.93].
It can be seen that there is a large di	erence in �rst-order
moment values between dry samples and snow samples,
while the �rst-order moment curves of the wet, water, and
ice samples show characteristics of overlapping.

As shown in Figure 4, the range of � second-order
moment of dry samples is [0.03, 0.21], the range of� second-
order moment of wet samples is [0.04, 0.20], the range of �
second-order moment of water samples is [0.01, 0.25], the

range of � second-order moment of snow samples is [0.01,
0.07], and the range of secondmoment of ice samples is [0.04,
0.16]. It can be seen that the� secondmoment values of snow
samples are small, and there is a big di	erence with the other
four samples.�e� secondmoment curves of dry, wet, water,
and ice samples are hard to distinguish because of obvious
overlapping.

As shown in Figure 5, the range of energy values of the
dry samples is [1.52, 4.74], the range of energy values of the
wet samples is [1.71, 4.92], the range of energy values of the
water samples is [0.18, 2.48], the range of energy values of the
snow samples is [0.01, 2.13], and the range of energy values of
ice samples is [1.86, 4.94]. It can be seen that the energy value
curves of water and snow samples are overlapped, while the
curves of energy values for dry, wet, and ice samples show
characteristics of overlap.

As shown in Figure 6, the range of entropy of dry samples
is [0.01, 0.35], the entropy of wet samples is [0.01, 0.36], the
range of entropy of water samples is [0.04, 0.98], the range
of entropy of snow samples is [0.14, 0.99], and the range of
entropy of the ice samples is [0.03, 0.25]. It can be seen that
the entropy curves of wet and ice samples are overlapped,
and the entropy curves of dry, water, and snow samples are
overlapped.

It can be concluded that the single feature curves of the
�ve states have an overlapping area, but there are obvious
di	erences in the feature vectors between at least two kinds
of states. �e 13-dimensional feature mentioned in this paper
can help to accurately identify the road surface state.

4. Design of SVM Classification Optimization

4.1. Design of Classi	er Based on SVM. �e principle of SVM
[28, 29] is to �nd the optimal hyperplane, which ensures the
accuracy of the hyperplane classi�cation, while the distance
on both sides of the hyperplane can be maximized. A
nonlinear multiclass SVM classi�er is designed for the recog-
nition of hybrid road surface states. �e nonlinear-to-linear
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Figure 2: Road surface image sample library.
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Figure 3: Color eigenvector: � �rst-order moment.

transformation depends on the nonlinear transformation
from the kernel function to input space. Classi�er design
algorithm is as follows.

Linear SVM classi�cation function is as follows:

 (!) = sgn {(#∗ ⋅ !) + $∗}
= sgn{( 	∑


=1
*
-
 (!
 ⋅ !�)) + $∗}

: = 1, 2, . . . , ;,
(8)

where ! is the input vector. - is the vector type. ; is the
number of input vectors. #∗ is the optimal weight vector. $∗
is the optimal bias. * > 0 is the multiplier for the Lagrangian
function. !
 is the support vector. ? is the number of support
vectors.

For the nonlinear classi�cation function, the existence of
misclassi�ed samples is allowed by introducing nonnegative
slack variable @� (: = 1, 2, . . . , ;), and the classi�cation
hyperplane is

-� [(# ⋅ !�) + $] + @� ≥ 1, : = 1, 2, . . . , ;. (9)
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Figure 4: Color eigenvector: � second-order moment.
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Figure 5: Texture eigenvectors: energy.
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In this case, the reciprocal of the maximum classi�cation

interval is minΦ(#) = (1/2)‖#‖2 + E(∑��=1 @�), where E > 0
is the penalty factor for SVM.

A�er constructing the optimal hyperplane, the most
widely used Gaussian kernel function F(!) = exp[−G|! −!�|2] is used [28, 29], and the input vector ! is transformed
from the input spaceH to the high-dimensional feature spaceI withF transformation,

! → F (!) = (F (!1) , F (!2) , . . . , F (!�))� . (10)

�en the input vector ! is replaced by the eigenvectorF(!), and the nonlinear optimal classi�cation function is
obtained as

 (!) = sgn (# ⋅ F (!) + $)
= sgn( 	∑


=1
*
-
F(!
) ⋅ F (!�) + $) . (11)

Based on the nonlinear optimal classi�cation function,
the main idea of multiclassi�cation can be explained as
follows: Assuming that a SVM classi�er is designed between
every two types of samples, K(K− ;)/2 SVM classi�ers need to
be designed for K samples [28].�erefore, ten SVM classi�ers
are designed for the �ve road states. When classifying an
unknown sample, each classi�er evaluates and counts its type,
and the most statistical result can be regarded as the type of
the test sample.

4.2. Parameter Optimization of SVM. In the process of SVM
classi�cation and identi�cation, the penalty factor E and
Gaussian kernel function factor G have a great impact on
the accuracy of training [30, 31]. �e higher E can result
in overlearning state, which means training set classi�cation
accuracy is high while test set classi�cation accuracy is too
low. �e higher G can lead to excessive support vectors and
interfere with the e�ciency of training and learning [31].
In order to solve the problems above, the grid searching
algorithm and Particle Swarm Optimization algorithm are
used to obtain the optimal parameters ofE andG and improve
the recognition e�ciency and accuracy of SVM.

4.2.1. Parameters Optimization Based on Grid Searching Algo-
rithm. Based on the grid searching algorithm, the principle
of parameter optimization [30] is to make the SVM penalty
factor E and Gaussian kernel function factor G divide the
image into grids in a certain range and then traverse all the
points in the grids to obtain the values. For the de�nedE andG, the K-CV (cross-validation) method is used to get the
training set of this group to verify the classi�cation accuracy.
Finally, the best combination of E and G with the highest
classi�cation accuracy of veri�ed raining set is obtained.

Where the range of E is set to [2−8, 28], the range of G is set to
[2−8, 28].

Among them, there will be many combinations corre-
sponding to the highest veri�cation classi�cation accuracy.
�e combination of the smallest E is selected as the best one,
and if the corresponding G are more than one, the �rstly
searched combination can be selected as the best one.

4.2.2. Parameters Optimization Based on Particle SwarmAlgo-
rithm. �e basic principle of Particle Swarm Optimization
(PSO) [31–33] is as follows: suppose that an ethnic groupL = (!1, !2, . . . , !) consists of M particles in aN-dimensional
search space, where the position of the �th particle (the

optimal solution) is !� = (!�1, !�2, . . . , !��)�, the velocity is

�� = (V1, V2, . . . , V�)�, and the optimal position O� =(��1, ��2, . . . , ���)� of the particle is denoted as �$P�?. �e

globally optimal solution O� = (��1, ��2, . . . , ���)� of the
ethnic group is denoted as G$P�?. A�er �nding the two
optimal solutions, the particle velocity and position vector are
updated based on

V�� (? + 1) = # ⋅ V�� (?) + Q1R1 ⋅ (�$P�? (?) − !�� (?))
+ Q2R2 ⋅ (G$P�? (?) − !�� (?)) ,

!�� (? + 1) = !�� (?) + V�� (? + 1) ,
(12)

where 1 ≤ � ≤ M and 1 ≤ � ≤ N. # is the inertia weight.Q1, Q2 are acceleration constants, generally set as 2. R1, R2 are
random numbers ranging between 0 and 1. ? is the number of
iterations.

Parameters optimization based on the particle swarm
algorithm is as follows.

Step 1. Initialize the size and initial velocity of the particle(E, G), and initialize the parameters Q1, Q2 and the maximum
number of iterations ?.
Step 2. �e �tness value of each particle (E, G) is calculated,
and the classi�cation accuracy, H = number of samples
correctly classi�ed/total number of samples, trained by cross-
validation of SVM is used to evaluate the �tness value of each
particle.

Step 3. �e�tness value of each particle (E, G) and its optimal
position are compared, respectively, and the optimal value�$P�? is obtained. If the current value is better than �$P�?,�$P�? is set as the current value, which means the �$P�?
location is set as the current location.

Step 4. Comparing the �tness value of each particle (E, G)
and the optimal value G$P�? of the ethnic group, if the current
value is better thanG$P�?, the subscript and�tness value of the
current particle are set as the subscript and the �tness value
of G$P�?.
Step 5. According to (12), the particle velocity and position
are updated.

Step 6. When the end condition is reached, the ? times
of iterations are completed, and the optimal value G$P�? is
output and the best parameter (E, G) can be obtained.

5. Image Blocks Validation of
Road Surface State

Firstly, two SVM parameters optimization algorithms are
used to obtain two groups of optimal training parameters
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Table 2: �e road surface condition classi�cation model.

Number of training samples Parameters optimization time consuming (s) Optimal (E, G) Training accuracy

2000
Grid algorithm 2.6482 Grid algorithm (16, 0.5) Grid optimization model 90.97%

PSO algorithm 0.6848 PSO algorithm (12, 0.46) PSO optimization model 99.12%

Table 3: Classi�cation model performance test.

Number of test samples Test accuracy

500
Grid optimization model 88.63%

PSO optimization model 97.02%

(E, G). �en 80% of the samples in the road surface state
feature database are trained based on the best training param-
eters (E, G), and two road surface state classi�cation models
are obtained. A�er that, the remaining 20% of the data sam-
ples are tested to examine the performance of the two clas-
si�cation models. Finally, the road surface state samples in
an actual environment are selected for experimental valida-
tion.

5.1. Establishment of Training Model. (1) Mark the surface
state conditions: dry as D, wet as Wt, water as Wr, snow as
S, and ice as I. �e eigenvectors of 400 samples of each road
state were extracted to form the training database.

(2) �e training data is inputted into SVM classi�er; the
best training parameters (E, G) are gotten. And then, two
kinds of classi�cation models are established.

FromTable 2, it can be seen that the training accuracies of
the two classi�cation models are almost the same. However,
the PSO algorithm is signi�cantly less time-consuming and
with better applicability than the grid searching algorithm.

(3) 20%of the sample datawere tested by the classi�cation
model to verify the recognition performance of the two
classi�cation models. �e test results are shown in Table 3.

From Table 3, it can be seen that the accuracy of the PSO
model is higher than that of the grid searching algorithm, and
the performance of the PSO model is better.

5.2. Image Segmentation Recognition of Actual Road Sur-
face. Firstly, the actual road surface image is divided into
blocks according to the segmentation principle. Next, the 13-
dimensional feature of each block is extracted.�en the road
surface block feature vectors are input into two classi�cation
models mentioned above. And the state of each block will
be recognized. When all the blocks are recognized, the
proportion of each state will be counted.

5.2.1. ImageValidation ofDry State. �erecognition results of
the dry road surface state under good illumination condition
(from the experimental system) are shown in Figure 7 and
Tables 4 and 5.

Table 6 shows the statistic results of each road surface
state.

From Table 6, it can be seen that the test ratio of dry state
is 93.33% a�er the grid searching optimization. A�er the

Table 4: Recognition results of grid.

Column
Row

1 2 3 4 5 6 7 8 9

1 D D D D D D D D D

2 D D D D D D D D D

3 D D D D D D D D D

4 D D D D D D D D D

5 D D D D D D D D D

Table 5: Recognition results of PSO.

Column
Row

1 2 3 4 5 6 7 8 9

1 D D D D D D D D D

2 Wt D D D D D D D D

3 D D D D Wt D D D D

4 D D D D D D D D D

5 D D D D D D Wt D D

optimization by PSO, the ratio of dry state is 100% and
increases by 6.67%.

�e recognition results of dry road surface state under
adverse lighting conditions (from the experimental system)
are shown in Figure 8 and Tables 7 and 8.

Table 9 shows the statistic results of each road surface
state.

FromTable 9, it can be seen that the proportion of the test
images identi�ed as dry is 77.78% a�er optimization by the
grid search algorithm. A�er the PSO optimization, the test
image recognition rate is 95.56% and increases by 17.78%.

5.2.2. Image Validation of Wet State. �e recognition results
of the wet road surface state under good illumination condi-
tion (from the surveillance system) are shown in Figure 9 and
Tables 10 and 11.

Table 12 shows the statistic recognition results of each
road surface state.

FromTable 12, it can be seen that the proportion of the test
images identi�ed as wet is 81.25% a�er optimization by the
grid search algorithm. A�er the PSO optimization, the test
image recognition rate is 93.75% and increases by 12.50%.

�e recognition results of the wet road surface state
under adverse illumination condition (from the experimental
system) are shown in Figure 10 and Tables 13 and 14.

Table 15 shows the recognition results of each road surface
state.

FromTable 15, it can be seen that the proportion of the test
images identi�ed as wet is 80.00% a�er optimization by the
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Table 6: �e dry road surface image identi�cation results statistics.

State State symbol Number of blocks Grid search PSO Grid search/% PSO/%

Dry D

45

42 45 93.33% 100%

Wet Wt 3 0 6.67% 0

Water Wr 0 0 0 0

Snow S 0 0 0 0

Ice I 0 0 0 0

(a) (b)

Figure 7: Image test results of dry road surface state under good lighting condition (from the experimental system). (a) Image of dry road
surface. (b) Image blocks.

(a) (b)

Figure 8: Image test results of dry road surface state under adverse lighting condition (from the experimental system). (a) Image of dry road
surface state. (b) Image blocks.

Table 7: Recognition results of grid.

Column
Row

1 2 3 4 5 6 7 8 9

1 D D D D Wt D D D D

2 Wt D D D D D D Wt D

3 D Wt D D Wt D D D Wt

4 D D D Wt D D D D Wt

5 Wt D D D D D Wt D D

grid search algorithm. A�er the PSO optimization, the test
image recognition rate is 93.33% and increases by 13.33%.

5.2.3. Image Validation of Water State. �e recognition
results of the water road surface state under good illumi-
nation condition (from the mobile camera) are shown in
Figure 11 and Tables 16 and 17.

Table 18 shows the recognition results of each road surface
state.

Table 8: Recognition results of PSO.

Column
Row

1 2 3 4 5 6 7 8 9

1 D D D D D D D D D

2 D D D D D D D D D

3 D D D D D D D D D

4 D D D D Wt D D D D

5 D D D D D D D Wt D

From Table 18, it can be seen that the proportion of the
test images identi�ed as water is 78.57% a�er optimization
by the grid search algorithm. A�er the PSO optimization, the
test image recognition rate is 96.42% and increases by 17.85%.

�e recognition results of the water road surface state
with re�ection (from the Internet images) are shown in
Figure 12 and Tables 19 and 20.

Table 21 shows the recognition results of each road surface
state.
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Table 9: �e dry road surface image identi�cation results statistics.

State State symbol Number of blocks Grid search PSO Grid search/% PSO/%

Dry D

45

35 43 77.78% 95.56%

Wet Wt 10 2 22.22% 4.44%

Water Wr 0 0 0 0

Snow S 0 0 0 0

Ice I 0 0 0 0

(a) (b)

Figure 9: Image test results of wet road surface state under good lighting condition (from the surveillance system). (a) Image of wet road
surface state. (b) Image blocks.

(a) (b)

Figure 10: Image test results of wet road surface state under good lighting condition (from the experimental system). (a) Image of wet road
surface state. (b) Image blocks.

(a) (b)

Figure 11: Image test results of water road surface state under good lighting condition (from the mobile camera). (a) Image of water road
surface state. (b) Image blocks.
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(a) (b)

Figure 12: Image test results of water road surface state with re�ection (from the Internet images). (a) Image of water road surface state. (b)
Image blocks.

(a) (b)

Figure 13: Image test results of snow road surface (from the Internet images). (a) Image of snow road surface state. (b) Image blocks.

From Table 21, it can be seen that the proportion of the
test images identi�ed as water is 75.00% a�er optimization by
the grid search algorithm. A�er the PSO is optimized, the test
image recognition rate is 89.59% and increases by 14.59%.

5.2.4. Image Validation of Snow State. �e recognition results
of the snow road surface state (from the Internet images) are
shown in Figure 13 and Tables 22 and 23.

Table 24 shows the recognition results of each road
surface state.

From Table 24, it can be seen that the proportion of the
test images identi�ed as water is 67.35% a�er optimization by

Table 10: Recognition results of grid.

Column
Row

1 2 3 4 5 6 7 8

1 Wt Wt Wt Wt Wt D Wt Wt

2 Wt Wt Wt Wt Wt D Wt D

3 Wt Wt Wt Wt Wt Wt D D

4 Wt Wt Wt Wt Wt Wt Wt D

5 D Wt Wt Wt Wt Wt Wt Wt

6 D Wt Wt Wt Wt Wt Wt D

the grid search algorithm. A�er the PSO optimization, the
test image recognition rate is 85.71% and increases by 18.36%.



12 Journal of Advanced Transportation

(a) (b)

Figure 14: Image test results of snow road surface (from the surveillance system). (a) Image of snow road surface state. (b) Image blocks.

(a) (b)

Figure 15: Image test results of ice road surface under good illumination condition (from the experimental system). (a) Image of ice road
surface state. (b) Image blocks.

Table 11: Recognition results of PSO.

Column
Row

1 2 3 4 5 6 7 8

1 Wr Wt Wt Wt Wt Wt Wt Wt

2 Wt Wt Wt Wt Wt Wt Wt Wt

3 Wt Wt Wt Wt Wt Wr Wt Wt

4 Wt Wt Wt Wt Wt Wt Wt Wt

5 Wt Wt Wt Wr Wt Wt Wt Wt

6 Wt Wt Wt Wt Wt Wt Wt Wt

�e recognition results of the snow road surface state
(from the surveillance system) are shown in Figure 14 and
Tables 25 and 26.

Table 27 shows the recognition results of each road
surface state.

From Table 27, it can be seen that the proportion of the
test images identi�ed as water is 77.55% a�er optimization by
the grid search algorithm. A�er the PSO optimization, the
test image recognition rate is 91.84% and increases by 14.29%.

5.2.5. Image Validation of Ice State. �e recognition results of
the ice road surface state under good illumination condition
(from the experimental system) are shown in Figure 15 and
Tables 28 and 29.

Table 30 shows the recognition results of each road
surface state.

From Table 30, it can be seen that the proportion of the
test images identi�ed as ice is 93.33% a�er optimization by
the grid search algorithm. A�er the PSO optimization, the
test image recognition rate is 97.78% and increases by 4.45%.

�e recognition results of the ice road surface state with
snow (from the Internet image) are shown in Figure 16 and
Tables 31 and 32.
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Table 12: �e wet road surface image identi�cation results statistics.

State State symbol Number of blocks Grid search PSO Grid search/% PSO/%

Dry D

48

9 0 18.75% 0

Wet Wt 39 45 81.25% 93.75%

Water Wr 0 3 0 6.25%

Snow S 0 0 0 0

Ice I 0 0 0 0

(a) (b)

Figure 16: Image test results of ice road surface with snow (from the Internet image). (a) Image of ice road surface state. (b) Image blocks.

(a) (b)

Figure 17: Image test results of hybrid road surface (from the mobile image). (a) Image of hybrid road surface state. (b) Image blocks.

Table 33 shows the recognition results of each road
surface state.

From Table 33, it can be seen that the proportion of
the test images identi�ed as ice is 71.11% a�er optimization
by the grid search algorithm. A�er the PSO optimization,
the test image recognition rate is 77.78% and increases by
6.67%.

5.2.6. Image Validation of Hybrid State. �e recognition
results of the ice, wet, andwater hybrid state (from themobile
image) are shown in Figure 17 and Tables 34 and 35.

Table 36 shows the recognition results of each road
surface state.

From Table 36, it can be seen that the error rate of each
image block is relatively high on hybrid road condition a�er
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Table 13: Recognition results of grid.

Column
Row

1 2 3 4 5 6 7 8 9

1 Wt Wt Wt Wt Wt D Wt Wt D

2 Wt Wt Wt Wt Wt Wr Wt D Wt

3 Wt Wt D Wt Wt D Wt Wt Wt

4 Wt Wt Wt Wt Wt D Wt I Wt

5 Wt Wt Wt Wt Wt D Wt Wt Wt

Table 14: Recognition results of PSO.

Column
Row

1 2 3 4 5 6 7 8 9

1 Wt Wt Wt Wt Wt Wt Wt Wr Wt

2 Wt Wt Wt Wt Wt Wt Wt Wt Wt

3 Wt Wt Wt I Wt Wt Wt Wt Wt

4 Wt Wt Wt Wt I Wt Wt Wt Wt

5 Wt Wt Wt Wt Wt Wt Wt Wt Wt

Table 15: �e wet road surface image identi�cation results statistics.

State State symbol Number of blocks Grid search PSO Grid search/% PSO/%

Dry D

45

7 0 15.56% 0

Wet Wt 36 42 80.00% 93.33%

Water Wr 1 1 2.22% 2.22%

Snow S 0 0 0 0

Ice I 1 2 2.22% 4.44%

(a) (b)

Figure 18: Image test results of hybrid road surface (from the surveillance system). (a) Image of hybrid road surface state. (b) Image blocks.

the grid searching optimization. A�er PSO optimization,
the recognition accuracy of each block of the test image is
improved, and the distribution of road conditions can be
given accurately.

�e recognition results of the ice, wet, and water hybrid
state (from the surveillance system) are shown in Figure 18
and Tables 37 and 38.

Table 39 shows the recognition results of each road
surface state.

From Table 39, it can be seen that the error rate of each
image block is relatively high on hybrid road condition a�er

the grid searching optimization. A�er PSO optimization,
the recognition accuracy of each block of the test image is
improved, and the distribution of road conditions can be
given accurately.

6. Conclusions

�ere are a large number of tra�c accidents caused by bad
weather condition or slippery road condition.�erefore, road
states greatly a	ect the tra�c safety and transport e�ciency
on highway. It is of great social signi�cance to study the
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Table 16: Recognition results of grid.

Column
Row

1 2 3 4 5 6 7

1 Wr S Wr Wr Wr Wr I

2 Wr Wr Wr Wt Wt Wr Wr

3 Wr Wr Wt Wr Wr I Wr

4 I Wr Wr Wr Wr Wr Wr

5 Wr Wr Wr Wr Wr Wr Wr

6 Wr Wr Wr Wr Wr Wr D

7 Wr S Wr Wr Wr Wr I

8 I Wr Wr Wr Wr Wr I

Table 17: Recognition results of PSO.

Column
Row

1 2 3 4 5 6 7

1 Wr Wr Wr Wr Wr Wr Wr

2 Wr Wr Wr Wr Wr Wr Wr

3 Wr Wr Wr Wr Wr Wr Wr

4 Wr Wr Wr Wr Wr Wr Wt

5 Wr Wr Wr Wr Wr Wr Wr

6 Wr Wr Wr Wr Wr Wr Wr

7 Wr Wr Wr Wr Wr D Wr

8 Wr Wr Wr Wr Wr Wr Wr

Table 18: �e water road surface image identi�cation results statistics.

State State symbol Number of blocks Grid search PSO Grid search/% PSO/%

Dry D

56

1 1 1.79% 1.79%

Wet Wt 3 1 5.36% 1.79%

Water Wr 44 54 78.57% 96.42%

Snow S 2 0 3.57% 0

Ice I 6 0 10.71% 0

Table 19: Recognition results of grid.

Column
Row

1 2 3 4 5 6

1 Wr S Wr Wr Wr I

2 Wr Wr Wr Wt Wr Wr

3 Wr Wt Wr Wr I Wr

4 I Wr Wr D Wr Wr

5 Wr Wr Wr Wr Wr Wr

6 Wr Wr Wr Wr Wr Wr

7 Wr S Wr Wr Wr I

8 I Wr Wr Wr Wr I
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Table 20: Recognition results of PSO.

Column
Row

1 2 3 4 5 6

1 Wt Wr Wr Wr Wt Wr

2 Wr Wr Wr Wr Wt Wr

3 Wr Wr Wr Wr Wr Wr

4 Wr Wr Wr Wr Wt Wr

5 Wr Wr Wr Wr Wr Wr

6 Wr Wr Wr Wr Wr Wr

7 Wr Wr Wr Wr Wr Wr

8 I Wr Wr Wr Wr Wt

Table 21: �e water road surface image identi�cation results statistics.

State State symbol Number of blocks Grid search PSO Grid search/% PSO/%

Dry D

48

2 0 4.17% 0

Wet Wt 2 4 4.16% 8.33%

Water Wr 36 43 75% 89.59%

Snow S 2 0 4.17% 0

Ice I 6 1 12.5% 2.08%

Table 22: Recognition results of grid.

Column
Row

1 2 3 4 5 6 7

1 Wr S S S S S I

2 S I S S S S S

3 S I S I S S S

4 S I S S I S S

5 I S S S S S I

6 I I S S S I Wr

7 I I S S S I S

Table 23: Recognition results of PSO.

Column
Row

1 2 3 4 5 6 7

1 Wr S S S S S S

2 S S S S S S S

3 S S S S S S S

4 S S S S I S S

5 I S S S S S S

6 S I S S S I Wr

7 S S S S S I S

classi�cation of wet and slippery road condition, which can
provide reference and theoretical basis for tra�c control and
meteorological management and ensure tra�c safety.

�ere are many limitations in using instrument to rec-
ognize road surface conditions, and image recognition is
becoming the main technology for recognizing road surface

state.However, recognition under hybrid road conditions and
di	erent lighting conditions are two problems that need to be
solved.

Based on SVM algorithm and image segmentation pro-
cessing technology, we propose a method of video image
processing technology for road surface state recognition. First
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Table 24: �e snow road surface image identi�cation results statistics.

State State symbol Number of blocks Grid search PSO Grid search/% PSO/%

Dry D

49

0 0 0 0

Wet Wt 0 0 0 0

Water Wr 2 2 4.08% 4.08%

Snow S 33 42 67.35% 85.71%

Ice I 14 5 28.57% 10.20%

Table 25: Recognition results of grid.

Column
Row

1 2 3 4 5 6

1 S S S S S I

2 D D S S S S

3 S S S S D D

4 S S S Wr D S

5 S S S S S S

6 S S S S S S

7 S S S D Wt S

8 S S S D Wt S

Table 26: Recognition results of PSO.

Column
Row

1 2 3 4 5 6

1 S S S S S I

2 S S S S S S

3 S S S S S I

4 S S S S S S

5 S S S S S S

6 S S S S S S

7 S S S S Wt S

8 S S S S S I

Table 27: �e snow road surface image identi�cation results statistics.

State State symbol Number of blocks Grid search PSO Grid search/% PSO/%

Dry D

49

7 0 14.29% 0

Wet Wt 2 1 4.08% 2.04%

Water Wr 1 0 2.04% 0%

Snow S 38 45 77.55% 91.84%

Ice I 1 3 2.04% 6.12%

Table 28: Recognition results of grid.

Column
Row

1 2 3 4 5 6 7 8 9

1 I I I I I I I Wt I

2 I I I I I I I Wt I

3 I I I I I I I I I

4 I I I I I I I I I

5 I I I I I Wt I I I
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Table 29: Recognition results of PSO.

Column
Row

1 2 3 4 5 6 7 8 9

1 I I I I I I I I I

2 I I I I I I I I I

3 I I I I I I I Wt I

4 I I I I I I I I I

5 I I I I I I I I I

Table 30: �e ice road surface image identi�cation results statistics.

State State symbol Number of blocks Grid search PSO Grid search/% PSO/%

Dry D

45

0 0 0 0

Wet Wt 3 1 6.67% 2.22%

Water Wr 0 0 0 0

Snow S 0 0 0 0

Ice I 42 44 93.33% 97.78%

Table 31: Recognition results of grid.

Column
Row

1 2 3 4 5 6

1 D I Wt I I I

2 I I I I I D

3 D I I I I I

4 Wt I I I I Wt

5 I Wr I I I I

6 D Wt D I I I

7 I I I I I I

8 I I I D D Wt

Table 32: Recognition results of PSO.

Column
Row

1 2 3 4 5 6

1 I I I I S I

2 I I I S I I

3 I I I S S I

4 I I I I I I

5 I I I I I Wt

6 I Wt Wt I I I

7 I I I I Wt Wt

8 I I I I I Wt

Table 33: �e ice road surface image identi�cation results statistics.

State State symbol Number of blocks Grid search PSO Grid search/% PSO/%

Dry D

45

42 45 93.33% 100%

Wet Wt 3 0 6.67% 0

Water Wr 0 0 0 0

Snow S 0 0 0 0

Ice I 0 0 0 0
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Table 34: Recognition results of grid.

Column
Row

1 2 3 4 5 6 7 8

1 Wt D Wr Wr Wr Wr D D

2 Wt Wt D Wr Wr Wr D Wt

3 Wt Wt D Wr Wr Wr D Wt

4 Wt Wt Wr Wt Wr Wt D Wt

5 S S Wt Wt Wt Wt D Wt

6 D Wt Wr Wt D D D D

Table 35: Recognition results of PSO.

Column
Row

1 2 3 4 5 6 7 8

1 Wt D D Wt Wr Wt Wr Wr

2 D D D Wt Wr Wt Wr Wt

3 D D Wr Wr Wr Wt Wt Wr

4 D D Wr Wr Wr Wt D Wt

5 D Wt Wr Wr Wr Wr Wt Wt

6 D D Wr Wr Wr Wr Wr Wt

Table 36: �e hybrid road surface image identi�cation results statistics.

State State symbol Number of blocks Grid search PSO Grid search/% PSO/%

Dry D

48

14 13 29.17% 27.08%

Wet Wt 19 14 39.58% 29.17%

Water Wr 13 21 27.08% 43.75%

Snow S 2 0 0.42% 0

Ice I 0 0 0 0

Table 37: Recognition results of grid.

Column
Row

1 2 3 4 5 6 7 8 9

1 Wt Wr I Wr Wt I I I S

2 Wt I I I Wt I I Wt S

3 Wt Wr S Wr Wt I Wt Wt S

4 Wt Wr I Wr Wt Wt I Wr Wr

5 Wt Wr I Wr Wt I Wr Wr S

Table 38: Recognition results of PSO.

Column
Row

1 2 3 4 5 6 7 8 9

1 I I I I I I Wt Wt I

2 I Wt Wt I I I I I I

3 S S S I I I I I I

4 S I S I I I Wt I I

5 S I I I I I S I Wt

of all, according to the segmentation principle, the road
surface samples are divided into blocks and the road surface

state sample database is constructed. �en, 9-dimensional
color eigenvectors and 4-dimensional texture eigenvectors
are extracted to form a 13-dimensional eigenvectors database
which can describe the road surface state. A�er that, the
SVMclassi�er is trained by using grid searching optimization
and PSO optimization to obtain the road surface state
classi�cation model. And then, the performances of two
classi�cation models are tested. Finally, a road surface state
recognition program was developed to test the actual road
surface state images in a variety of environments.

�e test results show that (1) the establishment of a perfect
sample database is the basis for accurate recognition of road
surface state. �e quality and purity of the sample database
can be ensured by dealing with single state image blocks. (2)
Each feature value of the �ve states has overlapping parts,
while 13-dimensional eigenvectors can satisfy the need of
state recognition accurately. (3) A�er the SVM parameter
optimization, the performance of road state classi�cation
model is superior, in which the performance of the PSO algo-
rithm is better than that of the grid searching optimization
algorithm, and the accuracy of state recognition is improved.
(4) Image segmentation method can be used to obtain the
distribution of road surface state, which solves the problem
of hybrid road surface state and road surface under di	erent
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Table 39: �e hybrid road surface image identi�cation results statistics.

State State symbol Number of blocks Grid search PSO Grid search/% PSO/%

Dry D

45

0 0 0 0

Wet Wt 14 6 31.11% 13.33%

Water Wr 12 0 26.67% 0

Snow S 5 7 11.11% 15.56%

Ice I 14 32 31.11% 71.11%

light conditions. �e recognition accuracy of single state is
above 90%, and the recognition accuracy of hybrid state is
more than 85%.
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