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SUMMARY

Bacterial and eukaryotic plant pathogens deliver effector pro-
teins into plant cells to promote pathogenesis. Bacterial patho-
gens containing type III protein secretion systems are known to
inject many of these effectors into plant cells. More recently,
oomycete pathogens have been shown to possess a large family
of effectors containing the RXLR motif, and many effectors are
also being discovered in fungal pathogens. Although effector
activities are largely unknown, at least a subset suppress plant
immunity. A plethora of new plant pathogen genomes that will
soon be available thanks to next-generation sequencing tech-
nologies will allow the identification of many more effectors.This
article summarizes the key approaches used to identify plant
pathogen effectors, many of which will continue to be useful for
future effector discovery. Thus, it can be viewed as a ‘roadmap’
for effector and effector target identification. Because effectors
can be used as tools to elucidate components of innate immu-
nity, advances in our understanding of effectors and their targets
should lead to improvements in agriculture.mpp_588 805..814

INTRODUCTION

Plant pathogens, including bacteria, fungi, oomycetes and nema-
todes, secrete proteins, referred to as effectors, into plant cells to
favour parasitism (Block et al., 2008; Davis et al., 2008; Ellis
et al., 2009; Tyler, 2009; Zhou and Chai, 2008). Although the vast
majority of effector activities and host targets remain unknown,
at least a subset suppress innate immune responses (Abramov-
itch et al., 2006; Boller and He, 2009; Espinosa and Alfano, 2004;
Hein et al., 2009). This suppression activity means that effectors
can be used as tools to identify important components of innate
immunity and can potentially lead to innovative strategies for
crop improvement. For this article, the term ‘effector’ will be
limited to proteins secreted by pathogens and translocated into
plant cells where they exert specific functions, usually in collu-
sion with other effectors exported by the same secretion/export

system. Many effectors only subtly modify the host cell to sway
the pathogen–plant interaction to the pathogen’s advantage.
They are often functionally redundant with other co-secreted
effectors. This narrow definition is similar to that recently used in
a review on bacterial animal pathogen effectors (Galan, 2009)
and is distinct from a more inclusive effector definition used in a
recent review on plant pathogen effectors (Hogenhout et al.,
2009). The inclusive effector definition includes all pathogen
proteins and small molecules that alter host cell structure and
function. Although both definitions are appropriate, the nar-
rower effector definition allows for a more focused discussion on
the future research on plant pathogen effectors in this article.

A myriad of important discoveries regarding plant pathogen
effectors have been made in the 25 years since the first plant
pathogen effector was discovered by Staskawicz et al. (1984).
Many of these discoveries are associated with bacterial patho-
gen type III protein secretion systems (T3SSs): for example, the
seminal discovery of hrp genes (Lindgren et al., 1986), which
were identified because they were required for both the defence-
related hypersensitive response (HR) and pathogenicity, and
were later shown to encode a T3SS present in many eukaryotic-
associated bacteria (Van Gijsegem et al., 1993). Another critical
advance was the discovery that type III effectors were injected
into plant cells, because it revealed that their plant targets were
intracellular (Alfano and Collmer, 1996). More recently, the RXLR
(arginine, any amino acid, leucine and arginine) motif in the
N-terminus of some oomycete effectors was discovered, allow-
ing for many more oomycete effectors to be identified (Birch
et al., 2008; Tyler, 2009).

What new discoveries will be made in the next 25 years and
what technologies and/or approaches will allow them to be
realized? One thing is for sure—next-generation sequencing
technologies will provide the genome sequences of multiple
strains of many plant pathogen species, greatly accelerating
effector discovery. For newly sequenced pathogens, the initial
focus will be to identify effector inventories and the transloca-
tion strategies that allow effector delivery into plant cells. For
plant pathogens for which this is already established, the next
decade promises to reveal plant targets of these effectors and
the strategies that pathogens use to attack plants. We are there-
fore entering an exciting period for molecular plant pathology as*Correspondence: E-mail: jalfano2@unl.edu
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we may learn the fundamental reasons why some organisms are
pathogens, as well as important factors controlling host speci-
ficity and nonhost resistance.

This article summarizes the techniques and approaches likely
to be used to identify plant pathogen effectors and their
targets. New technologies or discoveries will of course also
have an impact on effector research. However, effector and
effector target discovery and confirmation will require multiple
approaches. Figure 1 shows a flowchart summarizing these

approaches and is referred to throughout this article. It repre-
sents a ‘roadmap’ for future research on plant pathogen effec-
tors. The best starting point on this roadmap is at the genome
sequence of a pathogen, which allows the most approaches
to be employed. However, several approaches can be used
without the benefit of sequence data. Important stops along
the way are the identification of effector targets and how
effector–target interactions promote the pathogenesis of
plants. The final destination of this road trip is to exploit the

Fig. 1 ‘Roadmap’ for discovery of plant pathogen effectors and their targets. The flowchart shows the approaches used for effector discovery (green boxes),
target discovery (yellow boxes) and target function discovery (light blue boxes). Starting, intermediate and stopping points in the flowchart are depicted as dark
blue boxes. Pink boxes depict comparisons that can be carried out after effector repertoires and targets have been isolated that may give insights to virulence
and nonhost resistance. The lines connecting each box indicate that it may be used in combination with other approaches in the network, not necessarily just
the adjacent boxes. Useful tools for studying eukaryotic effectors are the ‘effector detector’ screens that fuse candidate effectors to type III secretion signals,
such that they are injected into plant cells by a bacterial strain containing a type III protein secretion system (Rentel et al., 2008; Sohn et al., 2007). Effectors
can be expressed transiently or transgenically in planta to determine whether they produce phenotypes, such as enhanced susceptibility to pathogens, or
whether they suppress plant innate immunity outputs. T-DNA knock-out and RNA interference knock-down plants or plants over-expressing effector targets can
be used to determine target function and to confirm that they are effector targets. See text for additional details.
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information gained to engineer plants with increased pathogen
resistance.

EFFECTOR DISCOVERY

The inundation of plant pathogen genome sequences is
expected to result in the identification of a large number of plant
pathogen effectors over the next decade. Considering that bac-
terial plant pathogen strains can have greater than 30 effectors
each and oomycete strains several hundred (Lindeberg et al.,
2006; Tyler et al., 2006), thousands of novel effectors may exist
in bacteria, fungi, oomycetes and nematodes. The majority of
bacterial effectors appear to suppress innate immunity (Block
et al., 2008; Boller and He, 2009; Guo et al., 2009; Zhou and
Chai, 2008). A clear exception is the large family of transcription
activator-like (TAL) effectors found mostly in Xanthomonas
pathogens. These effectors induce the transcription of suscepti-
bility genes in the host plant (Kay and Bonas, 2009). Plant innate
immunity can also be suppressed by several eukaryotic effectors
(Bos et al., 2006; Dou et al., 2008a; Houterman et al., 2008; Sohn
et al., 2007), but it is too early to know whether this is a common
effector activity. The techniques currently employed to identify
effectors are summarized in the top portion of Fig. 1. Additional
bioinformatics approaches are greatly needed to more efficiently
identify effectors, their activities and targets. Select approaches
are discussed in more detail below.

The tried and true approach

A classic strategy to identify effector genes is to determine
whether they induce effector-triggered immunity (ETI) when
expressed in a virulent pathogen strain (Chisholm et al., 2006).
Indeed, it is this approach, pioneered by Staskawicz and col-
leagues, that was used to identify the first plant pathogen effec-
tor that this issue is commemorating (Staskawicz et al., 1984).
This tried and true approach is particularly successful because
the main ETI response tracked, production of an HR, is easily and
rapidly evaluated in the laboratory.A protein capable of inducing
ETI was classically referred to as an avirulence (Avr) protein. It
has become clear that many Avr proteins are effector proteins
that plants have evolved the ability to recognize with resistance
(R) proteins (Jones and Dangl, 2006). Map-based cloning based
on ETI induction is an effective strategy to isolate avr genes from
eukaryotic pathogens (Ellis et al., 2009; O’Connell & Panstruga,
2006; Panstruga and Dodds, 2009). Another useful variation is
to screen a collection of candidate effectors for their ability to
induce ETI, as performed by Catanzariti et al. (2006). These
authors identified a set of Melampsora lini genes induced in the
haustoria (specialized pathogen structures that invaginate
into plant cells) and found that several elicited the HR and
co-segregated with independent avr loci. This classic approach

will probably continue to be included in various effector hunting
strategies.

Location, location, location

Comparative genomics can allow the identification of effector
genes based on their location. For example, effector genes in
bacterial pathogens are often clustered in pathogenicity islands
(PAIs) (Kim and Alfano, 2002). These PAIs can be on plasmids or
integrated into the chromosome. One common site for PAI inte-
gration is within or adjacent to tRNA genes. In addition, PAIs are
often associated with mobile DNA elements (Hacker and Kaper,
2000). Thus, new effector genes can be identified by scanning
genomes for regions of atypical GC content, codon usage and
other relevant nucleotide statistics (Juhas et al., 2009). Although
this approach is less well established in eukaryotic pathogens,
similar approaches are becoming important. For example, the
AvrLm1 effector gene from the fungal pathogen Leptosphaeria
maculans is located in a gene-poor heterochromatin-like region
of the genome (Fudal et al., 2007; Gout et al., 2006; Kamoun,
2007), suggesting that effector genes may be flanked by long
intergenic regions. In addition, there are also examples in which
fungal and oomycete effector genes are clustered (Kamper et al.,
2006; Win et al., 2007). Therefore, genomes could be searched
for both of these characteristics to identify or at least enrich for
novel effectors.

It has to get out before it can get in

Type III effectors from the bacterial pathogen Pseudomonas
syringae have secretion signals that share common biochemical
characteristics in their N-terminal 50 amino acids (Collmer et al.,
2002; Guttman et al., 2002; Petnicki-Ocwieja et al., 2002). These
characteristics allowed a bioinformatics search of the P. syringae
pv. tomato DC3000 genome, yielding candidate effectors that
were directly tested for their ability to be secreted and/or trans-
located (Guttman et al., 2002; Petnicki-Ocwieja et al., 2002).
More recently, other sequence-based bioinformatics tools have
been developed to identify type III effector genes across bacterial
genera (Arnold et al., 2009; Samudrala et al., 2009).

Researchers identifying effectors in fungal and oomycete
pathogens have screened expressed sequence tags (ESTs) and
genomes for genes encoding proteins with putative N-terminal
type II secretion signals (Ellis et al., 2009; Panstruga and Dodds,
2009). This has been extremely useful in conjunction with other
approaches to enrich for effector genes. For example, Kemen
et al. (2005) identified the Rust transferred protein 1 (Uf-RTP1p)
by isolating Uromyces fabae haustorium-specific cDNAs using
differential hybridization, which they then screened for putative
type II secretion signals. A similar approach was used to iden-
tify a group of effectors from Phytophthora infestans, called
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crinklers, based on the presence of a putative secretion signal and
a leaf-crinkling and cell death phenotype when they were tran-
siently expressed in plants (Kamoun, 2007; Torto et al., 2003).
However, fungal effectors have been identified that do not have
N-terminal type II secretion signals (Ridout et al., 2006), high-
lighting the need for additional effector search criteria.

A major advance in effector research, as noted above, was the
recognition that many oomycete effectors possess an RXLR motif
(Birch et al., 2006; Rehmany et al., 2005; Tyler et al., 2006). This
allowed the genomes of Phytophthora species and Hyaloperono-
spora parasitica to be searched for both a putative N-terminal
secretion signal and an RXLR motif, facilitating the identification
of oomycete effectors. Importantly, the RXLR motif is related to
the ‘Pexel’ motif present in the N-termini of effectors from the
malaria parasite Plasmodium (Hiller et al., 2004; Marti et al.,
2004), which implicated the RXLR motif in translocation into
plant cells. Oomycete researchers have recently confirmed that
the RXLR motif is required for translocation into plant cells (Dou
et al., 2008b; Whisson et al., 2007). The identification of addi-
tional searchable secretion/translocation signals or motifs will be
important in identifying other types of eukaryotic effector.

Looking for known unknowns

There are many examples of the identification of effectors based
on their similarity to known proteins or the presence of known
domains or motifs. This includes similarities to effectors (usually
Avr proteins) from other pathogens, to enzymes or to the pres-
ence of eukaryote-like domains and motifs (Armstrong et al.,
2005; Collmer et al., 2002; Fouts et al., 2002; Poueymiro and
Genin, 2009). One of the first clues that type III effectors from
bacterial plant pathogens were injected into plant cells was the
recognition that the Xanthomonas AvrBs3 effector family pos-
sesses functional nuclear localization signals (NLSs) (Van den
Ackerveken et al., 1996; Yang and Gabriel, 1995). Although
members of this effector family were already identified, the
recognition of NLS motifs led to the discovery that they were
injected into plant cells (Van den Ackerveken et al., 1996) and
acted as transcriptional activators (Zhu et al., 1999). In addition,
a family of Ralstonia solanacearum type III effectors was iden-
tified, in part, because of their plant-specific leucine-rich repeat
(LRR) motifs (Cunnac et al., 2004).These effectors, named GALAs
after conserved amino acids within the LRRs, were later shown
to contain putative F-box domains and, therefore, potentially to
interfere with the plant ubiquitin–proteasome pathway (Angot
et al., 2006, 2007).

Searching for eukaryote-like motifs in candidate effector
genes in prokaryote genomes is obviously easier than searching
for them in eukaryotic genomes. However, it is still possible to
employ this strategy to search for eukaryotic effectors if com-
bined with other search criteria. For example, Mueller et al.

(2008) first searched the Ustilago maydis genome for putative
secretion signals and then winnowed down the candidates by
searching for domains and motifs needed for proteins to function
in the apoplast or inside eukaryotic cells. From the latter, they
identified putative effectors possessing NLSs, zinc finger
domains or RING domains, which suggested that they act inside
plant cells.

Turn on only when needed

It is no wonder that energy-efficient microbes have evolved
‘green’ strategies to tightly regulate genes that are needed for
specific purposes, such as survival and growth in plant tissue.
Effector genes have been identified as a result of their in planta
induction. Bacterial T3SSs (including effectors) are induced in
plants by known regulatory proteins (Tang et al., 2006). One
strategy to identify type III effector genes is to identify promoters
and/or genes dependent on these regulatory proteins (Buttner
et al., 2003; Collmer et al., 2002; Cunnac et al., 2004; Furutani
et al., 2009). In P. syringae, the alternate sigma factor HrpL binds
to a conserved sequence in type III promoters, called the Hrp box.
Searching for Hrp boxes in P. syringae genomes allowed for the
identification of many P. syringae effectors (Fouts et al., 2002;
Guttman et al., 2002; Zwiesler-Vollick et al., 2002).

Essentially, the identification of type III effector genes from
bacterial genome data has become fairly straightforward.
This usually involves searching for type III-related promoters,
N-terminal secretion signal characteristics and/or determining
whether their expression is dependent on a specific regulatory
system. However, one lingering complication is that type III-
secreted extracellular accessory proteins are also identified by
these criteria, and therefore, if the protein is not similar to known
accessory proteins or if it does not have similarity to eukaryote-
like domains, further consideration is needed to determine
whether it is an injected effector or an extracellular accessory
protein.

Eukaryotic pathogens also appear to induce their effectors
during infection (Dodds et al., 2009). Various subtractive hybrid-
ization approaches will continue to be attractive for the identi-
fication of eukaryotic effectors.With next-generation sequencing
technologies becoming available and more affordable, one
approach will probably be the sequencing of cDNA libraries from
pathogens grown on plants (or plant-mimicking conditions)
versus a control medium.

TARGET DISCOVERY

The next critical juncture for effector research is target identifi-
cation. To date, the only plant targets identified have been for
bacterial effectors (Block et al., 2008; Boller and He, 2009; Zhou
and Chai, 2008). However, several oomycete effectors have been

808 J. R. ALFANO

MOLECULAR PLANT PATHOLOGY (2009) 10(6 ) , 805–813 JOURNAL COMPILATION © 2009 BLACKWELL PUBLISHING LTD
NO CLAIM TO ORIGINAL US GOVERNMENT WORKS



shown to suppress innate immunity, and the enzymatic activities
for two fungal effectors are known (Dodds et al., 2009).With the
current and rapid identification of effectors from oomycetes and
fungi, it is likely that eukaryotic effector targets will soon be
found and targets for bacterial effectors should continue to
be identified. Several proven strategies for the identification of
plant targets are discussed below and are included with other
strategies in the middle portion of Fig. 1.

Guilt by association

The most productive approach for the identification of effector
targets has been protein–protein interaction assays. The Arabi-
dopsis RIN4 protein, a plant pathogen effector target, was iden-
tified on the basis of its interaction with the P. syringae AvrB
type III effector in a yeast two-hybrid (Y2H) system (Mackey
et al., 2002). RIN4 was subsequently shown to interact with the
effectors AvrRpm1 and AvrRpt2 (Axtell and Staskawicz, 2003;
Mackey et al., 2002, 2003) and the R proteins RPS2, RPM1 and
RPS2 (Axtell and Staskawicz, 2003; Mackey et al., 2002, 2003).
Y2H approaches have also been successful in showing that the
P. syringae AvrPto and AvrPtoB effectors interact with the
tomato Pto kinase (Kim et al., 2002; Tang et al., 1996). More
recently, co-immunoprecipitation approaches have shown that
these effectors interact with and disable pathogen-associated
molecular pattern (PAMP) receptors (Gimenez-Ibanez et al.,
2009; Gohre et al., 2008; Shan et al., 2008; Zhang et al., 2007).
Targets identified in this manner require confirmation of the
identified interactions using complementary approaches. In this
regard, a new in planta spilt luciferase system shows promise
(Chen et al., 2008).

In the right place at the right time

Some effectors interact too weakly or transiently with their
targets for protein–protein interaction approaches to be useful.
The in planta subcellular localization of effectors can provide
clues to their function and target identity. Bacterial, oomycete
and fungal effectors have been localized to the plant nucleus
(Deslandes et al., 2003; Kanneganti et al., 2007; Kay and Bonas,
2009; Kemen et al., 2005), suggesting potential functions such
as transcriptional regulation and nucleocytoplasmic trafficking.
Many bacterial effectors localize to the plasma membrane
(Dowen et al., 2009; Nimchuk et al., 2000; Robert-Seilaniantz
et al., 2006; Shan et al., 2000). The co-localization of potential
targets with their effectors increases the likelihood that they are
bona fide targets. The importance of determining an effector’s
site of action is also illustrated by the P. syringae HopI1 effector,
which localizes to chloroplasts (Jelenska et al., 2007). HopI1
suppresses innate immunity, alters chloroplast thylakoid struc-
ture and reduces salicylic acid accumulation—all plausible

effects considering HopI1’s subcellular localization. It is apparent
that microscopy and biochemical fractionation approaches will
continue to be an important aid for the determination of effector
functions and targets.

Change is for the best

There is a fascinating evolutionary struggle between pathogens
and plants in which effectors are under selection to evade detec-
tion by plant R protein-based surveillance systems, whilst main-
taining their virulence activities, and R proteins adapt to acquire
and maintain effector recognition (Ma and Guttman, 2008).
Several examples exist which indicate that eukaryotic effectors
change to avoid direct recognition by R proteins. For example,
Dodds et al. (2006) have shown that selected sites within the
AvrL567 effector from M. lini allow it to evade direct recognition
by R proteins. The selection pressure is less clear for the bacterial
effectors. Bacterial effectors are under selection to avoid
‘guarded’ plant targets or possible direct recognition by R pro-
teins. Both eukaryotic and bacterial effectors may also be under
selection to acquire the ability to recognize novel virulence
targets. Whatever the case, next-generation sequencing tech-
nologies will provide the sequence for many effector gene
alleles, making it possible to identify polymorphisms within
effector families. These polymorphisms are likely to help us hone
in on important regions within effectors.

TARGET FUNCTION DISCOVERY

In some cases, effector targets have turned out to be proteins
already known to be involved in plant immunity. This includes
the RIN4 protein targeted by the type III effectors AvrRpt2,
AvrRpm1 and AvrB (Axtell and Staskawicz, 2003; Mackey et al.,
2002, 2003), and the PAMP receptor kinases targeted by
AvrPto and AvrPtoB (Gimenez-Ibanez et al., 2009; Gohre et al.,
2008; Shan et al., 2008; Xiang et al., 2008). AvrB has also been
reported to target the RAR1 protein (Shang et al., 2006), which
is a protein found in R protein complexes. In other cases, the
identification of effector targets has revealed a novel compo-
nent of innate immunity. For example, the P. syringae HopM1
and HopU1 effectors target AtMin7 (Nomura et al., 2006),
involved in vesicle trafficking, and AtGRP7 (Fu et al., 2007), a
glycine-rich RNA-binding (GR-RBP) protein, respectively. These
targets essentially identified vesicle trafficking and the activi-
ties of GR-RBP as important components of innate immunity.
Once novel effector targets are discovered, a similar battery of
approaches can be used to determine their function in
pathogen–plant interactions. Many of these are listed in the
bottom portion of Fig. 1.

The identification of pathogenicity phenotypes in plants
lacking and over-expressing the target may determine the extent
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to which the target is involved in innate immunity or other plant
processes co-opted by pathogens. Plants over-expressing the
target or expressing a target that no longer interacts with the
effector may lead to greater resistance to biotic stress. Studies of
target protein polymorphisms and their relationship to effector
efficacy will indicate whether the target is under evolutionary
pressure to diversify. This will not only validate the target’s
importance, but also illustrate the co-evolutionary dynamic
between the pathogen and its host.

CONCLUDING REMARKS

Molecular plant pathologists are on the verge of the identifica-
tion of thousands, perhaps tens of thousands, of pathogen effec-
tors. Improvements in bioinformatics approaches will be critical
for handling and analysing this deluge of information. This infor-
mation promises to answer some of the long-standing questions
of plant pathology—Why can some organisms infect plants?
What factors control host specificity and nonhost resistance? At
least part of the answer to these questions will probably be
found in the effector repertories possessed by different plant
pathogens. However, given that some effectors induce ETI,
whereas others suppress it, and that these activities may be
altered by effector polymorphisms, it is probably unlikely that the
effector repertoire alone will answer these questions. Instead,
extensive molecular characterization will be needed to deter-
mine the activity of each effector and, from this, patterns should
emerge that will shed important light on the above questions.

The other fascinating question that will soon be explored is
what host processes are targeted by these newly discovered
effectors. Will they primarily target plant innate immunity, as do
the majority of bacterial type III effectors (Boller and He, 2009;
Guo et al., 2009)? Do effectors target host processes that allow
for water and nutrient acquisition? Bioinformatics approaches
will be important for the identification of effector function and
targets. It is satisfying to realize that effector target identification
will probably result in novel biotechnology applications and
improvements in agriculture. Research advances in molecular
plant–microbe interactions over the past 25 years, together with
important technological advances, have paved an excellent road,
which should allow for major research progress in the near
future. And to paraphrase the songwriter Willie Nelson—I just
can’t wait to get on the effector road again.
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