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Abstract The current release of VIATRA provides open-
source tool support for an event-driven, reactive model
transformation engine built on top of highly scalable incre-
mental graph queries for models with millions of elements
and advanced features such as rule-based design space
exploration complex event processing or model obfuscation.
However, the history of the VIATRA model transformation
framework dates back to over 16 years. Starting as an early
academic research prototype as part of the M.Sc project of
the the first author it first evolved into a Prolog-based engine
followed by a family of open-source projects which by now
matured into a component integrated into various industrial
and open-source tools and deployed over multiple technolo-
gies. This invited paper briefly overviews the evolution of
the VIATRA/IncQuery family by highlighting key features
and illustrating main transformation concepts along an open
case study influenced by an industrial project.
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1 Software tools in systems engineering

Model-driven engineering (MDE) plays an important role in
the design of critical embedded and cyber-physical systems
in various application domains such as automotive, avion-
ics or telecommunication. MDE tools aim to simultaneously

improve quality and decrease costs by early validation by
highlighting conceptual design flaws well before traditional
testing phases in accordance with the correct-by-construction
principle. Furthermore, they improve productivity of engi-
neers by automatically synthesizing different design artifacts
(source code, configuration tables, test cases, fault trees, etc.)
necessitated by certification standards (like DO-178C [117],
DO-330 [116] or ISO 26262[78]).

Certain shares in the software tool market of systems engi-
neering are dominated by very few industrial tools (e.g.,
MATLAB Simulink, Dymola, DOORS, MagicDraw) each
of which typically provides advanced support for certain
development stages (requirements engineering, simulation,
allocation, test generation, etc). To protect their intellec-
tual property rights, these tools are of closed nature, which
implies huge tool integration costs for system integrators
(such as airframers or car manufacturers). On the other hand,
recent initiatives (such as PolarSys, OpenModelica) have
started to promote open language standards and the system-
atic use of open-source software components in tools for
critical systems to reduce licensing costs and risks of vendor
lock-in.

Certification standards of critical cyber-physical systems
require that software tools used for developing such critical
system are validated with the same scrutiny as the system
under design by software tool qualification [87,116], espe-
cially, when no further human checking is carried out on
the outputs of such tools. Software tool qualification dis-
tinguishes between design tools which, by definition, may
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introduce new errors to the system and verification tools

which may fail to reveal existing errors of the system [87] or
falsely reduce or simplify the verification process itself by
automation [116].

Unsurprisingly, software tool qualification is extremely
costly due to high algorithmic complexity [97], tightly cou-
pled architecture and unexpected feature interaction of such
tools [86]. In fact, many companies rather opt for using tools
just as design aids to highlight errors quickly, and then, they
carry out the traditional verification and validation process
by thorough simulation and testing [32,156]. Anyhow, sys-
tematic software engineering techniques to simultaneously
improve quality and reduce the costs of software tool
qualification would be highly beneficial. Existing software
engineering practices may guarantee the quality of the sys-
tem itself, but they frequently fail to ensure the quality of

the software tool used in systems engineering [141]. Fur-
thermore, the rapid increase in the size and complexity of
systems models introduces significant scalability challenges

for these tools [84].
Software language engineering aims to provide founda-

tions, techniques and tools for domain-specific modeling
languages to capture the models. Model transformation

engineering aims to systematically develop queries and trans-
formations used in automated code generators, simulators
or debuggers to process these models. Of course, seamless
integration of these techniques is needed when developing
industrial tools.

The VIATRA open-source software project provides
advanced support for incremental and reactive model trans-
formations [20,141] built on top of incremental graph queries
to assist the systematic development of novel tools for sys-
tems engineering. This invited paper extends previous papers
[20,39,137,141,142,148] to provide an overview on the his-
tory and evolution of the VIATRA model transformation
framework. It first started as part of the MSc research project
of the first author in 1999 [146,147], then evolved into a
Prolog-based model transformation engine [39,148] (Sect. 3)
followed by an open-source Eclipse project founded in 2005
[142] and used in various European projects (Sect. 4). Since
2010, the VIATRA family includes IncQuery [22,137]
which supports the scalable incremental evaluation of graph
queries over large models of heterogeneous technological
spaces (Sect. 5.2). The current industrial release of VIATRA
[20] (Sects. 5.3, 5.4) is a reactive and incremental transfor-
mation engine built on top of graph queries following several
principles of reactive programming [13] and active data-
bases [106]. We overview the main features of each major
release along an open case study influenced by an indus-
trial project (Sect. 2) which uses reactive transformations for
model-based deployment with run-time models. We present
selected academic and industrial applications of the VIATRA
family and summarize related work in a historical context.

2 Motivating example

As a motivating example, we investigate model deployment
transformations for dynamic and self-adaptive systems fre-
quently considered in the context of smart cyber-physical
systems (CPS) [92]. The source domain describes a high-
level generic infrastructure where applications (services) are
dynamically allocated to connected hosts. The target domain

represents low-level system deployment configuration with
stateful applications deployed on hosts. Traceability links

between the source and target models are also persisted as
models to comply with traceability requirements of CPSs.

The full case study presents a complex challenge includ-
ing (1) continuous validation of well-formedness constraints,
(2) a model synchronization scenario, i.e., a model-to-model
(M2M) transformation from the CPS model to a deployment
model and (3) a code generation scenario from the deploy-
ment model to Java code.

In a real design tool, some of these steps can be addressed
by batch (on-demand) transformations which are initiated
explicitly by the engineer, while others are defined as live

(reactive) transformations which are triggered automatically
by certain changes in the underlying model. Some transfor-
mation steps can be target incremental which only update
or move target model elements instead of regenerating them
from scratch. Furthermore, source incremental transforma-
tion steps traverse or query exactly those source elements
which are relevant for change detection and propagation
[68,123].

Due to data and control dependencies, the different trans-
formation phases heavily depend upon each other. For
instance, continuous validation of constraints has to be
suspended, while a transformation is running; otherwise,
constraint violations may be unintentionally detected in an
incomplete state. In a traditional MDE toolchain, separate
tool features (e.g., plugins) would be used to describe the
various phases, requiring an external orchestrator to facil-
itate the coordination. Complex features in real MDE tools
(like model indexing or file operations) add further complex-
ity to the integration of tool features. Needless to say that such
orchestrators are extremely hard to develop and debug.

Metamodels We present simplified fragments of the meta-
models in Fig. 1 to provide better focus for our paper.
The source (CPS) domain (Fig. 1a) contains classes (nodes)
HostInstances and AppInstances, respectively, typed by
HostTypes and AppTypes as denoted by the corresponding
instances references (edges). AppInstances are allocated
to a HostInstance captured by allocatedTo references.
In the target (Deployment) domain (Fig. 1b), Deploymen-

tHosts and DeploymentApplications are derived from their
counterparts in the CPS model, but hosted applications are
deployed directly under their hosts (see reference apps). The
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Fig. 1 Metamodels extracts of source, target and traceability domains

Fig. 2 Sample source and target models

containment hierarchy is defined along references marked by
black diamonds (at the container end).

Finally, the mappings between the two domains are per-
sisted in a simple traceability model using CPS2DEPTrace

elements and src and trg references.

Instance models A sample source model is depicted in the
top part of Fig. 2 with one AppType and HostType, three
AppInstances (app1, app2 and app3) and two HostIn-

stances (host1 and host2). Application instances app1 and
app2 are running, while app3 is stopped. Moreover, app1

is allocated to host1, while app3 is allocated to host2. Note
that the containment hierarchy of elements is not explicitly
depicted in the instance models.

Its corresponding target deployment model is illustrated
in the bottom part of Fig. 2 with two DeploymentHosts
(dh1 and dh2) each containing a DeploymentApp (da1

and da3). Traceability is represented in a separated model
with four elements of type CPS2DEPTrace linking the cor-
responding elements of the source and target domains and a
top-level trace CPS2DEP linking the models themselves.

A transformation problem Below, we only overview the
M2M scenario, which aims to illustrate the specification

of transformations with different levels of incrementality,
such as batch transformations, reactive/live transformations

and traceability-driven transformations. Initially, we derive
a deployment model from the CPS model, and then, incre-
mental model transformations propagate changes observed
in the CPS model to the deployment model as well as to the
traceability model.

The informal transformation rules are the following:

1. The root element of a CPS model root is mapped to the
root of the Deployment model (after clearing all existing
traceability elements).

2. Each HostInstance in the source model is mapped to a
DeploymentHost in the target model and connected to
the root of the Deployment model.

3. Each allocated AppInstance in the source model is
mapped to a DeploymentApp in the target model and
deployed to its DeploymentHost.

This transformation problem will be used in the sequel to
exemplify and compare the different versions of the Viatra

framework. However, the reader is encouraged to check the
complete source code, documentation and performance eval-
uation results available from https://github.com/IncQueryLabs/

incquery-examples-cps.

3 VIATRA1: a Prolog-based transformation
framework

3.1 Motivation

The motivation for a well-founded model transformation
framework came from the HIDE project [28] which aimed to
carry out model-based evaluation of functional and depend-
ability attributes of the system under design by formal
methods. Assuming that system models are captured in high-
level languages (e.g., in UML as in HIDE [28,39] or using
languages such as SysML, AADL, BPMN), the key idea was
to carry out early systematic formal analysis of design models
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by generating appropriate mathematical models by auto-

mated model transformations (MT). Precise formal analysis
retrieves a list of problems, which can be back-annotated to
the high-level engineering models to allow system designer
to make corrections prior to investing in manual coding
for implementation. This way, formal methods are hidden
by automated model transformations which project system
models into various mathematical domains [28,134]. Fur-
thermore, the source code of the target system can be derived
by automatic code generation.

3.2 Key innovations and features

The initial concepts of [146,147] continued as the Ph.D.
project of the first author to develop the first version of the
Viatra model transformation framework published in two
key papers [39,148]. The key innovative features of Viatra1

included the following:

(a) XMI-based model export/import Viatra1 imported
and exported models serialized in accordance with the
XMI 1.0 standard for arbitrary MOF-based metamod-

els—5 years before EMF achieving the same for Ecore
metamodels [45].

(b) Model transformations by graph transformation Trans-
formations were formally captured by graph transfor-
mation (GT) rules [47,115], which offer a rule and
pattern-based approach for manipulating graph-based
models. In GT, the preconditions of applying a rule
are captured by the left-hand side (LHS) graph, while
the right-hand side (RHS) graph declaratively cap-
tures how to rewrite the graph as a result of the rule
application.
While GT had already been a well-established formal
conceptual framework [115] with several applications
and tool support [47], using GT for capturing language
semantics or model-to-model transformations was a new
idea in 2000 reported in [48,50,147,148]. Triple graph
grammars were proposed in [119] as a concept for bidi-
rectional transformations, although most of tool support
was still ongoing work at that time.

(c) UML as visual syntax The concrete syntax of GT rules
was defined by UML Class diagrams. Transformation
programs were assembled from rules using UML Activity
Diagrams and core control primitives (e.g., as-long-as-
possible mode). Rational Rose was used as a UML editor
for modeling transformation rules and exporting them
also in an XMI format.
Embedding graph transformation rules into the UML
language was investigated by FUJABA [50] or GReAT
[14] with significantly higher maturity compared to Via-

tra1. UML was used as a transformation language later,
e.g., in [5,82].

Fig. 3 A graph transformation rule (in UML)

(d) Auto-generated transformation code Viatra1 took a
compiled approach by automatically generating Prolog
code from GT rules captured as UML models. To be
more precise, the target language of the compilation was
a internal domain-specific language (DSL) over Pro-
log. The compilation process consisted of a sequence
of model transformation steps [139], and it used only
metamodel-level information to derive a local-search-
based traversal for edges of graph patterns. Some manual
modification of the auto-generated Prolog code was
needed in case of complex, recursive transformation
rules.
By that time, a similar compiler-based approach was
already taken by several graph transformation tools
including PROGRES [120], FUJABA [50,102] or OPTI-
MIX [10].

(e) Prolog as transformation engine Model transforma-
tions were executed using SWI-Prolog as the underlying
engine. Debugging of transformations was carried out
on the Prolog-engine level. Logging of transformations
was limited to reporting the number of rule applications
during a transformation run.
Prolog has remained a popular platform for model trans-
formations as demonstrated by [6,118].

Example A graph transformation rule for mapping- allo-
cated applications to the deployment platform is depicted
in Fig. 3. When a AppInstance is found which is allocated
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Fig. 4 Generated Prolog code for rule of Fig. 3

to a HostInstance but not yet mapped to a Deploymen-

tApp (identified by the lack of traceability structures), then
the rule creates a new DeploymentApp and linked with a
CPS2DEPTrace traceability node and src and trg trace-
ability edges.

In its UML notation, a Viatra1 rule is specified by three
UML packages (for the LHS, the RHS and a negative condi-
tion NEG) containing classes and associations between them
where (1) each model element (node or edge) is identified by
a unique name (defining a corresponding variable) and (2) the
types of model elements are defined by appropriate stereo-
types. If several classes (or associations) appear in different
packages with identical names, it refers to the same model
element.

For example, «DeploymentHost»DH appears both in the
LHS and the RHS packages; thus, it defines a node which
needs to be matched in the LHS and preserved when applying
the rule. However, edge «apps» E2 only appears in the RHS
package; thus, a new edge is created by the rule with a unique
identifier resolved to E2.

Viatra1 automatically generated the following Prolog
code from rule appInst2deployedAppR (listed in Fig. 4).
The code generator used a simple depth first search for order-
ing the Prolog clauses of the fully declarative LHS always
starting the search at a designated node of the LHS.

Prolog meta-programming and the cut (!) construct were
intensively used for checking attributes and nodes already
visited (e.g., as part of node1). Control structures of trans-
formation programs were restricted to a few constructs (see
Fig. 5).

Fig. 5 Generic Viatra1 library in Prolog (extract)

3.3 Application in projects

The first complex model transformations implemented in
Viatra1 were focused around challenges of the HIDE
project [28], and numerous follow-up national projects. Key
transformations included the following:

• SC2Promela mapping UML statecharts to Promela for
functional behavior analysis by model checking [94];

• SCComplete completeness analysis of UML statecharts
using Viatra1 and Prolog [105]

• UML2DFN mapping UML component diagrams to
dataflow networks for fault modeling and fault propa-
gation analysis [29];

• SC2SPN mapping UML statecharts to stochastic Petri
nets for reliability analysis [41].

3.4 Software engineering aspects

The Viatra1 transformation framework was developed by
the first author as part of his Ph.D. project without having a
real software engineering process behind the project. Taking
the semiformal high-level specification of transformations,
he was the developer for most of the model transformations
as well since (1) developing transformation rules by UML
profiles within Rational Rose had severe usability issues, and
(2) Prolog as an internal transformation language and execu-
tion engine turned out to be an obstacle for many colleagues.

4 VIATRA2: a model transformation framework
in Eclipse

4.1 Motivation

The development of Viatra2 was started in early 2004 to
serve as a general-purpose model transformation engineering
framework that aims at supporting the entire lifecycle, i.e., the
specification, design, execution, validation and maintenance
of transformations within and between various modeling
languages and domains [142,145]. A specific goal was to
provide foundations for precise model transformations aim-
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ing to bridge engineering and formal mathematical domains.
The birth of Viatra2 was also triggered by the open call
for proposals for the QVT standard [104], although it took a
significantly different approach.

4.2 Key innovations and features

(a) Model management Viatra2 was built on the VPM
metamodeling approach [143,144] which facilitated a
unified treatment of classes and objects similarly to
clabjects to support multilevel metamodeling [11,12]
along arbitrary (fluid) metalevels. Viatra2 introduced
the concepts of a model space which provided uniform
storage and handling of metamodels, models and trans-
formation models. Unlike in contemporary EMF-based
tools which stored metamodels in a separate registry and
generated Java code from metamodel-level information,
VPM provided a single namespace (registry) for mod-
els, metamodels and transformations with fully qualified
names and offered a generic model manipulation library
without additional code generation.

(b) Transformation language The Viatra2 framework
offered a rule- and pattern-based transformation lan-
guage for manipulating graph models by combining
graph transformation and abstract state machines (ASMs)
into a single specification paradigm [142]. This tex-
tual language provided advanced constructs for querying
(e.g., recursive graph patterns [152]), unidirectional
graph transformation rules for elementary model manip-
ulations, and complex transformation programs captured
by ASMs. As further key innovation, generic and meta-
transformations were introduced in [142,145] which
are known nowadays as higher-order transformations
[8,133].
Popular graph transformation tools developed in paral-
lel with Viatra2 included AGG [49], ATOM3 [93],
FUJABA [102], GReAT [14], GrGen.Net [55], MOFLON
[7], VMTS [99]. Popular model transformation lan-
guages within the Eclipse framework were ATL [80],
Epsilon [83], GEMS [127], or Tefkat [95]. Several of
these projects later evolved to components of the top-
level Eclipse Modeling project.

(c) Graph query and transformation engine Graph queries
could initially be evaluated on instance models using
local-search-based pattern matching [33]. First search
plans were statically generated using metamodel-level
information (and magic sets for recursive patterns [152]),
and later, we experimented with model-level adaptive

search plans [153]. As a key innovation, we developed
incremental graph pattern matching by using a custom
[154] and Rete-based [52] caching mechanism in [109].
Moreover, a hybrid approach for combining incremental
and local search techniques was proposed in [21]. Via-

tra2 also had a live model transformation engine [109]
where rules are permanently loaded and they immedi-
ately react to changes in the underlying models in order
to support change-driven transformations [24,112].
Several efficient search plan-based techniques have been
proposed since then for GrGEN [55], EMF models [150],
adaptive search plans [55] as well as for the current Via-

tra [34]. Moreover, incremental model transformation
techniques were proposed, e.g., for Tefkat [62], ATL [81]
and in triple graph grammar tools [56,69].

(d) Transformation plugins While most transformations
were executed by the Viatra2 transformation engine,
extensive research has been dedicated to generate stand-
alone transformation plugins from high-level specifi-
cations using the Viatra 2 transformation language.
These plugins could be embedded and executed in indus-
trial platforms without the need for the Viatra 2 engine.
Target platforms included relational databases [23,151]
or Enterprise Java Beans [16,149].

(e) Add-ons The Viatra2 transformation started to serve as
a core for high-level features and add-on. Most notable
examples include the VIATRA-DSM framework [111]
which aimed to support the development of custom
domain-specific languages and simulators. However,
unlike the Graphical Modeling Framework [128], it
avoided the use of code generators by providing a
customizable generic core framework with real-time
reflection to changes in language specifications. Interest-
ingly, similar concepts are used in the Sirius framework
[131] nowadays.
Viatra2 also served as core engine for solving con-
straint satisfaction [74,75] and design space exploration
[65,66] problems with complex structural constraints
directly over models. A key challenge here is to find con-
sistent sequences of rule applications leading to a desig-
nated target state fulfilling goal constraints. Incremental
pattern matching was beneficial to quickly identify con-
straint violations during traversal. Viatra2 also served
as the conceptual basis for a stochastic simulator for GT
systems [135].
State space exploration over graph models has also been
investigated in model checkers for GT systems (e.g.,
Groove [113,114], Augur [85]). Nowadays, rule-based
design space exploration approaches following related
ideas include [4,44,51,54].

Example As a sample transformation rule of Viatra2 , we
present in Fig. 6 how to derive DeploymentApp elements
for each AppInstance allocated to a HostInstance (which
was discussed for Viatra1 transformations in Fig. 3 and
Fig. 4).

This GT rule appInst2deployedAppR also uses explicit
traceability models to identify which elements are already
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Fig. 6 A graph transformation rule in Viatra2

mapped during transformation by introducing graph pattern
mappedElement. The LHS of the rule is also a graph pattern
which consists of local structural constraints (e.g., AppIn-

stance(App) and pattern composition using the predefined
mappedElement pattern in both positive and negative way:
We check that Host is already mapped to a Deploymen-

tHost, while App is not yet mapped as requested by a
negative application condition. The complete graph pattern
is composed and flattened at compile time by the Viatra2

engine (also arranging the actual predicates in an efficient
order using search plans). This time the action of the trans-
formation rule is defined in an imperative way by using model
manipulation operations with abstract state machine con-
structs.

An extract from a sample transformation program assem-
bled by using abstract state machine constructs is listed in
Fig. 7. The transformation first handles the root CPS ele-
ment of the source model (identified by variable CPSModel)
by applying rule cps2deploymentR. Then, it applies rule
hostInst2deployedHostR for all HostInstances within
CPSModel. Finally, rule appInst2deployedAppR (detailed
in Fig. 6) is initiated to handle (allocated) AppInstances.

4.3 Selected applications

The Viatra2 framework served as a key underlying model
transformation technology of several European projects for
dependable embedded systems and service-oriented appli-
cations including DECOS, DIANA, MOGENTES and SEN-

Fig. 7 A transformation program in VIATRA2

SORIA and the INDEXYS project within the industry-driven
ARTEMIS platform. Academic and industrial partners in
these projects became the first end users of the Via-

tra2 framework. Regular usage of the framework has been
reported at ARCS and TU Vienna (Austria), University
of Leicester (UK), LMU Munich (Germany), TU Kaiser-
slautern (Germany), University of Pisa (Italy), University of
Waterloo (Canada), Georgia University of Technology and
NASA (USA).

4.3.1 Transformations for service-oriented computing

The SENSORIA European project developed a compre-
hensive, model-driven approach for service engineering
including (1) novel languages for service modeling, (2) qual-
itative and quantitative techniques for service analysis, (3)
automated mechanisms for model-driven service deployment
and (4) transformations for legacy service re-engineering.
Model transformation served as a key technology for model-
driven service engineering by bridging different languages
and tools in the context of service-oriented applications. Var-
ious model transformations were developed in the scope of
the project:

• Automated formal analysis of BPEL processes The con-
sistency of business processes captured using the stan-
dard BPEL notation [103] was formally analyzed by the
SAL model checker [19], which exhaustively investigates
all potential execution paths of a dynamic behavioral
model to decide if a designated property (requirement)
holds or not. SAL models were automatically derived by
a complex model transformation [88,89].

• Back-annotation of model checking results to BPEL

processes As a reverse problem, back-annotation of the
results retrieved by the SAL model checker to the BPEL
model of service engineers was carried out [63] by
a mapping between traces captured by change-driven
transformations [112].
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• Model-driven performability analysis. Performability is
a nonfunctional system-level parameter, which aims to
assess the cost of using fault-tolerant techniques in terms
of performance. We developed a model-driven performa-
bility analysis approach [59] by mapping UML-based
service models to formal process model for the PEPA
framework [58]. The system-level performability model
was assembled from a library of core performability
components driven by system-level UML component
diagrams.

• Model-driven service deployment The derivation of con-
figuration descriptors required for service deployment
was automated in [57,60,90] by a chain of generic model
transformations [145]. This approach was successfully
adapted to a number of standard service platforms includ-
ing the application interface specification of the service
availability forum, the web service description language
(WSDL), WS-reliable messaging, the IBM RAMP plat-
form, and Rampart and Sandesha configuration files for
the Apache Axis2 framework.

4.3.2 Transformations for critical embedded systems

The Viatra2 model transformation framework has been
intensively used for providing tool support for develop-
ing and verifying critical embedded systems in numer-
ous European research projects such as DECOS, DIANA,
MOGENTES, INDEXYS and SecureChange.

• Model-driven tool integration Model transformations
served a key role in tool integration scenarios to bridge a
variety of off-the-shelf industrial tools where tool integra-
tion scenarios were driven by the underlying development
process [15,67].

• Model-driven development tools A user-guided inter-
active model transformation chain [15] served as the
foundation for model-driven tools in the automotive
and avionics domain aiming to support the development
of configuration tables for hardware-software allocation
[67,76].

4.4 Software engineering aspects

To facilitate the increased involvement of graduate students,
Viatra2 was implemented in Java as a plugin of the new
open source Eclipse framework. In September 2005, Via-

tra2 became an open-source component of Generative
Modeling Tools (GMT) project, which was a joint incubator
of several model transformation technologies including ATL
[80] or Epsilon [83].

The Viatra2 project has been initially led by the first
author, while the first contribution of Viatra2 was devel-
oped by one Ph.D. student and 3 MSc students. Since then,

Viatra2 has continuously been developed until mid of
2013 with 6 major releases altogether involving a total of 8
Ph.D. students, including all co-authors of the paper, András
Balogh, Gergely Varró and Dániel Tóth and well over 20 MSc
student throughout the years.

5 VIATRA3: a reactive transformation platform
built on incremental queries

5.1 Motivation

By 2010, it was clear to us that the major strength of Viatra2

is its query language and incremental evaluation engine,
while its most severe practical limitation is the lack of seam-
less support for models captured using the industrial Eclipse
Modeling Framework (EMF) [45]. An industrial tool devel-
opment project carried out in collaboration with OptXware
Ltd. further revealed that writing queries and validation rules
for EMF models was especially cumbersome due to, e.g.,
problematic testability of embedded loops, complex naviga-
tion expressions and export–import functionality.

This led us to focus most of our research and development
efforts to incremental model queries over EMF models [22]
by giving birth to the EMF- IncQuery framework in 2010—
and decelerating the development of Viatra until late 2012.
Later Viatra has become a reactive and live model transfor-
mation platform exploiting the incremental query evaluation
provided by IncQuery. In 2015, EMF- IncQuery success-
fully made transition out of the incubation phase at the
Eclipse Foundation. From April 2016, the two projects were
unified (where EMF- IncQuery became “Viatra Query”),
and the full Viatra release leaves the incubation phase.

5.2 Incremental model queries: key features

IncQuery started as an open-source Eclipse project to define
declarative graph queries over EMF models [45] without
manual coding and execute them efficiently using incremen-
tal graph pattern matching techniques over an imperative
programming language such as Java. The main features of
IncQuery include:

1. High-level declarative graph query language The query
language of IncQuery [25,137] and thus VIATRA3 con-
ceptually builds upon the query language of VIATRA2,
but its type system is tightly integrated with EMF mod-
els and offers many powerful language shortcuts. A main
conceptual extension is the introduction of transitive clo-
sure over edges defined as arbitrary binary relations [23].

2. Incremental query engine IncQuery offers a highly effi-
cient engine to evaluate queries over models with millions
of elements [22,137,138] by adapting Rete networks [52]
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to change notifications sent by EMF models. To decrease
memory consumption, a query can also be evaluated
using local-search-based techniques [34] which exploit
model-specific search plans [150].

3. Integrated development environment. The advanced IDE
of IncQuery [137] enables to construct and validate
model queries supported by state-of-the-art Xtext tooling
with syntax highlighting, auto-completion, type check-
ing, traceability between models and queries, debugger
or incremental compilation.

4. Integration with EMF tools The modular architecture of
IncQuery enables easy integration with existing EMF-
based modeling tools and applications [137] such as
Papyrus UML [130], Capella [108], Sirius [131] or Artop
[1]. The primary use case for model queries is to sup-
port the live validation of well-formedness constraints
of a domain in order to highlight and report inconsis-
tencies as soon as they are introduced by engineers.
Additional main use cases include advanced support for
incremental maintenance of base model indexers [137],
derived features [110], soft traceability links [64] or
incremental view maintenance [43]. In all these cases,
language-level annotations eliminate manual coding for
integration. Note that while we illustrate IncQuery and
Viatra in the context of EMF models, core queries and
transformations are regular Java programs which have
been successfully adapted to other technological spaces
(outside Eclipse).

Detailed scalability assessment of IncQuery is carried
out in numerous papers for validation of well-formedness
constraints [22,137], detection of source code anti-patterns
[138] or maintenance of soft traceability links [64] over mod-
els with 10 million elements.

Related work Other query technologies in the context of
EMF include EMF Model Query 2 [129], which provides
simple query primitives for selecting model elements that
satisfy a set of conditions. The OCL development environ-
ment of the Eclipse OCL project [46] provides different
ways to edit OCL constraints: an Xtext-based editor for
file-based editing, an embedded editor inside Ecore model
editors. The Epsilon Validation Language is dedicated to sup-
port the construction of validation rules within the Epsilon
family [83], while the Acceleo Query Language (AQL)
is heavily used within the Sirius project[131] to populate
views from underlying models. In addition, some academic
approaches support incremental constraint evaluation over
models [27,35,61,136].

Example The definition of a sample well-formedness con-
straint [141] for checking valid allocations of application
instances to host instances is listed in Fig. 8. The query

Fig. 8 Sample queries for well-formedness constraints (adapted from
[77])

Fig. 9 Erroneous situation

notAllocatedButRunning captures an erroneous situation
for allocation when an application app is running, but not
allocated to a host instance (using another graph pattern allo-

catedApplication by negative composition). When checking
this constraint on the source instance model depicted in Fig. 9,
app2 is the only ApplInstance which matches the pattern
(thus violates the constraint) since app1 is allocated to a host
instance ht1, while app3 is stopped.

By using a @Constraint annotation, a query will be
automatically integrated into an EMF-based model editor.
As a result, an error marker will immediately be placed on
the model whenever this consistency constraint is violated,
which is removed automatically once the source of the prob-
lem is corrected (e.g., the application instance is stopped or
allocated to a host instance).

5.3 A reactive transformation platform: key features

Viatra is a reactive, event-driven model transformation
platform [20] built on top of incremental graph queries where
transformations are executed continuously as reactions to
changes in the underlying model. The main features of the
Viatra project1 are as follows:

1. Reactive transformation framework Viatra adopts the
principles of reactive programming [13] and active
database systems [106]. The core concept of reactive
programming is event-driven behavior: Components are

1 http://www.eclipse.org/viatra/.
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connected to event sources, and their behavior is deter-
mined by the event instances observed on event streams.
Compared to sequential programming, the benefits of
reactive programming are remarkable when continuous
interaction with the environment has to be maintained by
the application based on external events without a priori
knowledge on their sequence. Viatra has proven to be
an efficient execution platform for incremental transfor-
mations in [77,107].

2. Internal DSL as transformation language Viatra uses
an internal DSL for specifying both batch and event-

driven, reactive transformations, which is an advanced
API over Java and Xtend [132]. The specification of a
Viatra transformation program contains (1) rule spec-

ifications consisting of model queries, which serve as a
precondition to the transformation, and actions, which
typically prescribe model manipulations. Then, (2) exe-

cution schemas are defined to orchestrate the reactive
behavior.

3. Complex event processing Viatra supports complex
event processing (CEP) [42] over EMF models to detect
complex sequences of (hierarchical) events and specify
reactions upon them. Event hierarchies are constituted
from external events (that appear on the event stream),
notifications of elementary model changes and aggre-
gated model changes identified by changes in the result
set of queries.

4. Rule-based design space exploration The current Viatra

framework natively supports rule-based design space
exploration over EMF models [66] to explore design
candidates as graph model which satisfy multiple cri-
teria over states and trajectories and evolve along certain
operations. As a key innovation, it extends previous rule-
based DSE concepts with multi-objective optimization
[4].

5. Model obfuscator and secure model access In order
to remove sensitive information from a confidential
model provided by an industrial partner (e.g., to create a
bug report), Viatra supports model obfuscation which
changes sensitive data stored in models to randomly gen-
erated names. Ongoing work carried out partly in the con-
text of the MONDO European project2 aims to support
collaborative model-driven engineering by providing (1)
secure model access to model fragments compliant with
high-level policies, (2) secure bidirectional model trans-
formations using lenses and (3) property-based locks
[37].

Related work Various EMF-based model transformation

tools provide support for specifying, executing and eval-
uation of transformations including frameworks such as

2 http://www.mondo-project.org/.

Fig. 10 A reactive transformation rule

ATL [80], Henshin [9] or eMoflon [2]. Many industrial appli-
cations rely on Xtend[132] as a code generation and trans-
formation language based on Java. Epsilon [83] provides the
Epsilon Transformation Language and the low-level Epsilon
Object Language with an advanced execution platform.

However, relatively few tools support event-driven or reac-
tive transformations: New features of ATL include target
incremental computation [81] combined into the Reac-
tiveATL transformation engine. Generic low-level transfor-
mation engines include EMFTVM [155] or T-Core [124].
SIGMA [91] provides Scala-embedded DSLs that map
Epsilon model transformation functionality directly into
Scala as a specification language, and the JVM as the execu-
tion platform. A detailed overview of the state-of-the-art for
rule-based design space exploration frameworks is provided
in [66]

Example A reactive and event-driven version of our sam-
ple transformation rule of Fig. 3 is illustrated in Fig. 10.
The application of the rule has double effects: (1) When an
AppInstance gets allocated to a HostInstance in the source
model, then it creates the corresponding DeploymentApp in
the target model, and (2) when a mapped AppInstance is no
longer allocated to a HostInstance in the source model, then
it removes the corresponding DeploymentApp from the tar-
get model.

The execution of (1) is triggered by the appearance of a
new match of its precondition pattern applicationInstance,
while the execution of (2) is initiated when an existing match
of the same pattern disappears.

Let us now assume that the source CPS model changes
by removing the allocatedTo edge between app3 and
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Fig. 11 Effect of reactive transformations upon change

h2 (see Fig. 11a). Due to this change, an existing match
of pattern applicationInstance disappears, which corre-
spondingly triggers the application of the reactive rule
appInstanceRule. As a result, the corresponding Deploy-

mentApp is removed from the target model together with
the traceability structures to yield the transformation result
depicted in Fig. 11b.

5.4 Reactive execution architecture of VIATRA

A reactive transformation program in Viatra consists of
two parts. First, the rule specifications are defined by a
precondition and some actions. A precondition is most
frequently captured as a query over a given model(s) or
alternatively by detections of complex events, while actions
include model manipulations and control structures. As a key
innovation, the activation of rules is clearly separated from
the execution of their actions by defining execution schemas

are defined in order to orchestrate the reactive behavior, e.g.,
to resolve conflicts and schedule rule activations. Now, we

Fig. 12 The Viatra architecture for reactive model transformations

briefly describe the behavior of core components of the event-

driven virtual machine (EVM) of Viatra in Fig. 12.

5.4.1 Events and activation lifecycles

Events Activations (i.e., matches) and executions of reactive
transformation rules are triggered by events, which are either
(1) controlled events which are initiated explicitly by a trans-
formation program, a transaction or the user, (2) observed

events which are caused by external behavior, and the exact
time of their occurrence may not be determined by the
transformation program. Such observed events include noti-
fications upon elementary model changes, event sequences or
updated results of model queries. In both category of events,
detection of events is followed by the firing of a correspond-
ing rule along specific parameter bindings.

Activation lifecycles Reactive transformation rules react to
events in accordance with their activation lifecycles, which
is a state transition system reflecting the current state of a
rule activation. An activation lifecycle consists of different
(1) phases and (2) event-triggered transitions between such
phases. Optionally, (3) a transition may be associated with a
job, which represents the executable actions of a input rule
specification. Figure 13 presents two typical activation life-
cycles for event-driven and batch transformations.

To unify the behavior of model transformations over the
reactive Viatra platform, activations of both event-driven
and batch transformations are executed as reactive programs.
For instance, the enabled phase of an activation lifecycle rep-
resents reactions to observed events, while the firing of the
actual reactive jobs is tied to controlled events. A library
of most common lifecycles is readily available in Via-

tra which can be customized in Java by transformation
developers.

5.4.2 Agenda, scheduler, conflict resolver

Scheduler External observed events influence activation
phases according to the lifecycle, and the job to be executed
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(a)

(b)

Fig. 13 Typical rule lifecycles [20]. a Event-driven transformation. b
Batch execution

(if any) is determined by the active phase. However, it is the
scheduler component that determines when the EVM can
fire these controlled scheduling events to actually execute
the jobs.

Practical examples of scheduling events include (1) the
signal of the query engine indicating that the update of query
results has concluded after an elementary model manipula-
tion; (2) the successful commit of a model editing transaction;
or (3) some combination of the former events with a timer.
The choice of scheduling event has to take into account the
following factors:

• By default, most rules are executed as soon as possible;
thus, their effects are observable by the user or available
for further transformation steps.

• However, certain rules may require that the models is con-
sistent (or inconsistent in case of quick fix rules), while
others may be inefficient to execute while a large-scale
transaction is incomplete.

Scheduling events offer better control over consistently
executing different features compared to traditional plugins
and still provide a high level of flexibility.

Event-driven rules may explicitly invoke other rules,
which is a direct rule dependency. However, indirect rule
dependency may also exist when model manipulation in a
job causes observed changes which, in turn, enable activa-
tions and trigger the scheduler.

Agenda The agenda stores the current phases (states) of all
activations of each rule. Its role is dual: It helps maintain
the phase of activations in reaction to events, and it sup-
plies the set of rule activations being in an enabled phase,
i.e., activations that can be fired. The core behavior of EVM
is intrinsically tied to the agenda: In case of an observed or
controlled event, the rule activation corresponding to the spe-
cific event will change phase according to the transition in
the lifecycle model defined for the rule that starts at the cur-
rent phase and it is labeled with the event type. Afterward,
if there is a job associated with the transition, it is invoked
with the activation providing the input parameters.

As the set of all possible activations is practically infinite
(as each rule parameter may point to any memory address),
the implementation considers only those activations that are
currently not in their initial phase. This makes the agenda
finitely representable, since a finite number of events may
have moved only a finite number of activations out of their
initial phase.

Conflict resolution At any point in time, the rules may have
multiple activations in an enabled state, which is called
a conflict. If the transformation is to invoke a rule fir-
ing, a single enabled activation has to be selected from
the conflicting ones (mainly due to the single-threaded
manipulation of EMF models). This selection can be done
manually by the transformation code, but EVM also pro-
vides an automated mechanism to delegate this decision to
a custom (user-specified) conflict resolver. Built-in strate-
gies include FIFO, LIFO, fair random choice, rule priority
(with a secondary conflict resolver within priority levels),
and interactive choice (e.g., selection on the user interface),
but it is possible to implement arbitrary conflict resolution
strategies.

5.4.3 Execution primitives

Model manipulation primitives The createChild method in
Fig. 10 is one of the model manipulation primitives provided
by the Viatra framework to enable more concise trans-
formation definitions by hiding EMF-related details, e.g.,
transaction handling. The common operations supported by
the framework are the following.3

(A) (createModel, Class) Creates an object of the corre-
sponding Class, and places it as the root of the selected
Model (called Resource in EMF).

3 A complete guide on model manipulation primitives and batch
transformation operations is available from https://wiki.eclipse.org/
VIATRA/Transformation_API.
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(B) createChild(Object, Reference, Class) Creates an object
of type Class to be contained by its parent Object along
the specified Reference.

(C) addTo(SObject, StructuralFeature, TObject)

Adds a noncontainment reference or attribute of type
StructuralFeature from the source SObject to the tar-
get TObject (list semantics).

(D) set(SObject, StructuralFeature, TObject) Sets the value
of a single-valued StructuralFeature (reference or
attribute) of SObject to the TObject.

(E) remove(Object) Removes the Object from the model
including an implicit removal of all dangling references
pointing to the Object.

(F) move(FObject, TObject, StructuralFeature) Moves ele-
ment FObject to a new container TObject along
containment StructuralFeature and removes it from
the old one.

Control structures for batch execution In many practical
cases of batch transformations, it is worth controlling the
behavior of rule execution after firing a rule on a specific
activation by explicit control structures and semantic modi-
fiers such as the following:

(a) fireOne Selects an enabled activation of the given rule
nondeterministically and fires the rule on it.

(b) fireAllCurrent Fires all of the currently enabled activa-
tions of the given rules (in the order specified by the
conflict resolver). Newly enabled activations are ignored.
If one of the selected activations gets disabled during the
execution, it will not be fired.

(c) fireAsLongAsPossible Repeatedly performs fireOne as
long as there are enabled activations to fire.

(d) fireUntil(exitCondition) Repeatedly performs fireOne as
long as there are any enabled activations to fire, and the
exit condition evaluates to false.

The role of these control structures is similar to the old
Viatra versions (see Figs. 5 and 7).

5.5 Selected applications

The IncQuery and Viatra frameworks have actively been
used in different industrial and academic projects carried out
by various researchers and practitioners. Below we provide a
short overview of selected applications of these frameworks
within our own projects.

(a) Dedicated systems engineering toolchains A recent
project industrial aimed to define a model-driven approach
and tool chain for the synthesis of complex, integrated
MATLAB Simulink models capable of simulating the
software and hardware architecture of an aircraft [64,70].

We actively developed industrial toolchains for other
application domains (e.g., automotive, telecommuni-
cation) on contractual basis, which heavily built on
incremental model queries and transformations.

(b) Integration of MATLAB Simulink and EMF models The
Massif (MATLAB Simulink Integration Framework for
Eclipse)4 framework [70,73] provides a bidirectional
bridge between MATLAB Simulink models and their
EMF model counterpart via the MATLAB API. Massif
was initiated within an industrial project with Embraer
and then continued as part of the CONCERTO European
ARTEMIS-JU project.

(c) Formal validation of DSLs Designing advanced tooling
for a new DSL is an error-prone task as it is sur-
prisingly easy to introduce contradicting or incomplete
well-formedness constraints for a language. DSL-level
validation of language specifications is carried out in
[121,122] by using back-end logic solvers where derived
features and well-formedness constraints are captured by
queries. This technique derives small instance models
as proofs of consistency by composing required model
fragments.

(d) Incremental code generators Incremental code genera-
tors [72,140] aim to avoid complete regeneration in case
of small changes by exploiting incremental queries and
transformations. Viatra allows incorporating incre-
mental transformations on different levels of granularity

(resource, model fragment, model element) and informa-
tion stored in traceability models can also be customized.
Source incremental computation provided by Viatra

turns out to be an efficient technique also for code gen-
eration.

(e) Custom views by queries Incremental recomputation of
graphical views [43,71] can be also be driven by reac-
tive transformations. Each node and edge in a graphical
view is defined as a query (or a transformation in a more
complex case), and the view is automatically (and incre-
mentally) recalculated upon each change in the source
model. Viatra is flexible enough to aggregate multiple
model elements in the underlying model and represent
them as a single node in the view.

(f) Live movement detection Live detection of human ges-
tures and movements is carried out in [42] by using
streaming transformations and complex event processing
(CEP) [101]. A live model forms the basis of calculations
which is updated rapidly (25 times each second), and
respective model changes are turned into events. Finally,
relevant situations are detected as event sequences by
CEP techniques.

4 https://github.com/FTSRG/massif/wiki.
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5.6 Software engineering aspects

The significant growth in the complexity of the projects
necessitated to better distribute responsibilities. Since its
foundation in 2010, István Ráth has been the project lead for
the IncQuery project (now together with Ábel Hegedüs),
Zoltán Ujhelyi has become the project lead of Viatra in
2012, while Massif is led by Ákos Horváth. Viatra is
expected to join the yearly release cycles imposed by the
Eclipse Foundation in 2017. Consequently, committers are
now dominated by professional software engineers (work-
ing for industrial companies), and novel features of the next
release are highly influenced by customers and tool vendors.
Moreover, the development team is international as Viatra

regularly receives contributors from several countries.
However, novel innovative or high-risk components (e.g.,

the local search engine, complex event processing, design
space exploration) are still dominantly prototyped by rese-
archers or students (working for academia). This synergy
enables to accelerate the transfer of academic results into
industry while also providing highly challenging usage sce-
narios for researchers.

6 Summary and future work

6.1 Summary

In the past 16 years, the three generations of the Viatra

model transformation framework have continuously served
as a general means to design complex mappings within and
between DSLs. As a summary, Fig. 14 presents the main
features, specificities and differences between the various
major Viatra versions. More extensive survey of model
transformation tools are available in [40,69,79].

In our practice, particularly deep and complex transfor-
mations are those that need to bridge large conceptual gaps
between different formalisms, such as mapping high-level
engineering models to low-level mathematical models in
order to carry out formal verification and validation. Despite
the wide range of existing languages and formalisms, our
experience shows that many underlying concepts of trans-
formation design have a common conceptual basis.

Moreover, an increasing number of scenarios with indus-
trial relevance necessitated to use transformations (1) for
developing new domain-specific (or general-purpose) mod-
eling tools within the open- source Eclipse framework or (2)
for integrating existing tools into complex, end-to-end tool-
chains. Checker tools for early validations or code generators
for automated synthesis of various engineering artifacts have
also been major application scenarios in our practice. The
continuous advances of different model transformation tech-

niques and tools have turned the science of transformation
design into an engineering tasks.

However, there is still much to do to decrease the extreme
costs of tool qualification, especially in the context of critical
embedded and cyber-physical systems. While some trans-
formations are now precisely specified on the semantic level
(using techniques such as semantic anchoring [38] or for-
malism transformation graphs [100]), it is still not possible
to guarantee that the actual implementation for the integra-
tion of different tools or interaction of tool features is free of
flaws. Scalability of engineering tools is also a major chal-
lenge [84]. Testing of customized DSL tools is still in its
infancy due to the lack of automatically synthesized con-
sistent and large model instances with given diversity and
coverage criteria. Industry-driven tool integration initiatives
(like OSLC [3]) cover a broad spectrum of processes, but
fail to address many of the underlying technical challenges.
Altogether, developing software tools in an open component
architecture still lacks scientific foundations.

6.2 Future of modeling tools?

The lack of such foundations may become severe in the
context of smart cyber-physical systems (CPS) [36,96,126],
which are open, interconnected and highly distributed com-
plex systems expected to consist of 50 billion smart objects
by 2020 [31]. They will integrate simple sensors and actu-
ators to the Internet-of-Things (IoT) to exploit low latency
cloudlets as in edge/ fog computing [30]. High-level web ser-
vices may exploit the immense computation power of cloud
computing. But a CPS also interconnects critical infrastruc-
tures and systems (such as cars, medical devices, aircrafts)
with tightly integrated real-time computing platforms and
physical systems [36] where a system failure may result in
major financial loss, severe damage or even casualties.

For smart CPS, the distinction between design-time and
run-time models [26] is more and more blurred [18,96]
which gives birth to run-time modeling frameworks (like
Kevoree [53]). Thus, incremental query and transformation
techniques will likely be used as part of the underlying mid-
dleware, which triggers further open research challenges
such as how to support the development of scalable future

tools for smart and trusted CPS where run-time models are

directly connected to the system and interact with it in close

synergy. While still providing various consistency guaran-
tees for tool qualification purposes, we foresee that future
modeling frameworks will support the following tasks:

1. Interaction with the underlying system and its context;
2. Identification of critical situations and triggering reac-

tions at run-time;
3. Deployment of run-time models as services over hetero-

geneous platforms;
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VIATRA eclipse.org/viatra

V1 V2 V3 (with IncQuery)

History

Period 2000-2004 2004-2014 2010-

Eclipse Project No Incuba�on Release (1.2)

Key Research Projects HIDE, Na�onal DECOS, DIANA, 

MOGENTES, SENSORIA

SecureChange, CERTIMOT, TRANS-

IMA, MONDO, CONCERTO, 

Key Integra�ons UML, BPMN, SysML EMF, EMF-UML, Xtend, Sirius, MPS, 

ARTOP, Capella, Matlab, 

Models

Standard export/import XMI XML XMI

Metamodeling MOF VPM EMF

UML Support via XMI via XMI Yes

UML Profiles For MT rules Limited Yes

DSM Support None ViatraDSM Graphi�, Sirius, Zest, jFace

Language

Language Syntax Graphical Textual Textual

Own/Hosted Host: UML Own: GT + ASM IncQuery: Own, VIATRA: Hosted

Queries UML + Prolog Graph pa�erns IQPL + any

Manipula�ons UML + Prolog GT + ASM VIATRA API

MT Programs UML + Prolog ASM Xtend

Rule Itera�ons ALAP, ForEach ALAP, ForEach Xtend + Execu�on mode library

Recursion Tail recursion Rich (Magic Sets) Xtend + Transi�ve closure

Derived Features No No Yes

Composi�onality No Queries Queries + Rules

Rule Inheritance No No No

MT Features

Pa�ern Matching Strategy Local Search (LS) LS+INC+Hybrid LS+INC

Incrementality No Queries Several modes

Parallel / Distributed No Parallel Parallel

Generic/Meta Xform Partly in Prolog Yes as in Xtend

Traceability Explicit Explicit Explicit + Implicit

Bidirec�onal No No No

Batch execu�on mode Yes Yes Yes

Live execu�on mode No Yes Yes

Reac�ve execu�on mode No No Yes

View Models No No Unidirec�onal + Incremental

MT Workflow No Yes MWE

Design Space Explora�on No Yes Yes

Complex Event Processing No Proof-of-concept Yes

Obfusca�on No No Yes

Tooling

Editor Ra�onal Rose Eclipse (Custom) Xtext

Syntax highlight No Yes Yes

Type checking No Yes Yes

Content Assist No No Yes

Interpreter Prolog GT + ASM Java

Compilers UML2Prolog Rela�onal DB, EJB Xtend + IncQuery

Debugger Na�ve Prolog Limited Yes

Tes�ng Ad hoc Simple test suite Complex test suite

Builds No Release + Developer Con�nuous 

Fig. 14 Feature overview of the VIATRA family (partly adapted from [79])

4. Hierarchical abstractions over time and structure.

As ongoing research in the MONDO project, we have
started the development of IncQuery- D to support the

incremental evaluation of graph queries in a distributed envi-
ronment by distributing the nodes of Rete networks [125].
Models can be captured by different graph representations
and stored in existing graph storages (e.g., RDF triple stores,
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distributed storage frameworks like Hadoop or Spark). The
IncQuery- D framework is an independent query layer on
top of such storages to efficiently support incremental reeval-
uation over large and evolving graph data. This frameworks
is intended to support run-time checks of cyber-physical sys-
tems and detect relevant situations in IoT applications.

Related ongoing work [17] aims to address the run-time
verification [98] of rich and high-level specifications (such
as graph queries or complex event processing languages)
which is being extended toward over heterogeneous and
distributed platforms which include smart IoT devices with
limited resources, mobile phones as well as cloud-based com-
putations. This technique was used as part of a complex
demonstrator for the Eclipse IoT Challenge 2016.5
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