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Abstract

Optofluidics, nominally the research area where optics and fluidics merge, is a relatively new
research field and it is only in the last decade that there has been a large increase in the number of
optofluidicapplications, as well as in the number of research groups, devoted to the topic.
Nowadays optofluidics applications include, without being limited to, lab-on-a-chip devices,
fluid-based and controlled lenses, optical sensors for fluids and for suspended particles,
biosensors, imaging tools, etc. The long list of potential optofluidics applications, which have
been recently demonstrated, suggests that optofluidic technologies will become more and more
common in everyday life in the future, causing a significant impact on many aspects of our
society. A characteristic of this research field, deriving from both its interdisciplinary origin and
applications, is that in order to develop suitable solutions acombination of a deep knowledge in
different fields, ranging from materials science to photonics, from microfluidics to molecular
biology and biophysics,is often required. As a direct consequence, also being able to understand
the long-term evolution of optofluidics research is noteasy. In this article, we report several
expert contributions on different topicsso as to provide guidance for young scientists. At the
same time, we hope that this document will also prove useful for funding institutions and
stakeholdersto better understand the perspectives and opportunities offered by this
research field.

Keywords: optofluidics, photonics, microfluidics, nanofluidics
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1. Introduction

Paolo Minzioni

University of Pavia

Optofluidics: an emerging and promising topic. The field of
optofluidics is a relatively new one in the scientific panorama.
Although the idea of using fluids to control light, e.g. by
spinning-mercury mirrors, dates back to the 18th century, no
liquid-mirrortelescope was practically realized before the end
of the 20th century. In particular, it is only overthe last 15
years that the term ‘optofluidics’ has attracted significant
attention, and that many groups have started devoting their
research efforts to this field.

The ‘young age’ of this research field is demonstrated by
the fact that the first works indexed on the Web of Science
database and containing the word ‘optofluidics’ in the topic
appears in 2005 [1, 2]. Since that moment, the attention
devoted to the realization of systems exploiting the
simultaneous control of fluidic conditions and optical beams
hasroared and other important seminal papers haveappeared
[3, 4]. In the following 12 years (2005–2016), the number of
papers that can be found using the same criteria increased
from 0 to 580. Currently,about 70 new papers with the word
‘optofluidics’ in the title are published every year, and the
number of citations giventooptofluidics papers is continu-
ously growing, almost linearly, and increasedfrom 20 in
2006 to about 1600 in 2016. As a result an increasing number
of shortschools for PhD students are currently being
scheduled by universities, and topical conferences expressly
dedicated to the field of optofluidics are being organized by
important scientific associations (e.g. the EOS Conference on
Optofluidics in Europe, the International Multidisciplinary
Conference on Optofluidics in Asia, etc), so as to create
meetingpoints for researchers with different backgrounds and
interests [5–7].

Nowadays, optofluidicdevices and applications are
generally based on the integration of optical technologies
(for sensing, actuation or imaging) within microfluidic (or
nanofluidic) systems, allowing the use of small sample
volumes in a highlycontrolled environment.

It is worth underlining that the field of optofluidics is
doublyinterdisciplinary, not only because of the competences
required for the design and realization of the devices, but also
because of the countless possibilities offered by these devices
in the fields of chemical sensing, physical characterization
and biomedical research. A consequence of the vastness of
the optofluidics fieldis that writing a fully exhaustive
Roadmap paper is an almost impossible task, and hence
some techniques/applications, always inherent to the world
of optofluidics, such asdroplet-based optomechanics, opto-
fluidic biolasers and optoelectronic tweezers, are not included
in the current article, but they are covered in other papers
[8–10].

Intended audience and aim of the Roadmap. The intended
audience of this document are fromthree different categories

of possible readers: young researchers, scientists from other
disciplines, and optofluidics experts.

Young researchers starting their activity in optofluidics
could significantly benefit from this article, as it represents a
reference text, showing thepossibilities and challenges of this
specific research field. Additionally, the Roadmap also comes
with a substantial bibliography making it easier to identify
and access many helpful papers.

The Roadmap could alsobe useful for researchers who
have already developedgood expertise in a contiguous field,
such as chemical sensing, microfluidic devices, high sensi-
tivity molecule sensors, single-cell analysis, material science
and high-precision diagnostics. For all of these areas,
optofluidics can surely open new possibilities and scenarios
and this Roadmap can help to unveil them.

Finally, for experienced researchers in the optofluidics
field, the contributions included in this text by well-known
experts give a reference point forthe current state-of-the-art.
The Roadmap givesthem recent updates onscientific activ-
ities and an analysis of what other experienced researchers see
as future perspectives.

The aim of this document is to show not only the current
technologies and applications, but alsopromising approaches
thatstill require research and technological development. It
is, in any case, perfectly clear to the authors of this paper that
what is now perceived as a challenge may, in such a rapidly
evolving field,be achieved in one year, or even less, or may
no longer be considered as a relevant target. Nevertheless, it is
of great importance to define which research directions are
now considered as the emerging and promising, so that it will
be possible in the future to re-assess the validity of this
analysis.

Another fundamental point that this Roadmap wants to
stress, thanks to the different contributions, is the strong
connections linking applications, materials, and methods. For
this reason, contributions on all these aspects are included in
the document, thus creating an articleverydifferent from more
topic-specific reviewsthatlimit their scope todetailed tech-
nology, such as imaging [11], sensing [12], actuations [13], or
applications such as point-of-care diagnostics [14]. It is worth
underlining that, even if many topics are discussed in each
section of this Roadmap, the order of the different contributions
has been selected to alloweasy sequential reading.

Current status and challenges. This section briefly provides
young researchers, and all those needing some introduction to
the basics of optofluidics, with a short list of the main
concepts useful forfully exploiting the Roadmap content, and
a list of suggested introductory reading.

One of the basic ideas in optofluidics is that of taking
advantage (at least in the majority ofcases) of the laminar-
flow regime that is obtained as a consequence of the typical
dimensions and flow speed used in microfluidic systems. The
strong laminarity of these systems is testified by their
Reynolds number, defined by theequation below, where ρ

is the fluid density (≈103 kg m−3 in case of room-temperature
water), v is the fluid speed (generally in the range
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10−5
–10−1m s−1

), D is the microchannel diameter (of the
order of 10−4m) and μ is the dynamic viscosity (which for
water is about 10−3 Pa s):

rn
m

=Re
D
.

If we compare the maximum Re value achievable with the
above reported numbers, 10,with the reference value of
3000, generally considered as the boundary between laminar
flow (Re<2000) and turbulent flow (Re>4000), it is
immediately understood that unless turbulence isartificially
created a laminar flow is produced in these systems [15, 16].
Flow laminarity, which is a crucial point when well separated
streams are needed, can become an issue when fluid mixing is
required. In this case specific structures can be used to break
the system laminarity [17, 18].

Another fundamental element in the optofluidics field is
the good size-matching between biological objects (bacteria,
cells, or organelles), microfluidic channels, and the diameter
of optical beams in the visible or near-infrared spectral range.
All these quantities are generally in the range between 0.1 μm
and 500 μm and, while the size of biological objects is
generallygiven data, it is often possible to tailor the
microchannel width and optical beamdiameter in order to
obtain the desired values and fluidic/optical effects [19].

Additionally, when it is important to apply the samples
forces matching those generally involved in biological pro-
cesses, the radiation pressure exerted by optical beams can be
used to trap, push or deform cells [20–26]. On the other hand,
when much larger forces are required they can be produced by
exploiting optically induced cavitation bubbles [27, 28], which
havealready beensuccessfully demonstrated as an efficient
actuation mechanism for different applications, ranging from
cell sorting to droplet generation and fusion [29–31].

Finally, inoptofluidics,thanks to the different responses
exhibited bysamples under analysis to optical or acoustic
forces, it is also possible to use different actuation mechan-
isms as ‘sensing mechanisms’, enablinginteresting selection
and sorting strategies [32–36].

Some trends and challenges. Without goinginto the
specific solutions that can be envisaged, there are three
main challenges that future optofluidic devices should try to
solve.

The first onedeals withsample insertion and collection
from a microfluidic system. Although the use of extremely
reduced sample volumes brings several advantages, it is
nevertheless evident that properly managing volumes in the
μl range (or smaller) obviously requires precision and
attention. Even more challenging is the collection ofoutput
samples in all those situations where sub-populations or cells
(or even single cells) need to be extracted, preserving their
viability and without the risk of losing them in microchip
dead volumes.

A second challenge is that of achieving high performance
and sensitivity while using low-cost, or disposable, systems.
Such an achievement could allow the diffusion of optofluidic
solutions in many environments where laboratory equipment
is not always available.

The third challenge that many microfluidic structures are
now trying to solve is that of creating easy-to-use devices.
State-of-the-art microfluidic devices are generally tested on
laboratory tables, requiring a lot of additional instruments
(laser sources, thermal controllers, objectives, micropumps,
cameras, etc) and must be operated by experienced
researchers. The integration of all these functionalities in a
simple microsystem would largely help the diffusion of these
devices, making them user friendly and more suitable for
point-of-care analysis. In particular,considerable attention
has been paid in the last five years to the development of
compact and efficient imaging systems, which will also be
discussed in the following.

Acknowledgments. I want to thank Professor Ilaria Cristiani
for her precious suggestions and Dr Jarlath McKenna for the
great help in organizing and coordinating the article.
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2. 3D optofluidic devices usingfemtosecond laser

micromachining

Roberto Osellame

Istituto di Fotonica e Nanotecnologie—CNR

Relevance of the topic. Femtosecond laser micromachining
(FLM) of transparent materials [37, 38] is a recent technique
that hasfound wide application in optofluidic device
fabrication. FLM is based on a non-linear absorption
process, selectively triggered in the focal volume by
ultrashort and tightly focused laser pulses (figure 1).
Tailoring of the irradiation parameters can produce very
different results in glass. In particular, one can achieve a
gentle and localized change of the refractive index orself-
assembled nanostructuring of the material. The first
modification is extremely relevant as it allows drawing
optical waveguides by suitably moving the glass substrate
with respect to the laser focus. The second modification is
also important for optofluidic applications since the
nanostructured region has an enhanced selectivity to wet
chemical etching (e.g.aqueous solutions of hydrofluoric
acid). This means that an irradiated volume in this second
regime will be preferentially etched away with respect to the
unirradiated material, thus creating cavities and microfluidic
networks inside the glass.

The first relevant advantage of this microfabrication
technology for optofluidics is the capability to produce, with
the same tool, both optical waveguides and microfluidic
channels in glass. This puts the technology in a very favorable
condition to combine these two elements in the same substrate
and produce compact and complex optofluidic devices. The
second advantage of this technology is its unique capability to
produce 3D structures, taking advantage of the fact that the
induced modification is highly localized to the focal volume
and can thus be arbitrarily placed anywhere in the glass
volume. A third advantage is the possibility ofcombining
very different fabrication techniques with a single tool, from
material property tuning (e.g. in waveguide writing), to
selective material removal (e.g. for microchannel fabrication)
and additive manufacturing by two-photon polymerization
(e.g. for the creation of plastic microstructures embedded in
the microfluidic channels [39, 40]). A final important
advantage of FLM is itsrapid prototyping capability; as
forany maskless and direct-writing technique, a software
design can be transferredonto a working prototype, with the
possibility ofsimply and rapidly adjusting the design or to
produce highly customized products.

Further advances in this technology will provide an
unprecedented level of integration of functionalities in a
single microsystem, with very short time-to-market of new
products.

Current status and challenges. FLM has been widely
exploited in the fabrication of optofluidic devices with the
main aim of integrating optical detection and microfluidic
handling of samples [38]. The use of optical waveguides to

deliver aprobing light and to collectoutput signals enables
higher sensitivity, reproducible and alignment-free
measurements, and multipoint sensing. Taking advantage of
the 3D capabilities of the technology, it has been possible
either to add specific components to already existing devices
or to fabricate acomplete microsystem using FLM. An
example of the former case consists in adding optical
waveguides to commercial microfluidic labs-on-a-chipto
perform on-chip fluorescence or label-free detection of
relevant biomolecules [38]. A different example of how
FLM can be exploited to add specific components to already
existing devices is the concept of lab-in-fiber [41]. In this
case, the starting device is an optical fiber, where the cladding
is typically underused. In this approach, FLM is exploited to
add microchannels, cavities or additional optical waveguides
to produce highly functionalized optical fibers that become
self-consistent and sophisticated optofluidic sensors
(figure 2(a)). The possibility ofusing FLM to fabricate the
whole device further widens the design possibilities and fully
unleashes the 3D capabilities of the technology. 3D
microfluidic layouts have been exploited to achieve full-
hydrodynamicfocusing and, combined with laser-written
optical waveguides, hasenabled the demonstration of a
1 mm3 cell counter, capable of counting up to 5000 cells s−1

[42]. Cell manipulation is another relevant application of
FLM-produced devices (figure 2(b)). In fact, optical forces,
exerted by the light coming from optical waveguides, can be
exploited to trap and deform cells flowing in a microchannel,
thus characterizing their mechanical response [43]. This
analysis can discriminate between different cell populations
(e.g. between healthy and cancer cells) without any markers
(see section 11 for more details). Depending on the assay
result, each cell can then be sorted into different output
channels, again exploiting optical forces produced by a
dedicated waveguide. The combination of 3D microfluidics
and optical waveguides has been also exploited to produce a
3D-shaped nanoacquariumto study the behavior of

Figure 1. FLM can create optofluidic devices, encompassing optical
waveguides and microfluidic channels, directly buried inside a glass
sample.
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cyanobacteria in controlled conditions [44]. In particular,
optical waveguides embedded in the chip were used to
accurately monitor the CO2 concentration in the
nanoacquarium. Another 3D optofluidic device that allows
sophisticated fluorescence imaging of biological samples has
beenthe recent demonstration of selective plane illumination
microscopy (SPIM) on-chip [45]. An optofluidic cylindrical
lens was combined with a suitably shaped microchannel,
allowing optical sectioning and 3D reconstruction of cellular
spheroids in suspension. The biological sample is driven
through the light sheet, created by the cylindrical lens, with a
uniform microfluidic flow.

As already mentioned, additional functionalities can be
integrated into the optofluidic device by two-photon poly-
merization (2PP). In particular, the 3D capability of FLM

enables the 2PP-fabrication of plastic structures directly
inside sealed microfluidic channels [39], with an approach
that has been dubbed ‘ship in a bottle’ [40]. As an example,
arrays of diffractive and refractive microlenses have been
produced inside FLM-fabricated microfluidic channels to
achieve white-light detection and counting of cells flowing in
the microchannel [40].

A few technological challenges are still open to fully
exploit this technology. The first one is FLM throughput; in
fact, being a serial writing technique, it requires the time to
irradiate each device and does not benefit from economy of
scale. A second challenge is the possibility ofprocessing
different materialsother than fused silica and Foturan glass.
The third challenge is further miniaturization to the nanoscale.

Advances in science and technology to meet challenges. The
challenges previously detailed have triggered a significant
effort in the community and, although still open, there
havealready beenencouraging results towards their solution.
Regarding the scaling of fabrication capability, fine
optimization of the processing window has already allowed
writing velocities ofthe order of cm s−1 for several processes.
In addition, the use of spatial light modulators has introduced
the possibility of multifoci writing, thus enabling the
production of several structures in parallel [46]. These
approaches have still to be exploited fully to understand the
ultimate limits, but FLM will alsolikely be competitive with
standard microfabrication technologiesfor medium-sized
production batches and not just for a few prototypes. Fused
silica or Foturan glasses are excellent substrates for many
optofluidic applications and in particular for biophotonic ones.
However, enlarging the portfolio of materials amenable to
FLM will be beneficial fortargeting new optofluidic
applications. A better understanding of the nanostructuring
process,the basis of the microchannel formation, and its
replication in other materials is an ongoing activity that still
requires some effort. Finally, further miniaturization to the
nanoscale could be the next big evolution of the technology.
The 2PP technique is already able to produce nanoscale
structures and recently nanofluidic channels have been
demonstrated by FLM [44]. This fabrication scale is still
largely unexplored; however FLM has the unique capability of
easily connecting nanoscale structures to microscale ones, thus
potentially improving the usability of new devices at this very
small scale.

Concluding remarks and perspectives. FLM is a very
powerful technique for the fabrication of optofluidic
devices, allowing unique 3D layouts and an amazing level
of integration of different functionalities. Its versatility opens
up the way to many different applications, both for research
and industry. In particular, in those fields where standardization
is not too rigid, the design freedom allowed by FLM can
produce revolutionary microsystems that will setnew standards
in the field.

Figure 2. Two examples of optofluidic devices fabricated by FLM.
(a) Lab-in-fiber: several optical and fluidic components can be
integrated into the cladding of a fiber to perform optofluidic sensing;
SMF: single-mode fiber, FBG: fiber Bragg grating, FPI: Fabry–Perot
interferometer, TIR: total internal reflection. Reproduced from [41]
with permission of The Royal Society of Chemistry. (b) Optical cell
stretcher: optical forces exerted by light delivered by two optical
waveguides allow characterizing the mechanical properties of
flowing cells [43]. Reproduced from [43]. CC BY 3.0.
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3. Lithium niobate as an optofluidic platform

Cinzia Sada

University of Padova, Italy

Relevance of the topic. Droplet-microfluidics technology
has paved the way to new approaches inchemical and
biological analysis, exploiting parallel processing and high-
throughput response [47]. Screening, rapid droplet sorting
and biochemical microreactors have beendemonstrated as
well as bio-analytical assays, enzyme kinetics, cell analysis,
encapsulation and sorting. Thanks to the exploitation of
reduced volumes down to nanolitres andfemtolitres, as well
as reaction times shortened to seconds or less, chemical
synthesis and complex particle fabrication up to drug
delivery and diagnostic testing and biosensing havealso
beenreported [48]. Although novel microfabrication
techniques are continuously being developed to improve
final performance, lower the devicecosts and differentiate
functionalities with anappropriate fluidic interfacing
scheme, fully integrated optomicrofluidics devices are far
from being widely commercially available. The perspective
of combiningoptical toolversatility with the potential of
microfluidics has gained increasing interest. As already
foreseen by Psaltis and co-workers in their pioneering work
in [49], novel enabling technologies leading to true lab-on-a-
chip systems have started being under debate where
chemical, physical and biophysical sensors [50] could be
integrated on multipurpose portable devices. To this aim,
several challenges should be faced both from a scientific and
a technological point of view. An optomicrofluidic portable
device should in fact guarantee a trustworthy response, i.e.a
reproducible and repeatable output that, minimizing false
responses and artefacts, is easy-to-read/store and fast to
calibrate. Finally, to be really competitive with
fullyoptional bulky laboratory apparatus, it should be
compact, low cost, easy to use and handle, and stable
under different environmental conditions. At first sight, all
these features seem difficult to achieve. The demand of
reducing costs has therefore prevailed, leading tothe spread
of disposable devices and placingas asecond priority the
possibility of checking, monitoring and exploiting the
device response in a longer timescale. However, in the last
decade, draining the expertise in photonics, integrated
optics and microelectronics MEMS processing into
microfluidics has meant advances in overcoming and
bypassing these limitations by the suitable combination of
materials, preparation techniques and smart approaches,
respectively [51].

Current status and challenges. In lab-on-a-chip systems, the
integration of many stages is a key point in portable compact
devices. Consequently, flexible and easily-molded materials
(mainly polymers such as polydimethylsiloxane (PDMS),
poly(methyl methacrylate)) and biocompatible substrates such

as glass and silica have usually been used leading to
commercially available disposable microfluidic systems.
Optofluidics platforms havetherefore beenachieved by
coupling both laser beams (including, in best cases,
fibercoupling) and detection stages (often carried out by
optical microscopy) to microfluidics. To this aim, prototypes
able to detect, count, sort and analyze the droplets have
therefore been investigated such as compact microflow
cytometers (typical throughput of the order of several
hundreds of cells per second and a typical sample purity
ofabout 90%), velocity detectors [52], biosensors based on
fluorescence measurements [53], just to cite a few. In these
cases,polymers were frequently bonded to rigid materials:
silicon, to provideapatterned substrate to anchor/align fibers
to the microfluidic circuitries; silica or glasses to providea
solid base; lithium niobate (LN) to add surface acoustic wave
(SAW) stages working as micropumps or mixers. Quite
surprisingly, only in the last decade havesignificant advances
been achieved by delivering monolithic, perfectly aligned,
robust and portable optofluidic prototypes. Both microfluidic
circuits and optical waveguides have beensynergistically
fabricated on the same substrate (fused silica) by FLM.
Optically controlled photonic prototypes formanipulating
micron-scale dielectric objects by light-driven phenomena
havetherefore beenpresented: optical tweezers and stretchers
have beenimplemented with suitable focused laser beams,
either externally or fiber-coupled, at a microfluidics level [54].
Similar results can alsobe achievedin LN crystalsubstrates
but are currently underestimated (figure 3). Thanks to
theirexcellent optical and electro-optical properties, high-
quality optical waveguides, multiplexers, switches and optical

Figure 3. The main properties of lithium niobate (LiNbO3).
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modulators are commercially available,obtained mainly by
Ti-in-diffusion technology. Theirferroelectric properties have
been exploited to produce light sources by way of frequency
conversion in periodically poled LN (PPLN)structures. Other
applications have been: biocompatibility, photorefractivity for
holographic recording, and induced local space-charge-fields
to exploit dielectrophoretic and electrophoretic forces (either
generated by inhomogeneous illumination [55] or heating
[56]) as well as micromachining by high optical quality dicing
[57]. This material therefore presents all thecharacteristics
neededto host several different functionalities on the same
substrate in a monolithic integrated optofluidic platform. This
high level of integration represents a great challenge, but is
required in portable lab-on-a-chip systems that canoperate in
a wide spectrum range, with tailored final response and real-
time reconfigurability. Limiting factors mainly stem from
either the tools for finely controlling the fluid flux and the
optimization of the light coupling and detection within the
microfluidic interface. Up to now expensive and bulky
systems such as syringe or pressure based pumps have been
used, whilst optical functionalities are often granted by
usinghigh-power or optical-bench working lasers. When
optical fibers are integrated, instead, optical losses can
represent a limiting factor for enhanced sensibilities. Hybrid
configurations of polymers/durable materials havetherefore
beenproposed to partially overcome this issue. Less
investigatedisthe alternative solution of monolithic
integration of several functionalities on the same substrate.
Both these aspects somehow have hindered the full
exploitation of optomicrofluidicbenefits and potential so far.

Advances in science and technology to meet challenges. In
order to get a truly portable device some issues must be
solved from a technological point of view. In integrated
optomicrofluidics platforms, embedded or buried optical
waveguides are needed. Up to now, only the FLM
technique allowed one to reach such a result, but in fused
silica and for a defined range of possible functionalities
limited to this material’s properties. Although some attempts
have been made using LiNbO3, FLM is still far from being
truly exploited. As an alternative, LN could also be micro-
machined and bonded to silica and to polymers, allowing
hybrid configurations. Less sought, it seems, is LiNbO3–LiNbO3

bonding to get 3D configurations, which is still almost
unexplored. Despite these technological challenges, the real
advances in science are straightforward: droplet counting,
sorting depending on the size or content, droplet routing and
storage, all integrated on the same substrate with micropump
fluid driving, can be foreseen. This is possible by implementing
droplet optical transmission measurements and passage
monitoring, as well as refractive index and/or fluorescence
emission detection (eventually spectrally resolved by recording
holographic gratings). Finally, waveguides could both confine
light and allow for droplet routing and sorting, while storage
could be achieved (figure 4). This challenge can be faced only
by exploiting light-induced phenomena in the material,

something possible in LiNbO3 by way of its photorefractive
and photovoltaic properties, even enhanced by suitable local
doping. Consequently, tailored and reconfigurable setups could
be designed, even in real-time, by way of feedback
systemstriggered by the optical waveguide response.

Concluding remarks and perspectives. Light-reconfigurable
devices with multifunctional stages have not been proposed
yet on the same substrate, nor have systems that activate a
function in real time depending on the other stagefeedback.
Together with the miniaturization advantages, a fully
integrated optofluidic platform promises to provide higher
sensitivity and dynamic range, a finer control of the light
power focused on the biological target, and a dynamical
reconfigurability tailored depending on the final purpose.
Integrated optics can provide a perspective and a systematic
analysis of the role of different conditions of illumination and
the relative real-time monitoring even of cumulative light-
induced effects still unknown or not investigated. LiNbO3

promises to be a valid alternative, as it has beendemonstrated
to host: efficient integrated optics stages; micropumps by
SAW; second harmoniclight generation by PPLN; particle
manipulation stages and droplet routing by way of
photovoltaic properties; engraved microfluidic circuitries
using theFemto-laser technique; and high-quality dicing.
Consequently, they represents an ideal gymfloor
forintegrating all these functionalities together and
achieving a portable fullly optional lab-on-a-chip device,
tailored and reconfigurable by way of optical induced
phenomena.

Figure 4. LiNbO3-based optofluidic platform.
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4. Silk fibroin films for biophotonic and microfluidic

applications

S Zhao, F G Omenetto

Tufts University

Relevance of the topic. Microfluidics is a versatile
technological platform for precise manipulation of fluids of
extremely small volumes and has a broad range of
biochemical and medical applications. PDMS, as one of the
most commonly used microfluidic materials, has
revolutionized the field by enabling out-of-clean-room and
inexpensive fabrication and providing robust material
properties to support a variety of applications from large-
scale chemical synthesis to high-throughput bimolecular
assays. However, itsnon-biofriendly fabrication process and
itslimitations in bulk functionalization have limited the utility
of PDMS devices in the fields of tissue engineering and
regenerative medicine. More recently, biologically relevant
materials have been utilized to construct microfluidic devices,
such as gelatin, collagen, alginate and silk. These natural
biomaterials allow easy bulk and surface functionalization
and exhibit fully compatible bio-interfaces. Among those
materials, silk fibroin has unique physicochemical properties,
including highly tunable mechanical stiffness and in vivo

degradabilityas well as long-term stability in various medium
environments. These attributes are essentially important for
advanced applications of microfluidics in tissue-related
research and in vivo implantation.

Current status and challenges. The first microfluidic device
completely made of silk fibroin material was introduced in
2007 [58]. The microchannels were fabricated by aqueous
casting of silk fibroin solution on aPDMS mold followed by
water-stable treatment. The micromolded silk film was then
laminated onto a flat silk film so closed microchannels were
formed. Human hepatocytes were successfully cultured in the
microchannels and perfused with cell culture medium for a
prolonged period of time to demonstrate the biocompatibility
of the devices. A new enzymatically crosslinked silk hydrogel
material was later introduced and has also been utilized for
microfluidics fabrication (figure 5). This material provides
better tunability on mechanical properties to match different
human tissues, bulk functionalization and cell encapsulation
for artificial tissue/organ constructions [59]. A gelatin
sacrificial molding method was used to create
microchannels in silk hydrogel and a layer-by-layer
assembly approach allowed the fabrication of multilayered
3D microfluidic devices. Pneumatic fluidic controls
previously used inPDMS counterparts have also been
implemented thanks to the elastic nature of the silk
hydrogel, whichallows automatic control of silk
microfluidics forhigh-throughput large-scale devices. Human
endothelial cells and fibroblast cells have beensuccessfully
cultured along the channel surface and in the bulk of the
device, respectively, which demonstrated the utility of the silk
hydrogel devices in potential tissue engineering applications.

Silk microfluidics has made tremendous progress in the
last decade, but challenges still remain to be addressed to
bring this platform from research laboratories to hospitals and
theclinical market. One of the key challenges is thatcurrent
3D silk microfluidic fabrication requires time-consuming
layer-by-layer assembly and significant human intervention,
which largely limits the throughput. Ideally, complex and
multilayer silk microfluidics will be fabricated with automatic
systems using either bottom-up (e.g. 3D printing) or top-
down (e.g. 3D laser micromachining) approaches. Moreover,
fabricating ultrafine features (from micrometer to nanometer)
within the silk hydrogel is very challenging, which, if
addressed, could allow the construction of high-density
microvascular networks and highly integrated microfluidic
devices.

Advances in science and technology to meet challenges. 3D
printing is a promising technology that allows facile
fabrication of complex 3D structures with minimal human
intervention. We have recently developed a 3D bioprinter that
is able to print room-temperature curable silk hydrogels into
various 2D and 3D formats [60]. Ultrafast laser pulses of
relatively low energy have also been utilized to directly carve
high-resolution channels of micrometer dimensionswithin
bulk silk hydrogels, which provides a promising solution to
automatic fabrication of high-density silk microfluidics [61].
In addition to enzyme-induced crosslinking, light and electron
beams have also been utilized to cure and pattern silk

Figure 5. (A) A silk hydrogel microfluidic device with 3D
microchannels. (B) Human endothelial cells cultured along the
microchannel surface. (C) Human fibroblast cells cultured in the
bulk of asilk hydrogel device. Scale bar shows 1 cm in (A), and
20 μm in (B) and (C). Reprinted from [59], Copyright 2016, with
permission from Elsevier.
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hydrogel material under aqueous andbiofriendly conditions,
which could be potentially used to fabricate features of
micrometer to nanometer resolution [62, 63].

Concluding remarks and perspectives. The next evolution of
the field of microfluidics will be based on the integration of
new classes of active materials as the bulk constituent of the
devices. That is, the availability of materials that are
biologically active and that can be integrated into living
tissue, together with the possibility of incorporating dopant
molecules, which can surround the volumes of fluid flowing

through microchannels, with active environments that can
define diffusive profiles into or out of the channnels, or can
provide externally addressable functions. Future applications
envisioned are biologically integrated fluidic devices such as
smart tissue engineering platforms, active bulk doped
microfluidics that embed optical and/or electronic
functions, and dynamically reconfigurable, chemically active
devices, extending the utility of the platform.

Acknowledgments. The authors would like to acknowledge
support from the ONR, AFOSR, and NIH.
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5. Integration of microfluidics with silicon photonic

sensors

Kristinn B Gylfason and Tommy Haraldsson

KTH Royal Institute of Technology

Relevance of the topic. With our rapidly advancing
understanding of molecular biology, the interest in
analyzing the molecular composition of various biological
samples has increased dramatically in recent years. Medical
diagnostics are, for example, increasingly based on the
quantitative measurement of the concentration of certain
biomolecules, referred to as biomarkers, in patient samples
such as blood and urine. Currently, this type of analysis is
predominately performed in a laboratory setting, due
tostringent environmental control and the high skill level of
operators required for reliable results. However, there is a
growing need for reliable mobile bioanalysis, e.g. to tackle
epidemics and biohazard monitoringon site.

The great success of current bio-analytical techniques is
largely built on the exploitation of highly selective binding
reactions of certain biomolecule pairs, e.g. certain proteins
and nucleic acids, to perform biomolecule detection with high
selectivity. In this way, we take advantage of the work already
done by evolution on the fine tuning of the control systems of
life. Alas, with this benefit comes a strict condition: we need
to handle liquid samples, since biological binding reactions
invariably take place in aqueous solutions.

Microfluidics refers to the technology of fluid manipula-
tion on the microscale. From its inception almost 30 years ago
[64], this field has benefited greatly from the microfabrication
techniques of the microelectronics industry, but has recently
developed its own toolset based on polymer microstructuring,
often by casting or molding. The rapid development of
microfluidics has been driven by the desire to automate and
parallelize liquid sample handling for applications such as
medical diagnostics, biological research, and drug
development.

The result of a bioanalysis must be quantified, and optical
detection is a particularly popular quantification approach,
due to its large dynamic range, high spatial and temporal
resolution, and strong resistance to electromagnetic inter-
ference. Silicon photonics is the study and application of
integrated optical systems thatuse silicon as an optical
medium, usually by confining light in optical waveguides
etched into the surface of silicon-on-insulator (SOI) wafers.
By fixing one part of the biological pairs mentioned above
onto the surface of such a waveguide, the selective binding of
the other part can be optically detected. The fixed molecule is
referred to as a recognition element, the detected molecule as
the analyte, and the technique as a whole as optical
biosensing. Since the transparency window of silicon lies in
the near- and mid-infrared, detection schemes based on
refractive index changes upon biomolecule binding are most
commonly applied. Fluorescence-based detection is uncom-
mon, since very few fluorophores operate in the near- and
mid-infrared.

The main benefit of silicon photonics is that by
leveraging the investments made by the silicon-based
microelectronics industry, silicon photonics can be efficiently
manufactured on large diameter wafers using highly auto-
mated processes. Furthermore, silicon-based optical circuits
can be made very compact on the SOI platform, due to the
high refractive index contrast, which enables small waveguide
bending radii. This permits efficient use of the wafer area,
thereby keeping device costs down. For bioanalysis, this
means that whole optical detector arrays can be integrated
into a single microfluidic channel. Another benefit of silicon
photonics is that electronics for readout and control can be
integrated into the same substrate, yielding an unprecedented
integration density. The main limitation of silicon photonics is
that there are currently no monolithically integrated lasers
available, but recent advances in germanium lasers on silicon
[65] hold great promise for low-cost silicon photonic systems
in the near future.

By combining the tools of silicon photonics and
microfluidics, the basic toolset is in place for implementing
robust mobile bioanalysis. A successful merger, however,
requires overcoming a number of challenges outlined below.

Current status and challenges. To target mobile bioanalysis,
the chosen integration technology should preserve the key
benefits of silicon photonics mentioned above. This implies
that both recognition element attachment and microfluidics
integration should be done at wafer level, and without adding
asignificant wafer footprint. So far, such an approach has not
been demonstrated.

The second fundamental challenge is the volumemis-
match. For many important medical conditions, the concen-
tration of the indicative biomarker analytes is very low in the
sample liquid. Thus, for reliable detection, a certain minimum
sample volume must be analyzed. For common cases, this
results in sample volumes of 0.5 to 1 ml. Furthermore, most
biosensing protocols call for washing with at least five times
the sample volume of clean buffer liquid. For comparison, a
silicon photonic chip of 10×10 mm2 area covered with a
uniform 0.1 mm thick liquid film holds only 10 μl of liquid.
Any microfluidic channel network structured on top of such a
chip will hold much less. Hence, a mobile silicon photonics
biosensing instrument must be able to handle and store much
more liquid than can be fitted on the silicon chip surface.

The third fundamental challenge is the sensitivity of the
biological recognition elements to temperature and solvents.
This is particularly true for the more interesting protein-based
class of recognition elements that generally neither tolerate
heating significantly above body temperature nor non-
physiological solvents, which severely limits fabrication
options. Nucleic acids, on the other hand, are more tolerant,
but then there already exist many more alternative analysis
methods for nucleic acids.

Figure 6 provides a schematic overview of the integration
approaches that have been reported so far, as well as a few
possibilities that have not been tried yet. The liquid handling
methods can be classified into two major groups, based on
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analyte transport modality, as advective or diffusive. The
advective class is dominated by microfluidic channel based
devices, usually employing pressure-driven flow in channels
molded into polymers such as PDMS[66, 67] and thiol-enes
[68], and transfer-bonded onto the silicon photonics. So far,
only chip level processing, has been demonstrated. The
critical aspect of this approach is how to seal the channels
after recognition element attachment, without affecting the
biomolecules. PDMS is difficult to dry-bond to silicon after
biomolecule attachment, since the required oxygen plasma
activation would destroy the biomolecules. Thiol-enes are
more promising in this regard [69]. Another approach is to
etch channels into a spin-coated perfluoropolymer and then
seal them with clamped gaskets [70]. The drawback of this
approach is that the poor alignment accuracy of the clamped
gasket severely limits the integration density. Furthermore, a
leak-tight seal will be difficult to achieve in a low-cost
consumer operated device. Pressure has also been used to
flow samples through orifices in silicon photonic chips glued
to the bottom of open-ended plastic test tubes [71]. Advective
droplet transport (digital microfluidics), which employs
electrowetting, has also been reported [72], but the sample
volumes that can be handled in this way are very small.

Due to their simplicity, diffusive transport devices are
potentially very interesting for mobile biosensing and high-
throughput screening applications. However, they will
struggle with the low analyte concentrations of most medical
diagnostic applications.

Advances in science and technology to meet challenges. To
be able to structure microfluidic circuits directly on top of

silicon photonic wafers, some advances in polymer science
are needed. The ideal polymer should be patternable using
standard photolithography, and allow for low-temperature dry
bonding both to silicon and to other polymers. Using such a
polymer, the alignment-critical first microfluidic channel layer
could be made directly on the silicon photonics wafer, using
spin coating, lithography, and development. Next, the
biological recognition elements could be deposited in a
serial process using a spotting robot, or preferably using a
wafer-scale printing scheme with a patterned stamp. Then, a
second, lower resolution lid layer could be transferred and
dry-bonded to form closed channels with open vias aligned to
the channel structure below. The lid layer could be injection
molded into a thermoplastic, and thus also contain the large
volume reservoirs necessary for milliliter-scale sample
handling. Another alternative would be to add a third layer
containing the large liquid reservoirs.

Currently, there exist polymers that have the potential to
allow such a processing scheme. In particular, the class of
photocurable thiolene-epoxy polymers [73] seems promising,
due to theircapability for high-resolution photopatterning and
versatile low-temperature dry bonding.

Another potentially rewarding development of silicon
photonics based biosensing would be to use IR fluorescence
in combination with silicon photonics. This would enable the
combination of the high signal to thebackground, possible
with fluorescence-based sensing with the low-cost, high
integration density optics possible with silicon photonics.
There havealready beenrecent developments in IR fluor-
ophores, but combining them with silicon photonics is
uncharted territory.

Concluding remarks and perspectives. Silicon photonics
have already been commercially employed to biosensing in
a laboratory setting. However, the big potential of the
technology is to enable quantitative and reliable mobile
bioanalysis, for example in a smartphone attachment. To get
there, advances are necessary in wafer-scale polymer
processing, as well as in wafer-scale biomolecule
attachment. Furthermore, a monolithically integrated light
source is also needed to realize this vision. Finally, even
though optical sensing, and biosensing in particular, has been
the driving force behind much of the recent work, the control
and manipulation of light by fluids is a potentially rewarding
application of the microfluidic integration technology
discussed here.

Acknowledgments. This work was partially supported by the
Swedish Research Council (Grants nr. B0460801 and 621-
2012-5364).

Figure 6. A schematic overview of the microfluidic integration
approaches that have been reported, as well as a few new
possibilities.
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6. Holographic on-chip microscopy and tomography

using lensless computational imaging

Yibo Zhang and Aydogan Ozcan

University of California, Los Angeles, CA

Relevance of the topic. The recent advances in micro- and
nanotechnologies have greatly enhanced our capability to
build cost-effective and powerful chip-size microsystems that
can handle, e.g. cells and biofluids. These lab-on-a-chip
systems have wide applications in bioengineering and
medicine. The integration of optical imaging and
microscopy techniques with microfluidics can enable high-
throughput detection and sensing of biological and/or
chemical signals. To complement such microfluidics and
lab-on-a-chip systems, optical microscopy tools need to
undergo a transformation in terms of their size, cost and
throughput, and computational on-chip imaging provides
unique opportunities for this broad goal.

Current status and challenges. The optical interrogation of
current microfluidic samples is by and large conducted by
conventional light microscopy tools that use lenses for image
formation, and have significantly smaller fields of view
(FOV) than the size scale of a typical microfluidic chip and
shallower depths of field (DOF) than the height of typical
microfluidic channels. Moreover, the FOV as well as DOF of
conventional microscopy scale down when switched to
higher-magnification objective lenses (when higher
resolution is needed), further reducing the available imaging
area and volume within the sample. In addition, the bulkiness
and high cost of these conventional microscopes present
another obstacle to merging optical imaging with
microfluidics for building lab-on-a-chip systems, especially
for use at low-resource and field settings. This mismatch,
caused by the limitations of traditional optical imaging
modalities, prompts advances in microscopy.

Meanwhile, tomographic imaging techniques that enable
sectional imaging have been of great interest to reveal 3D
structures of various organisms. Sectional imaging modalities
such as optical projection tomography, optical diffraction
tomography, confocal microscopy and light-sheet micro-
scopy, among others, can achieve high-resolution 3D optical
imaging. However, these modalities are also limited by the
aforementioned restrictions including low throughput, high
cost and bulkiness.

Therefore, it is of great importance to develop high-
resolution microscopic and tomographic imaging techniques
that have small footprints and large sample imaging areas/
volumes.

Lensless on-chip microscopy based on digital in-line
holographic imaging offers a wide FOV and a large DOF
within a low cost and compact device platform [74–83].
These features make it a promising solution for optofluidic
microscopy applications [74, 79, 81]. In a holographic
optofluidic microscopy (HOM) setup, the sample flows in a
microfluidic channel, which is driven either by electrokinetic

force or pressure. A partially coherent light source with a
large illumination aperture (e.g.∼50–100 μm, filtered by a
large pinhole or butt-coupled to an optical fiber section) is
placed 50–100 mm (z1 distance) above the sample micro-
fluidic chip, while the microfluidic chip is placed directly on
top of a CMOS image sensor. As a result, the sample of
interest inside the microchannel is typically located at ∼1 mm
(z2 distance) away from the imager chip. The illumination
light that can be from a low-cost light-emitting diode (LED)

acquires spatial coherence after free-space propagation over a
distance of z1, and the hologram recorded by the image sensor
is formed by the interference oflight scattered by the sample
within the fluid with the unscattered light that is directly
transmitted. Compared to laser sources, the use of a partially
coherent light source (e.g.a simple LED) reduces speckle and
multiple-interference noise, resulting in cleaner images with-
out loss of resolution owing to on-chip imaging geometry.
Moreover, the cost of the setup is reduced by using low-cost
LEDs as light sources.

An important advantage of using the holographic
imaging principle is the capability to do single-shot depth-
resolved amplitude and phase imaging of a large sample
volume. The holographic patterns can be digitally refocused
to different z distances, with particles/samples residing at
different depthsin focus.

When only one in-line hologram is used for reconstruc-
tion, the major limiting factor for the resolution is the pixel
size, which is a disadvantage of using unit fringe magnifica-
tion—a characteristic signature of an on-chip holographic
microscope. However, the flow of the sample in a
microfluidic channel (figure 7) can be leveraged to circum-
vent this limit imposed by the pixel size by capturing multiple
holograms that are acquired at different time instances
[74, 79, 81]. Due to the flow, these holograms generally
have non-integer (sub-pixel) shifts with respect to each other.
A high-resolution hologram that is compatible with all the
sub-pixel-shifted low-resolution holograms can be calculated
by using a pixel super-resolution (PSR) algorithm.

Using lens-free holographic on-chip imaging together
with computed tomography principles, portable tomographic
microscopes can also be builtto achieve 3D sectional
imaging capability [76, 79–81, 83]. In this method, the
sample is illuminated from multiple angular positions ranging

Figure 7. Left:schematic setup ofholographic optofluidic micro-
scopy (HOM). Reproduced from [74]. CC BY 3.0. Right: schematic
setup of holographic optofluidic tomography (HOT). Reprinted from
[83], with the permission of AIP Publishing.
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between ±50°, which provides different perspectives of the
samples. These images are holographically reconstructed, and
a computed tomogram is generated by applying a filtered
back-projection algorithm. Although the multiangle illumina-
tion increases the system complexity, it can still be
implemented in a cost-effective and portable device by using
multiple LEDs that are butt-coupled to optical fiber sections at
different angular positions. PSR can be integrated onto the
same platform by electromagnetic actuation of the optical
fibers using coils and magnets [76]. This induced motion in
the optical fibers results in sub-pixel shifts of the acquired
holograms, and can be used to synthesize higher-resolution
holographic images. With this approach, tomographic ima-
ging of approximately 15 mm3 has been achieved, with a
spatial resolution of <1 μm×<1 μm×<3 μm in the x, y

and z directions. Tomographic imaging of an entire C.
elegans has been demonstrated using the same technique [80].

A unique advantage of the holographic optofluidic
tomography (HOT) method (figures 7 and 8) is its extended
DOF that is inherent to the holographic imaging principle.
Unlike high-NA objective lenses that have a very shallow
DOF, a tomogram of an object can be computed at any
position within the imaged 3D volume of the microchannel.
However, notice that theHOT technique assumes that the
sample is a weak scattering object, and that the majority of the
detected photons should have experienced, at most, a single
scattering event.

A variant of the HOM and HOT methods was used for
the dynamic 3D tracking of sperm cells over large volumes
[77, 82]. In this system, two LED sources of different
wavelengths (red and blue) simultaneously illuminate the
microfluidic chamber from different perspectives (vertical and
45° tilted, respectively). This dual-wavelength illumination
design enables digital separation of the two holograms of the
same sperm cell, and the dual-angle design improves the cell
localization accuracy in the z direction via triangulation.
High-frame-rate lensless image sequences were taken to
resolve the rapid motion of the spermwithin a very large
volume of ∼10 μl. Using this platform, rare trajectories of
human spermsuch as helical patterns were detected and
quantified. A similar platform couldbe used to detect and
track a wide variety of other microswimmers that exhibit 3D
locomotion in fluids.

Concluding remarks and perspectives. Lensless holographic
microscopy and tomography are promising techniques to
complement microfluidic and lab-on-a-chip platforms as they
present important advantages of, e.g. high throughput, low
cost, simplicity and small footprints, making them
ideallysuited to be used in low-resource and field settings.
Manipulation of liquid samples and rapid screening of large
volumes of fluids are some of the applications that can benefit
from these computational imaging techniques.
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Figure 8. 3D imaging of C. elegans using HOT. Reprinted from [83],
with the permission of AIP Publishing.
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7. Live cell imaging with optofluidics

Adam Wax

Duke University

Relevance of the topic. Cell biologists and microscopists
will often image individual live cells to establish the
properties of a population of interest. However, these
studies can be limited by the number of cells that can be
practically examined due to the need to reposition, refocus
and image each cell. As an alternative, flow cytometry can
enable large throughput studies but typically requires a degree
of instrument complexity. Perhaps a greater limitation is that
flow cytometry makes it difficult to follow the fate of
individual cells. As an alternative approach, optofluidics
offers a unique opportunity to examine live cells and easily
manipulate them in a high-throughput scheme.

Many microfluidic platforms have been developed for
examining individual live cells. The earliest implementations
often included an optical scheme for interrogating a cell,
usually in the form of a fluorescent reporter [84]. As the
technology matured, optics were also adapted for implement-
ing cell sorting [85]. The development of optics integrated
into the microfluidic platform gavebirth to the field of
optofluidics. The first key advances in this field were to
enablehigh-resolution imaging within the microfluidic plat-
form. These low-cost implementations offered fit for purpose
alternatives to using a traditional microscope [86]. This
approach combines microfluidics for sample manipulation
with low-cost sensors for imaging, and employ reconstruction
algorithms to obtain high-resolution images. Further devel-
opment of these approaches for cell imaging in a compact,
low-cost platform has enabled applications in new settings
such as resource limited locations and point-of-care medical
diagnosis. Below, recent advances in live cell imaging using
optofluidics are discussed alongside a brief look at challenges
in this field and suggestions on how future efforts may
approach them.

Current status and challenges. The true advantage of
optofluidics for live cell imaging is the ability to apply a
range of well controlled, calibrated forces both to manipulate
and characterize cells. These forces can be applied
mechanically, electrically or optically to isolate and
interrogate individual cells for study. Cells under
examination in these devices are then typically profiled
using an optical modality ranging from bright-field imaging to
Raman spectroscopy to interferometry.

A recent example of this approach can be found in Lee
and Liu [87] where individual cells are trapped at designated
sites in a micropipette array using flow pressure. A calibrated
syringe allows the pressure to be varied across the array and
thus implement simultaneous micropipette aspiration assays
on each trapped cell. This is a common technique in cell
biology for assessing cell biomechanical properties by noting
the degree to which a cell is drawn into a narrow capillary due
to a given force. This technique is effective but can be quite

laborious due to the need to manually trap and image each
cell. In comparison, the optofluidic platform allows highly
parallel studies using bright-field microscopy to assess cell
deformation. In its initial demonstration, it was applied to
distinguish breast cancer cells based on mechanical proper-
ties. One particular challenge of this approach is to keep the
sample in focus during experiments. Here this is solved by
integrating the platform with the microscope but other
approaches are discussed below.

Raman spectroscopy is a powerful technique for
distinguishing cells by their biochemical properties. However,
in general the Raman cross section is low,resulting in poor
efficiency and the need for long integration times. Analysis of
the Raman signal from cells inside an optofluidic platform
mustusuallyinclude a mechanism for trapping the cells using
mechanical or electrophoresis approaches. Using laser
tweezers to trap cells for Raman measurements has also been
shown to be effective [88]. As an alternative approach,
surface-enhanced Raman spectroscopy (SERS) has been used
to discriminate cells in a microfluidic platform [89]. SERS
increases the strength of a Raman signal by orders of
magnitude, enabling more rapid detection. In this approach a
SERS biotag is created, which is taken up by cells thatare
then introduced to the microfluid. The flowing cells can then
be rapidly profiled using the biotag for sorting (figure 9).

Several efforts have soughtto increase the rate of cell
imaging as they flow through a device. While the use of
today’s high pixel count sensors can allow for highly parallel
imaging approaches, these typically are limited by the low
numerical aperture optics required to have a wide field of
view. Light-sheet imaging approaches have shown promise
for wide field and rapid throughput but are limited to
detecting fluorescent tags. Novel imaging approaches, such as
optical time stretch imaging, allows for more rapid imaging of
cells [90], achieving rates comparable to flow cytometers. In
this approach, the imaging information is spectrally encoded
using a dispersed broadband pulse. Extensions to this
approach have shown the ability to obtain phase information
using an interferometry scheme but can have difficulty with
maintaining cells in a focal plane. In addition, the complex

Figure 9. Surface-enhanced Raman spectroscopy tags allow rapid
discrimination of cells in flow. Reprinted with permission from [89].
Copyright 2015 American Chemical Society.
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scheme may not be compatible with typical applications of
microfluidics as point-of care devices.

Advances in science and technology to meet challenges.
The continuing challenge in imaging of live cells in
optofluidics is to achieve high throughput without
sacrificing information or greatly increasing instrument
complexity. Optofluidic devices become less efficient when
there is a need to first trap each individual cell before
analyzing it. Instead, developing methods in optofluidics seek
to provide richer information while preserving throughput.

Holographic imaging offers a compelling way to obtain
more information about cells in that it provides both phase
and amplitude information on the optical field that has
interacted with a cell. Unlike Raman spectroscopy or
fluorescence, interferometric signals are quite robust, yet the
method does present some challenges. For example, cell
samples in a microfluid may present some turbidity, due to
thepresence of other cells or fouling biomolecules. To
implement holographic imaging in this situation, a clean
background image is needed for subtraction from later
images. A recent study pointed the way to conquering
turbidity through careful analysis of the holographic signal
components [91]. The approach, termed multilook, allowed
for successful imaging of cells in the face of a turbid sample
in the microfluidic channel.

Another compelling aspect of holography is its ability to
image the three-dimensional distribution of therefractive
index, an indicator of the cell’s mass distribution. However,
this approach for refractive index cell tomography can require
many camera exposures, typically from different angles,
during which the cell must remain stationary. A recent
advance has pointed the way to 3D holographic imaging in
flow [92]. In this approach, a cell flows slowly past a high-
speed camera, which captures the angular distribution of
scattered light rather than a regular image. These data are then
inverse transformed to deduce the 3D distribution. This
advance was significant since it first demonstrated 3D
tomographic imaging of cells in flow. However, it has some
limitations, including requiring many exposures and signifi-
cant computation time, indicating that further development is
needed for high-throughput application. Further, this platform
avoided the refocusing problem by confining cells to a
channel just barely larger than their size, which could become
easily clogged if debris were present.

As an alternative, our research group has shown that
refocusing of holographic cell images can avoid the need for
restrictive channel dimensions. In this approach holographic
cell images are acquired and then digitally refocused by
leveraging the fact that the complex optical field is obtained
[93]. In this initial demonstration, it was shown that

quantitative comparison of red blood cells was much more
accurate after refocusing (figure 10). We further employed
this refocusing algorithm in two studies of red blood cells
infected with P. falciparum, a parasite responsible for
malaria. The first study used our quantitative phase
spectroscopy technique [94] to analyze the hemoglobin
content of individual red blood cells, revealing its consump-
tion by the parasite [95]. A second study used machine
learning to discriminate the presence of infection by using a
set of cell descriptors, producing high enough sensitivity and
specificity to suggest clinical utility [96]. Both of these studies
employed the refocusing approach, which will be essential in
thedevelopment of holographic techniques for studying cells
using optofluidics.

Concluding remarks and perspectives. In summary,
optofluidics offers unique capabilities for high-throughput
cell studies. Many research efforts are underway to mine the
richness of the optical spectrum to characterize cells while
maintaining sufficient throughput to implement viable assays.
New techniques such as holographic imaging can provide
new capabilities but successful application can pose new
challenges as well.

Acknowledgments. Grant support from the National Science
Foundation CBET 1604562.

Figure 10. Digital refocusing of a single red blood cell image
subjected to high flow rates. Topleft: optical volume of red blood
cells (RBC) with flow on and off (rates indicated on plot). Blue and
red are before and after digital refocusing, respectively. Bottom left:
defocus distance. Reprinted from [93]. CC BY 3.0.
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8. Optofluidic microlenses: from tunable focal length

to aberration control

Frieder Mugele

University of Twente

Relevance of the topic. Generating optical images
usingrefractive lenses is still the most important practical
use of optical systems. In principle only one single lens is
needed to form an optical image and two to generate a zoom
system. In practice, however, optical systems require a lot
more than two lenses in order to guarantee a decent—
ideally,diffraction limited—imaging quality. Combinations
of several lenses are typically used to compensate imaging
faults that arise from the various aberrations of each
individual lens. If zoom or focus settings are to be
changed, many of these lenses have to be displaced with
respect to each other in a well-defined manner. This
typically requires fairly precise and bulky mechanical
displacement stages that are often not compatible with e.g.
the spatial constraints in high tech devices such as mobile
phones or endoscopes.

Optofluidic lenses provide a way out of this dilemma.
Instead of translating lenses they adapt their imaging
properties by adapting the shape of the lenses. This can be
achieved by a variety of external control parameters including
pressure variations, mechanical stresses, thermal expansion,
and electrowetting [99]. While these approaches provide a fair
degree of tunability of the focal length, most of them retain a
spherical shape of the lens, as dictated by the mechanical
equilibrium of free liquid surfaces in the absence of external
forces. As a consequence, optical systems built of simple
optofluidics lenses often display mediocre imaging quality
due to uncompensated imaging faults such as spherical and
other optical aberrations. High-quality adaptive imaging
systems require new strategies for aberration correction in
liquid microlenses while preserving the compactness of the
design, i.e. without introducing mechanical stages to displace
the lenses.

Current status and challenges. Standard optofluidic lens
designs come in two basic variants, as illustrated in
figures 11(a) and (b). In the first type, the edge of the lens,
i.e. the three-phase contact line between the solid, the
lens fluid (LF) and the ambient fluid (AF) is pinned along
the edge of a physical aperture, figure 11(a). In this case, the
curvature k of the lens is determined either by the pressure
difference gkD =p 2

L
between the two fluids or by the fixed

volume of the lens fluid in combination with geometric
constraints. The interfacial tension g between the two fluids
guarantees the spherical cap shape of the interface. (The densities
of thelens and ambient fluid are typically matched in order to
avoid gravity-induced distortions.) Pressure and/or volume can
be changed by a variety of different actuation schemes, including
piezoelectric transducers, thermal expansion, and electrowetting;
see [99] for a recent review. In some approaches, the interface

between the two fluids is covered by an elastomeric membrane,
e.g. of PDMS with a thickness of a few tens of micrometers. For
not too large deformations, the resulting shape of the interface in
these ‘liquid-filled’ lenses is also approximately spherical cap-
shaped with the elastic tension of the membrane taking over the
role of g.

In the second variant of optofluidics lenses, the three-
phase contact line is free to move along the solid surface, but
the contact angle q is changed, figure 11(b). Variations inq,
in combination with the fixed radius and/or volume of the
lens fluid, determine the curvature of the lens. Reversible,
fast, and robust tuning of the contact angle over a wide range
is best achieved using electrowetting (EW; see [101] for a
review). EW requiresa conductive lens fluid and a dielectric
ambient fluid. It allows the variance ofq ( )U by more than
90° within milliseconds with excellent reproducibility over
millions of actuation cycles.

However, both approaches lead to spherical lenses for
cylindrically symmetric geometries. As a consequence, such
lenses always suffer from optical (in particular, spherical)
aberrations that compromise the resulting image quality, as
evidenced in plots of the modulus of the optical transfer
function (MTF) for increasing curvature, figure 11(c), and in
the resulting images, figure 12(a). Such deteriorations are
particularly dramatic for lenses with high numerical aperture
or small f-number, as they are frequently needed in
miniaturized devices.

In the case of liquid-filled lenses, combinations of two
differently curved surfaces in biconvex lenses were demon-
strated to reduce both spherical [102, 103] and chromatic

Figure 11. (a) Pressure-controlled optofluidics lens with pinned
contact line. (b) EW-controlled optofluidics lens as asessile drop
(top) and in acylindrical tube (bottom). (c) MTF for aspherical lens
with fixed diameter D for increasing Dp

L
and curvature (see inset).

(d) MTF for fixed pressure and increasing top voltage UT that
induced increasing asphericity. Inset: electric field-induced surface
deformation. Adapted from [98]. © 2016 Optical Society of
America. CC BY 3.0.
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aberration. The different curvatures are achieved by using two
membranes withdifferent stiffness, resulting in different
curvatures for the same applied pressure, or more recently
with elastomeric membranes with a carefully designed radial
thickness profile [104]. While preserving the elegance of a
single actuator, the applied pressure, this fixed design of the
membranes, and their non-linear elastic and hysteretic
response, reduce to some extent the flexibility of this
approach.

Advances in science and technology to meet challenges. To
overcome these limitations, alternative actuation schemes that
enable not only a variation of the overall average curvature of
the lens, but also controlled deviations from the spherical
shape, are needed. A few recent studies suggestaddressing

this problem using EW or a related electrical actuation in
combination with suitably patterned electrodes. One of the
first applications of this type was not intended for imaging
optics but for (wide angle) beam steering. Smith et al [105]
used square or rectangular cuvettes with EW-functionalized
sidewalls that could be addressed individually. In this manner,
they managed to generate flat liquid–liquid interfaces with a
widely tunable tilt angle resulting in a ±15° beam steering
capability.

Kopp and Zappe [100] recently presented a design in
which they segmented the electrode along the inner side of a
cylinder. In this case, the liquid–liquid interface assumes
ageneral complex shape that is compatible with the local
contact angles on theelectrode and the requirement of a
constant mean curvature in mechanical equilibrium. Using
eight individually addressable electrode segments they
managed to generate lenses with tunable focal length
(7–12 mm) and tunable astigmatism in the 0, ±45°, and 90°
directions with amplitudes ofup to 3 μm (Zernike coefficient)
while keeping the amplitude of all other aberrations below
100 nm (figure 12(b)).

Mishra et al [97] presented a different approach, in which
they used another electrode placed in the ambient dielectric
above the liquid–liquid interface, see inset tofigure 11(d).
Application of a high voltage to that electrode generates a
position-dependent electric field that pulls on the liquid–liquid
interface with a Maxwell stress  P =( ) ( )/r E r 2.0

2 The
equilibrium shape of the liquid is set by balance between this
position-dependent electrical stress and the resulting position-
dependent local Laplace pressure and curvature of the
interface. For an unstructured electrode on the top, the local
curvature of the interface decreases monotonically from the
optical axis towards the edge of the lens, similar to a perfect
aspherical lens. Indeed, it turns out that the longitudinal
spherical aberration can be completely eliminated, resulting in
diffraction-limited MTF curves(figure 11(d))as well as optical
images (figure 12(b)).

Extensions of the method using segmented top electro-
des, a homogeneous one, allowsbreaking the cylindrical
symmetry and the generatedlenses with tunable astigmatism
[106], coma, and various other aberrations.

Concluding remarks and perspectives. EW and the related
Maxwell stress-induced tuning of liquid–liquid interfaces
provide very fast and flexible tools to generate tunable lens
profiles with variable local curvature. The design of
optofluidicdevices that allows for correcting tilt, coma,
astigmatism, and spherical aberration simultaneously withall-
electrical actuation seems within reach, possibly best by
combining the currently existing approaches discussed above.
The extent to which different aberrations can be addressed
completely independently needs to be explored. Improved
geometric designs aided by numerical simulation and improved
materials (e.g. low interfacial tension fluids) will help to
improve the flexibility. Ideally, it is conceivable to achieve

Figure 12. (a) Top: side view image (left) and image of a test grid
(right) recorded with a spherical liquid lens with finite longitudinal
spherical aberration (LSA); bottom: same as in (a) for an aspherical
lens for negligible LSA deformed by optimized Maxwell stress.
Adapted by permission from Macmillan Publishers Ltd: Scientific
Reports [97], Copyright 2014. (b) Zernike coefficient for
astigmatism in thevertical and horizontal directions obtained by
EW with segmented electrodes in theazimuthal direction. Repro-
duced with permission from [100]. © 2016 Optical Society of
America.
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almost arbitrary polarization-independent wavefront shaping
on top of a lensing effect by using arrays of large numbers of
individually addressable electrodes.

Acknowledgments. We thank the Dutch Science Foundation
NWO supporting our optofluidics activities within their VICI
program under grant #11380.
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9. Integration of reconfigurable photonics and

microfluidics

Holger Schmidt

University of California, Santa Cruz

Relevance of the topic. Ever since the emergence of
optofluidics in the early 2000s, reconfigurability has been
one of the field’s defining characteristics, afforded by the
potential to replace and modify non-solid media to (rapidly)
change the optical properties of a photonic device [107, 108].
At the time, reconfigurable devices were inspired by possible
applications in optical communications. Thus, on-chip laser
sources that could be tuned via swapping the active (liquid)
gain medium or mechanically deforming the cavity were a
natural early demonstration of the power of this approach
[109]. Subsequently, reconfigurability was demonstrated in a
number of other photonic elements, including switches [110],
lenses [108], microring resonators [108], and spectral
filters [108].

Current status and challenges. Reconfigurability remains
one of the distinctive characteristics and a major thrust area
for optofluidics. However, over the years, the main interest in
terms of real-world applications has shifted towards chemical
and biological analysis, in particular disease diagnostics.
Here, some of the opportunities lie in theintegration of
photonic functions with microfluidic sample handling and the
development of compact, powerful point-of-care devices. For
example, recently single virus particles have been imaged on
a smartphone-based platform [111]. At the same time, hybrid
integration of silicon-based optofluidic chips with glass or
PDMS-based microfluidic chips has emerged as a powerful
approach to creating a single, optofluidic system that is
optimized for both sample preparation and analysis
[112, 113]. Using a combination of microvalve-controlled
microfluidics and liquid-core waveguide-based fluorescence
sensing, as shown in figure 13(a)(i), amplification-free
detection of single Ebola nucleic acids was demonstrated
with high specificity over the entire clinically relevant viral
load range [114]. Moreover, multimode interference (MMI)
waveguides were integrated on the same silicon chip platform
to add multiplexing capabilities by creating color-dependent
spot patterns in a liquid channel, as illustrated in figure 13(a)
(ii) [115]. This approach was successfully used to distinguish
three influenza subtypes on the single virus particle
level [115].

These recent demonstrations are indicative of the power
of waveguide-based optofluidic devices. It is, therefore, a
natural question whether the well-established fluidic reconfi-
gurability [107–110] can further enhance emerging opto-
fluidic platforms for advanced biochemical analysis.

Advances in science and technology to meet challenges.
Devices made from flexible materials such as PDMS offer the
highest potential for dynamic reconfiguration, as their optical
properties can be modified in at least three ways:mechanical

pressure, altering the fluid in a channel, and by physical
movement. These options are visualized in the left of
figure 13(b). Recently, the first PDMS-based optofluidic
platform that features all these options for dynamic
reconfiguration was realized using a combination of fluid-
filled microchannels (liquid-core waveguides) and solid-core
PDMS waveguides in which the core and cladding are defined
by PDMS layers with different precursor mixing ratios and,
thus, different refractive indices (figure 13(b)) [116]. When
properly fabricated, this allows for guiding light through
micromillimeter-scale solid-core waveguides and interacting
with liquid channels, much like established silicon-based
devices [108, 114, 115]. A photograph of a completed device
that features both a microvalve-based sample preparation
region and an optical analysis region on the same chip is
shown in the right of figure 13(b).

Figure 14illustrates different aspects of this power-
fulnew platform, highlighting the different reconfigurability
options [116]. Figure 14(a) summarizes the implementation of
an MMI waveguide whose properties can be controlled using
the core fluid or mechanical pressure. Figure 14(a)(i) shows a
schematic top-down view where light from a single-mode
solid-core PDMS waveguide section (dark gray) enters a wide
channel that can be filled with different liquids and acts as the
MMI waveguide. When filled with ethylene glycol, an index-
guiding MMI is formed. Fluorescent dye in the solution
reveals the multimode interference pattern (figure 14(b)(ii),

Figure 13. (a) Liquid-core waveguide optofluidic platform.
(i) Schematic view of thehybrid integration of microfluidic and
optofluidic chips [108], (ii) MMI waveguide creating multiple
excitation spots in aliquid-core channel [109]; inset: photo of
asilicon chip. (i) Reprinted by permission from Macmillan
Publishers Ltd: Nature Photonics [108], Copyright 2011.
(ii) Reproduced from [109]. CC BY 3.0. (b) Left: multiple ways for
thedynamic reconfiguration of PDMS waveguides [110]; right:
image of aPDMS waveguide chip. Reproduced from [110]. CC BY
3.0.
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top) in near-perfect match with the simulated behavior of this
structure (figure 14(b)(ii), bottom). This spot pattern can be
dynamically altered, either by changing the core liquid or by
applying pressure in the air cavities surrounding the MMI,
thus changing its width. Figure 14(a)(iii) shows how the
location of different spot numbers along the MMI waveguide
can be tuned with the index of the liquid in the MMI section.

A novel type of reconfiguration was demonstrated in this
platform by re-envisioning the design and function of fluidic
lifting-gate microvalves previously used for carrying out
thedistribution and preparation of biological sample materi-
als [114]. Figure 14(b)(i) shows a schematic cross section of
such a valve where a thin PDMS membrane sits on a
substrate, thus blocking fluid flow (left). However, if the
segment that seals the channel (dark gray) is made of high-

index PDMS, the valve also acts as an optical waveguide,
symbolized by the red confined mode in the figure. The
structure now acts as a ‘lightvalve’ because lifting the central
membrane up by applying negative pressure in the pneumatic
top layer results in the light passing through fluid that now
fills the space (figure 14(b)(i), right). This creates a new type
of optical waveguide that can be individually controlled and
dropped into fluidic channels at will. Figure 14(b)(ii) shows
two examples ofthe vast number of possibilities that this
principle creates. The top image shows a photograph of a
straight light-valve segment that connects two fixed, solid-
core waveguide sections. When resting on the substrate, light
is passed with negligible loss, but upon pneumatic actuation
(lifting up or pushing down), the optical path across the light
valve becomes extremely lossy. Figure 14(b)(iii) shows how
the transmission can be controlled by the (push-down)
actuation pressure, and a tunable light switch with on-off
ratios of up to 45 dB is created. This switch can be operated
without degradation over 100 000 times.

At the bottom of figure 14(b)(ii), another version of the
lightvalve is shown. Here, the movable segment is shaped as
a ring with short waveguide stubs that interface with fixed
solid-core waveguide sections on either end. This annulus
was used as an actuatable trap for particles that flow through
the fluidic channel when the ring is lifted. In this way,
trapping and waveguide-based optical analysis of a controlled
number of fluorescent beads and E. coli bacteria was
demonstrated [116]. This shows that the lightvalve concept
has tremendous flexibility both in geometrical design and
functionality vis-a-vis transport and manipulation of both
fluids and light.

Concluding remarks and perspectives. Dynamic reconfiguration
can significantly expand the functionality and performance of
waveguide-based optofluidic devices. This was illustrated with a
PDMS-based platform that combines liquid-core and solid-core
waveguides as well as fluidic sample handling in a single device.
Light-guiding microvalves (lightvalves) that can be physically
moved to alter fluid and light propagation further add to the
optofluidic toolbox. It can be expected that additional novel
functionalities will be demonstrated on this platform as well as
using other optofluidic waveguide types such as slot waveguides,
photonic-crystal waveguides, or laser-written waveguides.

Acknowledgments. This work was supported by the NIH
under grants 4R33AI100229 and 1R01AI116989-01 as well
as the W M Keck Center for Nanoscale Optofluidics at UC
Santa Cruz.

Figure 14. (a) Tunable MMI waveguide. (i) Schematic top-down
view;(ii) image of thelight pattern in theMMI section (top) in
excellent agreement with simulations (bottom);(iii) tuning of spot
pattern with core fluid index for different MMI widths [110].(b)
Actuatable lightvalves. (i) Schematic view of thecross section of
thelifting-gate valve with central high-index layer for waveguiding;
(ii) top-down images of thestraight waveguide on-off switch (top)
and ring-shaped light valve for particle trapping and analysis
(bottom); (iii) pressure-dependent light transmission across the
straight light valve switch from (ii) with high on–off ratio.
Reproduced from [110]. CC BY 3.0.
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10. Optofluidic waveguides and resonators

Genni Testa, Romeo Bernini

CNR-IREA

Relevance of the topic. Optofluidic waveguides offer the
possibility of guiding light through a fluid that could be a
liquid, gas or plasma. This peculiar property could be
exploited in all applications in which strong light–matter
interaction is required. In the last few years, promising
demonstrations of the potentiality of optofluidic waveguides
have been reported in sensing [117], non-linear photonics,
atomic spectroscopy and quantum interference [118].

The main issue related to optofluidic waveguides is the
difficulty in fulfilling the total internal reflection (TIR)

condition when low refractive index fluids are used as core
material [119]. TIR optofluidic waveguides based on
nanoporous materials like aerogels or super hydrophobic
surfaces have been proposed and successfully applied
[120, 121]. Alternatively, optical confinement in a waveguide
canalso bebased upon interference phenomena along the
transverse direction [119]. Hollow core photonic-crystal
(HCPC) fibers have been demonstrated both in 1D and 2D
geometries. However, HCPC fibers require complex fabrica-
tion procedures and cannot be easily integrated with other
components. Silicon-based integrated architectures have been
proposed to develop waveguides that can be considered for
planar optofluidics, like slot waveguides (SWs), Bragg
waveguides(BWs) or antiresonant reflection optical wave-
guides (ARROWs) (seefigure 15) [119]. The advantage of
these approaches relies on the possibility ofusingthem as
building blocks of more complex integrated devices. In
particular, the opportunity to make optofluidic resonators has
attracted a lot of attention. These devices enable a strong
increase inlight–matter interaction, which is no longerlim-
ited byphysical length but is related to the number of
revolutions of light in the resonator, characterized by the
quality factor Q.

Current status and challenges. Integrated optofluidic
waveguides such asSWs, BWs and ARROWs offer very
attractive potential forlow loss,single-mode operation,
which is highly desirable forbuilding photonic circuits and
systems. Moreover, the planar nature of these architectures
lends itself to further integration of additional functionalities,
such asmicrofluidics, in a similar manner tointegrated
electronics, leading to self-contained microsystems. SWs
confine a substantial fraction of the optical power into
nanometer voids thanks to theTIR effect. Suchtight
confinement in thesubwavelength interaction area makes
these waveguides very powerful for non-linear photonics and
sensing applications [119]. Although SWs are extremely
promising in detecting ultra-low concentrations, the fluidic
transport scales unfavorably in nanofluidic channels, which
meansthe integration of fluidic systems for sample
manipulation still remainsa challenging task. The
implementation of integrated waveguides with a hollow

core is also possible by exploiting interference effects. BWs
and ARROWs have been fabricated by creating multilayered
dielectric claddings that act ashigh-performance reflectors.
This confinement mechanism causes propagation losses due
to not-ideal boundary reflectors, and thus requires an accurate
design strategy. Air guiding BWs with core sizes of about
60×2 μm2 and propagation losses of few dB cm−1 have
been demonstrated and bent section investigated. However,
the implementation of BWs into acomplex circuit layout for
sensing purposes has not been fully demonstrated. Single-
mode, linearly polarized, liquid-core ARROWs with amode
area of 4.5 μm2 and low attenuations of about 1 dB cm−1 have
been demonstrated by an optimized design of the waveguide
structure. Nonetheless, further improvements are attainable
for both BWs and ARROWs that could open up new
application scenarios, especially in the field of sensing. An
important concern in the waveguide performances is to reduce
the core size in order to further shrink the mode field volume.
A small mode volume can significantly enhance the light–
matter interaction and increase the sensitivity by reducing the
background optical noise. However, small core size poses
tremendous design and fabrication challenges since
theytypically lead to a rapid increase in the propagation
and bend losses. Until now, integrated optofluidic waveguides
have been mostly designed to operate in the visible/near-IR
spectral range with aliquid core (n>1.33). Nonetheless,
they can be designed to operate with agaseous core (n≈1)
and in a larger spectral window from the visible to the far-IR,
providing that the cladding materials and the waveguide
geometry are properly selected. In particular, the mid-IR
(2.5–25 μm) is very interesting as it supports strong
molecular absorption fingerprints, thus offering an
interesting spectral window for gas/vapor spectroscopy as
the hollow core can be used as amicrochamber, enabling a
strong sensitivity enhancement. Promising results with slot
waveguides operating in the mid-IR for gas and liquid sensing

Figure 15. Schematic layout of (a) Bragg, (b) ARROW and (c) slot
waveguides.
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have been proposed [122]. In the case of ARROWs, when the
core is filled with gases, the design optimization as far
asfabrication is concerned turnsinto a non-trivial task, which
is still being investigated.

A promising strategy forfurther improvingthe light–
matter interaction is to increase the duration of the interaction
by placing the target inside an optical cavity witha high-
quality factor Q. Thus far, various types of optical resonators
have been demonstrated in optofluidic format. Microdroplet
resonators offer a unique integration between optics and
microfluidics exhibiting avery high Q-factor [123, 124].
Although,recently, stable spheroidal shape water droplet
resonators around a cylindrical stem have been fabricated,
they suffer from several practical limitationsrelated to the
complexity associated with manipulating and controlling
droplet structures and the difficulty ofcoupling light. More
recently, hollow core optofluidic resonators in the form of
asilica capillary have been demonstrated with high perfor-
mance; however, they lack the possibility ofeasy planar
integration [125, 126]. Integrated optofluidic resonators in the
form of aplanar ring have been obtained using SWs [127]
and ARROWs [128] (figure 16), but also in the form of
Fabry–Perot [8]. Each type of implementation has its own
suitable application. Optofluidic resonators based on slot and
hollow core waveguides, despite having moderate Q-factors
(up to 104), open up interesting perspectives for planar
integration. Nowadays, anincrease inthe Q-factor still
remains a challenging task due to the leaky nature of the
interference-based optofluidic waveguides and the proble-
msassociated with fabrication roughness in the nanometer-
void of the SWs. The availability of high Q-factor resonators
could representa paradigm shift from passive to active
sensors based on lasing action. Recent results have demon-
strated that optofluidic lasers could result ina promising
pathway towards ultrasensitive detection [8].

Advances in science and technology to meet challenges.
The need to reduce the waveguides losses requires a two-fold
approach. First, the development andoptimization of new
materials and refined fabrication processes. The proper
selection ofcladding materials and deposition processes has
proven to effectively reduce waveguides losses. Second, the
development of novel waveguide configurations able to
overcome the limitations of existing designs. ALDhas
beendemonstrated to be a powerful tool forreducing loss
in ARROWs [129], and also forrealizing novel slot
waveguides [130]. New waveguide layouts are needed to
extend the working range of optofluidic waveguides from
thevis-IR to mid-IR region that can offer new integrated
solutions to overcome the limited material choice of the
integrated technologies in the mid-IR. As an example,
suspended silicon slot waveguides have been proposed [122].

Concerning integrated optofluidic resonators, there are
two main objectives to address in order to improve their

performanceand effectiveness. The first is to improve the
quality factor of the resonator by optimizing the different
optical elements (waveguide, bend regions, coupler), as also
discussed above. The second is to provide a fine manipulation
of the sample fluid by integrating suitable microfluidic
systems. From this point of view, polymer materials offer
several advantages for microfluidics, such asreduced cost and
simplicity of fabrication. For this reason, hybrid silicon/
polymer approaches appear as an optimal design strategy
[113, 128], stillrequiring, however,considerable fabrication
efforts to fully merge silicon photonics and microfluidics.

Concluding remarks and perspectives. In perspective,
optofluidic waveguides have the potential to play the same
role assolid-core waveguidesfor conventional integrated
photonic circuits. Promising performancehas been
demonstrated through the implementation of innovative
waveguide layouts and high-yield fabrication processes.
Ongoing progress isalso focused on extending the range of
applicability to the mid-IR range in order toaddress new
applications, including gas sensing. The tasks of improving
their performance andintegration on a chip are nowthe main
challenges that could be addressed in the near future by
further development of state-of-the-art modeling and
manufacturing. By taking advantage of recent innovative
polymeric manufacturing techniques, hybrid silicon/polymer
approaches will pave the way to the integration of additional
functionalities on a chip. Moreover, polymer technologies
could open upthe prospect of high performance and low-cost
all-plastic optofluidic microsystems, also suited to disposable
applications.
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Figure 16. Scanning electron microscope imageof an optofluidic
ring resonator based on ARROWs.

24

J. Opt. 19 (2017) 093003 Topical Review



11. High-content physical phenotyping of biological

objects with microfluidic dual-beam laser traps

Jochen Guck

Technische Universität Dresden

Relevance of the topic. Dual-beam laser traps (DBLTs) were
the first typeof optical trap, realized by Arthur Ashkin [20],
and predate optical tweezers by two decades.
Micromillimeter-sized dielectric objects, such as biological
cells, are trapped by the combined scattering and gradient
forces of two non-focused, counter-propagating Gaussian
laser beams (see figure 17). The main advantages of DBLTs
are that: (1) they can be simply realized by aligning two
optical waveguides, such as single-mode optical fibers, (2)
they can be combined with arbitrary imaging optics, and (3)
the lack of focusing permits the use of high laser powers
without cell damage (‘opticution’).

The latter aspect enables the controlled and non-
destructive deformation of cells. When used for this
purpose, DBLTs are called optical stretchers [25]. The cells’
mechanical properties measured in this way have proven to
be an important label-free marker of cell function, related to
cancer progression, differentiation, cell cycle, infection, etc
[134, 136]. The simplicity of the trap allowsstraightforward
integration into microfluidic lab-on-a-chip environments
[135] (see also section 2). Microfluidic optical stretchers
(μOSs), thus, constitute a convenient technique formeasur-
ing cell mechanics at rates up to 10 cells min−1, which
compares favorably with other standard ways of measuring
cell mechanics, such as atomic force microscopy
(AFM)andmicropipette aspiration, where 10 cells hour−1

are more typical.
However, with the recent advent of really high-

throughput (1000 cells sec−1
) microfluidic techniques for

the characterization of mechanical phenotypes that
approach the analysis rates of conventional, fluorescence-
based flow cytometers [138], the high-throughput aspect of
the μOSs has lost some of its former appeal. Instead, the
current focus is shifting to the high-content investigation of
cells, and also of other biological objects, which are
temporarily, but arbitrarilyimmobilized for a long time-
until several different physical parameters important for cell
function have been determined in detail. For example, full
mechanical characterization, in particular steady-state
viscosity, which is particularly important forrelatingto
cell migratory processes [134], takes at least several
seconds per cell, andinherentlycannotbe obtained in
high-throughput, where the measurement time per cell is
in the millisecondrange.

Other physical characteristics of interest are the
refractive index (RI) of cells, which can be used to track
cell differentiation and other functional changes [131], or
their local mass density, which could be important for phase
separations and phase transitions in cells. The choice of laser
wavelength and total power also determines water

absorption, and with that the temperature in the volume of
the trapped object [133]. By intentional use of this laser
heating, additional thermodynamic properties of the trapped
object can be investigated [132]. DBLTs can also be
combined with other photonic techniques such as Raman
and Brillouin spectroscopy and microscopy for additional
chemical and mechanical information. Ideally, all these
properties should be resolved in 3D inside of cells with
diffraction-limited resolution so that either fast point-
scanning, light-sheet or tomographic approaches become
relevant. Finally, the investigation does not need to remain
limited to entire cells. Other, often rather delicate,
biological objects can alsobe gently handled, manipulated
and investigated by optical forces in combination with
photonic techniques. In this context, vesicles, isolated and
artificial cell nuclei, mitotic spindles, or protein droplets
come to mind.

Current status and challenges. In order to realize the
potential of DBLTs to deliver high-content physical
information about cells, as outlined above, and considering
the state-of-the-art in the field, there are a number of
challenges to be met.

The optical trapping itself [25], the extraction of detailed
viscoelastic properties [134], andthe microfluidic integration
[135] have been well elaborated. The temperature increase in
the trap was until recently coupled directly to the amount of
power used, since DBLTs were conveniently realized with
ytterbium-doped fiberlasers operating at 1064 nm. Here,
ΔT=13 KW−1

[133]. Due tothe recent advent of alternative
high-power fiber-based lasers, such as frequency-doubled
erbium lasers,780 nm sources are alsonow available, which
reduce the temperature increase eight-fold and permit the
decoupling of optically induced stress and temperature [132].

The combination of DBLTs with many different
conventional imaging techniques, such as phase contrast
microscopy, is straightforward. For fluorescence imaging, the
limited usability of high-NA objectives—due to the sig-
nificant distance between objective and trapped object, caused

Figure 17. Principle of microfluidic dual-beam laser traps. Cells are
serially trapped between counter-propagating laser beams in a
microfluidic channel.
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by the diameter of the optical fiber andmounting on thick
microscope slides—restricts the spatial resolution and light
gathering ability of weaker fluorescence signals. While Ca2+

dyes and nuclear dyes can be readily imaged [132], sparser
fluorescent signals from GFPproteins or fainter signals from
fluorescently labeled surface markers pose considerable
challenges at present.

For quantitative phase imaging,digital holographic
microscopes are oftenused. Their integration with DBTLs,
set up on a commercial microscope stand, is less straightfor-
ward, especially when a separate reference beam needs to be
implemented. From such quantitative phase information,
assuming spherical symmetry, which is often given for cells
in suspension, a 2D integrated RI distribution and an overall
average RI can be calculated [139]. In order to obtain the
complete 3D distribution of RI, and mass density, tomo-
graphic reconstruction has to be used. For this, phase images
need to be obtained from multiple angles. Here, the versatility
of DBLTs offers at least two attractive solutions: (1) either
cells can be trapped by a conventional DBLT with two
counter-propagating Gaussian laser beams with cylindrical
rotational symmetry and then rotated by fluid flow in the
microfluidic channel, or (2) at least one of the Gaussian laser
beams is replaced by a laser beam with higher-order modes
that break the rotational symmetry, which leads to a
preferential rotational alignment of the cell in the trap. The
rotation of the laser modes then leads to the rotation of the
trapped cell around the optical axis of the laser trap—and
through the focal plane of the imaging microscope. When
used for this latter purpose, DBLTs are also referred to as
optical cell rotators [137] (see figure 18). An important
challenge in this context is the translational and rotational
stability of the trap, currently limiting the spatial resolution of
any imaging.

While Raman microscopy has been researched and
described extensively, Brillouin microscopy of biological
cells has only recently been introduced. It promises to yield
additional mechanical information via interrogation of the
local phononic spectrum inside cells. The extraction of
actual mechanical properties requires knowledge of the
local density and RI, which can be provided by the
simultaneous RI tomography as described above. A
significant challenge is the small frequency shift away from
Rayleigh scattering and the very low intensity of the
Brillouin signal, which leads to long integration times,
amplifying the problem of translational and rotational
stability of the object in the trap.

Advances in science and technology to meet challenges.
The challenge of high-quality fluorescence imaging in
DBLTs can be addressed byoptimized integration into
specific lab-on-a-chip setups withspecific consideration of
the optical quality along the imaging axis and the
minimization of the distance between objective and
trapped object [135] (see also section 2). The use of more

sensitive and faster fluorescence cameras, and an improved
translational stability of the trap (see also below) will
improve detection of weak signals and spatial resolution.
The problem with incorporating quantitative phase
microscopy can be solved by in-line interferometry, such
as quadrilateral shearing interferometers. These are now
commercially available, and can be mounted onto
microscope stands just like other cameras.

The challenge of sufficient translational and rotational
stability of DBLTs can be approached by fast feedback loops,
involving real-time analysis of the position and 3D RI
distribution of the trapped object, and appropriate shaping of
the light fields and their intensity using adaptive optics
through the trapping fibers. The creation of complex light
fields through multimode fibers using transfer-matrix opera-
tors has recently been demonstrated. This could also be used
for illuminating cells with a light-sheet through the trapping
fibers for improved fluorescence or even Brillouin micro-
scopy. The problemoflong integration times in Brillouin
microscopy can potentially be ameliorated by stimulated
Brillouin microscopy, and the use of line- or even light-
sheetimaging.

Concluding remarks and perspectives. In summary,
microfluidic DBLTs are ideal ‘optical work benches’ where
cells can be temporarily held stationary, interrogated by a
number of different photonic techniques for their complete
physical phenotyping and then conveniently exchanged and
sorted bymicrofluidic integration. Even though their high-
throughput mechanical phenotyping appeal has faded with the
recent advent of techniques that are 100 000 times faster, their
true potential lies inhigh-content characterization, whichis
still to be realized. The best times of microfluidic DBLTs are
yet to come.

Figure 18. Cell rotation in an optical cell rotator can be combined
with any arbitrary microscopic or spectroscopic technique for full
physical characterization.
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12. Integration of fiber-based tweezers and

microfluidic systems

Carlo Liberale

King Abdullah University of Science and Technology
(KAUST)

Relevance of the topic. Over the last few decades,
microfluidic technologies have demonstrated their potential
for the realization of lab-on-a-chip systems. Lab-on-a-chip
devices present integration and miniaturization of various
probes and devices, along with parallelization of functions
and analyses, which allow cost-effectiveness (e.g. thanks to
low consumption of samples and chemicals) and automated
high throughput, that are particularly beneficial to biomedical
applications. In this context, considerable interest is attracted
by implementing optical tweezers (OTs) in lab-on-a-chip
devices, to support functions such asprecise positioning of
samples within the microchannel, single-cell manipulation
and sorting. OTs are based on optomechanical forces,
originating in exchange of momentum between photons and
matter, that are exerted by a strongly focused optical beam on
micro- or nanoparticles [141]. They have been used in many
applications in biology and physics, for a wide variety of
experiments ranging from trapping and manipulation of live
bacteria and cells, to cooling, trapping and manipulation of
single atoms [141]. Important results have alsobeen
achievedby combining OTs with other optical techniques,
such as fluorescence and Raman spectroscopy. Early OT
setups were based on tight focusing of a laser beam by means
of high numerical aperture (NA) microscope objectives
(usually NA>1) [141]. In order to overcome issues that
arise in this scheme when trapping particles within thick
samples or in turbid media, an effort to implement OTs based
on optical fibers has been in place since theearly 1990s.
However, the realization of a fiber-based OTs (FOTs) forming
three-dimensional optical traps has proven to be a challenging
task, mainly because of the low NA of optical fibers. Indeed,
three-dimensional optical trapping was initially demonstrated
only with configurations made of at least two separated and
opposing fibers. The early-proposed schemes based on a
single fiber were essentially capable of only two-dimensional
trapping, therefore were unable to stably trap particles in the
middle of a fluid, or had impractically small trapping
distances, making it difficult to trap a particle without
physical contact. Only with more recent advances in
technologies for microstructuring of the fiber tiphas
itbecome possible to design and fabricate OTs based on
single optical fibers. FOTs have recently been demonstrated
thatpresent ready compatibility with microfluidic channels,
and are best suited towards realization of fully integrated
microfluidic chips. Future developments of FOTs for lab-on-
a-chip devices could integrate, in addition tooptical trapping,
more advanced functions suchas imaging and/or enhanced
spectroscopies with plasmonic probes.

Current status and challenges. At the state-of-the-art, three-
dimensional optical traps are mainly implemented inside
microfluidic devices by using three different approaches: (1)
with high-NAmicroscope objective-based setups; (2)
withtwo counter-propagating beams, delivered by two
optical waveguides (which could be optical fibers)
positioned on opposite sides of the microfluidic channel; (3)
withsingle optical fibers. Naturally only the two latter
methods arecapable of beingintegrated into microfluidic
chips, and so compatible with the development of portable
lab-on-a-chip devices. OTs based on two opposing
waveguides are also called ‘optical stretchers’ and are
mainly used to apply forces that deform the trapped
particle, to probe its mechanical properties [142]. This
particular type of integrated OT is considered in section 11
of this Roadmap.

Integrated OTs based on a single optical fiber, able to
generate a three-dimensional optical trap far enough from the
fiber tip to avoid contact with the sample, are currently
possible only by the use of speciality fibers (bundles,
multicore or annular core fibers) along with advanced
methods to modify the fiber tip to overcome its intrinsic
low NA [143]. Remarkably, the continuous progress made in
the capability to structure the fiber tip has enabled ever more
effective geometries for optical trapping. Indeed, severaldif-
ferent fiber-tip modification methods have been proposed so
far. Initially, tapering of a standard single-mode optical fiber
to a very small tip size with the heating and pulling method,
resulted inFOTs with a very small trapping distance [144].
More recently, high-precision fabrication techniques were
used to implement an approach proposed in [145], where light
beams having an annular arrangement (e.g. generated by an
annular core fiber or carried by the different fibers of a
bundle) are deflected by TIRtowards a common crossing
point, yielding the equivalent effect of a high-NA microscope
objective, as needed for OTs (figures 19(a) and (b)). The TIR
deflecting structures have been fabricated on the fiber tip by
focused-ion beam milling [145] or, more recently, by two-
photonlithography (TPL) (figure 19(c)) [140]. The latter
fabrication method is significantly easier, more flexible and
morecost-effective than the former. The use of a fiber bundle
instead of an annular fiber allows specialization of different
subsets of fibers for optical trapping and for simultaneous
probing of the trapped sample (e.g. with fluorescence). A
similar scheme, based on fiber annular core distribution and
TIR-based deflection, has alsobeen realizedby the grinding
and polishing technique [146].

As shown in [140],single-fiber-based OTs can be
integrated into a microfluidic device (figure 19(d)), in a
vertical configuration thatallowstheinsertion of multiple
FOTs at different locations within the same lab-on-a-chip
device without interfering with the microfluidic channel
network. Trapping within microfluidic channels has also been
recentlydemonstrated with a tapered fiber creating a two-
dimensional trap, under specific flow rate conditions [147],
and with a tapered fiber for three-dimensional trapping but
with the particle in contact with the tip [148].
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A few challenges still remain in achieving the goal of
applying thefull functionality of well-developed ‘bulk’ OTs
in lab-on-a-chipdevices. The first challenge is to allow all
optical manipulation (translation in three dimensions, rota-
tion) of trapped samples without moving the FOT probe. The
second challenge is the creation of multiple optical traps with
a single FOT within a microfluidic channel. Further
challenges will be the addition of imaging capabilities to
the FOT probe, e.g. by integrating multimode fibers [149],
and of enhanced probing/sensing capabilities, e.g. with
electrodes or plasmonic based structures.

Advances in science and technology to meet challenges.
The addition of more advanced functionalities to single-fiber

FOTs, for integrated lab-on-a-chip devices, will be possible
withprogress in the design and fabrication of complex
photonic structures on the tip of optical fibers. In this regard, a
key role inthe TPL fabrication method is envisioned, as an
extremely powerful tool for rapid and flexible prototyping of
highly optical quality elements, with dimensions that range
from afew to hundreds of micromillimeters. In particular, the
development of a new design that further reduces the size of
single-fiber FOTs will improve compatibility with small
microfluidic channels and will allow for easier integration of
other fibers, e.g. a multimode fiber for imaging, and/or other
structures, e.g. for enhanced spectroscopy, within the FOT
probe, to obtain an ultra-compact multimodal tool for lab-on-
a-chipdevices. Another important advance will be the
combination with other technologies that canenable new
functions, suchas the use of spatial light modulators for fiber
imaging [149] or thecreation of dynamical multiple traps,
which will also allow manipulation of the trapped particle.

Concluding remarks and perspectives. Integration of OTs
into microfluidic channels will enable new functions in lab-
on-a-chip devices. Optical fibers offer an excellent platform
for miniaturization of OTs, so that they can be embedded in
microfluidic circuits. Indeed, single-fiber FOTs have been
recently reported, based on speciality fibers and TIR
structures, and inserted in a microfluidic channel. Future
developments will concernfurther miniaturization ofFOTs,
theaddition of manipulation and multitrap capability,
andtheintegration of new functionalities, such asimaging
and enhanced spectroscopies, to the FOT probe.

Acknowledgments. The author would like to thank the
following current and former colleagues for their valuable
contributions in the joint work on the subject: Francesca
Bragheri, Patrizio Candeloro, Gheorghe Cojoc, Ilaria
Cristiani, Enzo Di Fabrizio, Lorenzo Ferrara, Paolo
Minzioni, Gerardo Perozziello and Vijayakumar P
Rajamanickam.

Figure 19. (a) Cross section of the FOT probe presented in [140]:
beams propagating in two symmetrically positioned fibers are
reflected at the interface between microprisms and the outer medium;
(b) isometric view of the FOTs; (c) red blood cell trapped by the
FOTs in hypotonic solution; (d) picture of a microfluidic chip where
the FOTs have been inserted. Adapted by permission from
Macmillan Publishers Ltd: Scientific Reports [140], Copyright 2013.
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13. Acoustic prefocusing in optofluidic systems

Kirstine Berg-Sørensen

Technical University of Denmark

Relevance of the topic. The ability of acoustic fields to
position small particles was discussedby Ernst Florens
Friedrich Chladni (1756–1827), and is familiar to many
scholars through the demonstration experiment named ‘The
Chladni plate’. When carried over to dimensions of typical
microfluidic systems, the resonance phenomenon, nicely
illustrated by the Chladni plate experiment, implies typical
frequencies in the MHz range. Many research papers have in
recent years demonstrated the ability of the effect, termed
acoustophoresis, e.g. to sort cells according to their acoustic
properties; readers unfamiliar with the topic may consult the
tutorial series of papers in [150]. The second part of the topic,
optofluidic systems, is the term currently used for microfluidic
systems with embedded optical elements, be it a microlaser,
or a passive or active optical element; the relevance of
optofluidic systems at large is demonstrated by the collection
of papers in this Roadmap. The benefits of the combination of
the effects of acoustic and optical manipulation have been
illustrated by active particle sorting [151], improved trapping
efficiency in an optical stretcher setup [152] and access to
complementary mechanical characteristics for the same single
cancer cell [34]. Acoustic prefocusing in an optical stretcher
setup is illustrated in figure 20. The results of references
[34, 151, 152] suggest that further advances in the field may
find both technological and biomedical applications.

Current status and challenges. The combination of
acoustofluidics and optical manipulation has, to the best of
the author’s knowledge, only beenapplied in very few
laboratories [34, 151, 152], with promising recent advances
involving high-resolution imaging [153]. As discussed below,
one may very well imagine inclusion of other characterization
tools based on optics.

On the acoustics side, an interesting development is the
recent introduction of the concept of iso-acoustic properties,
wherebyunderstanding and control in acoustic focusing and
sorting has been tremendously widened [154]. A current
challenge for the technology to be more accessible for
applications is the choice of material for the construction of
the microfluidic systems. Successful demonstrations of
combined acousto- and optofluidics [34, 151, 152] are based
on glass—a hard and highly resistant material with excellent
optical properties. However, much current research explores
the ability to construct micro- and optofluidic systems in
polymer materials since micro- and even nanofluidic systems
may be produced by large-scale production techniques such
as injection molding or roll-to-roll imprinting, rather than the
expensive and time-consuming clean-room processes required
for the production of a single microfluidic system in glass
[155]. In addition, the polymer material can be chosen with
properties that match well both optical and biomedical
requests. Unfortunately, acoustofluidics using plastic materials

remain challenging due to the relatively low sound speed and
acoustic impedance in most transparent plastics. This implies
that acoustic energy may be transferred to, and lost in, the
device itself, and that knowledge of the conditions for acoustic
resonance, leading to large acoustic forces, requires detailed 3D
modeling of the pressure fields in the entire device [156]. Such
detailed models are in contrast to simple 1D models in which
one assumes a large degree of reflection of the sound wave at
the interface between the liquid in the microfluidic channel and
the hard walls of the glass or silicon microfluidic device.

As discussed in section 3, lithium niobate offers an
attractive alternative choice of material. In [153], a transparent
transducer made out of LiNbO3 with indium tin oxideelec-
trodes was appliedin a layered device. The experimental
setup was demonstrated to be able to provide precise
determination of both optical and acoustic forces on trapped
silica microspheres.

Delivery or collection of light for optical manipulation or
characterization by optical means is another point to decide
on. One option is to have the light delivered by embedded
optical fibers [157], or waveguides directly written into the
microfluidic device [34, 152], suitable for optical traps based
on two counter-propagating laser beams, or for collection of
emitted light, e.g. for Raman spectroscopy of the sample.
Another option, relevant for single-beam optical traps, is to
rely on light delivery and light collection through an external
microscope objective [151, 153]. When this latter option is
chosen, one should be aware that the acoustic force field may
be altered due tomechanical coupling between the immersion

Figure 20. Microfluidic all-glass device with a liquid channel of a
rectangular cross section;the channel is 100 μm wide.Details may
be found in [152]. Shown are images of 5 μm diameter polystyrene
beads in water, visualized by standard bright-field microscopy.
Laser-written waveguides in the glass chip were in the focal plane;
bright spots indicate scattered laser light coupled into two opposing
waveguides. (a) Acoustic vertical focusing turned off. (b) Acoustic
vertical focusing turned on. Scattering bytrapping laser light on the
beads illustrates nicely the acoustic prefocusing of the beads to the
plane of the waveguides. [152] © Springer-Verlag Berlin Heidelberg
2015. With permission of Springer.
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oil andthe microscope objective, and thus the entire
microscope [153].

Advances in science and technology to meet challenges. As
alluded to above, on the materials side, the combination of
acoustophoresis and optofluidics would clearly benefit from
the development of transparent polymer materials with larger
acoustic contrast between device material and liquid—in
addition to good optical quality and high chemical resistance.
As this may not be realistic, the second best optionis to
develop and apply 3D modeling tools [156] that enable
prediction ofsound wave propagation in the entire
experimental device, and thereby may suggest a design of
the microfluidic device optimized for the simultaneous action
of acoustic and optical forces.

The choice of a polymer material for the microfluidic
device couples well with a desire to develop single-use
devices. Waveguides produced by post-processing steps like
DUV exposure, and/or other means to embed optical
elements in a polymer chip produced by mass-production
techniques, would clearly enhance the employability of
optofluidic devices, with or without acoustophoresis. A
challenge to resolve is, however, the typical loss of optical
power of theorder of 0.5–0.7 dB mm−1 in waveguides
written by DUV or direct laser writing, in addition to the
coupling losses into a square or rectangular waveguide.
Alternatively, light coupling through standard optical fibers
suffers much less from loss of optical power, and still offers a
competitive solution, although manual assembly is required.
With either choice of solution for light propagation in the
microfluidic chip, the dream device would be a single-use
polymer device that is mounted in a system or a holder that
includes efficient and well-aligned coupling to light sources
as well as an efficient coupling to a sound transducer; a
simple sketch is provided in figure 21. In this respect,

piezoceramic crystals may still be a wise choice for the
acoustic transducer, althoughcapacitive micromachined
ultrasound transducers, which may even be controlled by
light, may be an interesting alternative [158].

Concluding remarks and perspectives. As discussed,
manipulation by both sound and light fields in microfluidic
systems adds versatility to the optofluidics toolbox. We
concentrated on merging tools of manipulation, applyingboth
optical and sound waves, yet the perspectives include other
uses of light, e.g. for spectroscopic characterization. One may
foresee a combination of optical manipulation and/or
spectroscopy on cells with particular iso-acoustic properties,
with the perspective oflearning many more details, including
molecular, about the properties of such individual cells.
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as well as with A Kristensen, and with H Bruus and his
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and COST MP1205 is highly appreciated.

Figure 21. Simple sketch of a future device for simultaneous acoustic
prefocusing, optical manipulation and spectroscopic
characterization.
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14. Optofluidics for single-cell protein analysis

Jian Chen

Institute of Electronics, Chinese Academy of Sciences

Relevance of the topic. Proteins (i.e., macromolecules
composed of chains of amino acid residues) perform key
functions within organisms, including regulation of metabolic
reactions, DNA replication, stimuli responsiveness, and
molecule transportation[159]. As key components of
biological organisms, thequantities and activities of
proteins have been regarded as the most important
indicators of biological activities, which are closely related
to phenomena such as cellular differentiation, neuron
transmission and disease progression [160].

Within the last few decades, a large number of
characterization approaches (e.g. gel electrophoresis, immu-
noassay, chromatography and mass spectrometry) have been
developed to estimate the quantities and activities of proteins
[161]. These results have contributed to the rapid devel-
opmentof biological and medical sciences, which have
significantly promoted the detection capabilities in clinical
diagnosis [162]. However, these approaches are only capable
of quantifying protein expressions from a large number of
cells, which neglects the fact that most of the organisms are
composed of cells with variations in their functionalities and
thus protein expressions at the population level may mask key
underlying mechanisms due to cellular heterogeneity.

Currently, fluorescent flow cytometry is the golden
standard in the field of single-cell protein analysis, where
single cells mixed with fluorescence-labeled antibodies are
flushed into a fluorescent measuring domain composed of
laser excitation and photomultiplier tube based fluorescent
detection [163]. Based on this methodology, variations in
single-cell protein expressions are closely correlated with
tumor biology, microbiology, cellular differentiation and drug
development (see figure 22). However, fluorescent flow
cytometry can only provide an absolute quantitation of
surface proteins of single cells, while it cannot quantify
intracellular proteins due to the lack of calibration
approaches, and thus it cannot translate raw fluorescent
signals into copy numbers of intracellular proteins [164].

Optofluidics is the science and technology of the
processing and optical detection of small amounts of fluids
(10−9 to 10−18 liters) in channels with dimensions of tens of
micrometers [2]. Since the dimensions of optofluidics are
comparable to biological cells, optofluidicshas been used for
the manipulation of single cells with their protein expression
levels quantified optically [165], andcan be classified into
four major types: (1) optofluidic fluorescent flow cytometry;
(2)droplet-based optofluidic flow cytometry; (3) large-array
microwells (microengraving), and (4) large-array microcham-
bers (barcode microchips). In this section, we examine the
advantages and limitations of each technique and discuss
future research opportunities by focusing on two key
parameters: absolute quantification and throughput. Note that
other microfluidic approaches of single-cell protein analysis

without key optical components are not included in this
section.

Current status and challenges. In optofluidics,fluorescent
microflow cytometry wasthe first approach to quantifying
single-cell protein expressions where single cells are mixed with
fluorescence-labeled antibodies and flushed into microfabricated
flow channels with fluorescent intensities measured [166]
(see figure 23(a)). As a miniaturized version of conventional

Figure 22. Variations in single-cell protein expressions are closely
correlated with tumor biology, microbiology, cellular differentiation
and pharmaceutical development.

Figure 23. Key developments of optofluidic systems enabling high-
throughput single-cell protein characterization, which includes (a)
optofluidic fluorescent flow cytometry; (b) droplet-based optofluidic
flow cytometry; (c) large-array microwells (microengraving); and (d)
large-array microchambers (barcode microchips).
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fluorescent flow cytometry, microflow cytometryfeatureslow
sample requirement of cells and reagents. However, this
approach cannot quantify the copy number of intracellular
proteins, due to the lack of effective calibration approaches.

In the second approach, droplet-based optofluidic flow
cytometry was proposed where single cells, functionalized
capture beads and fluorescence-labeled secondary antibodies
are encapsulated in droplets;microbeads bind cytokines
secreted by single cells, which further bind fluorescence-
labeled secondary antibodies, leading to fluorescent signals
[167] (see figure 23(b)).

Compared to conventional fluorescent flow cytometry,
this approach can effectively assay secreted proteins at
thesingle-cell line. However, due to the use of cytokine-
capture beads, there is an uneven distribution of fluorescence
within individual droplets (intensity peaks around individual
beads), which poses obstacles in calibration and thus the
secreted proteins cannot be effectively quantified.

In the third approach, large-array microwells (‘micro-
engraving’) were proposed to isolate individual cells with
copy numbers of secreted proteins quantified [168]. As shown
in figure 23(c), single cells suspended in media are deposited
into a large array of microwells, which are then sealed by a
glass slide coated with a specific capture reagent. After certain
periods of incubation, the glass slide is removed and the cells
arefurther interrogated with laser-based fluorescence scan-
ners. Although microengraving enables absolute quantifica-
tion of proteins secreted by individual cells, compared to flow
cytometry, it suffers from complicated processes and limited
throughput.

In the fourth approach, large-array microchambers
(single-cell barcoding microchips) were proposed to assay
both cytosolic and membrane proteins of single cells [169].
As shown in figure 23(d), the single-cell barcoding micro-
chips consist of thousands of individually addressed micro-
chambers for single-cell trapping, followed by cell lysis,
capture of targeted proteins by pre-printed antibodies on the
surface of the chambers, which are further measured using
immunosandwich assays. This approach is the most powerful
optofluidic system in the field of single-cell protein analysis
since it enables the absolute quantification of both surface and
cytosolic proteins of single cells. However, since this
approach relies on the confinement of single cells within

chambers, it cannot be easily scaled up to further increase the
throughput.

Advances in science and technology to meet challenges.
Absolute quantification is a key requirement for single-cell
protein assays since, without the capability of absolute
quantification, the protein levels measured by different
approaches cannot be effectively compared. From this
perspective, new calibration approaches have to be
developed in fluorescent microflow cytometry, enabling the
translation of raw fluorescent signals to protein copy
numbers.

Throughput is also a key factor in single-cell protein
quantification. Although optofluidic large-array devices are
featured with parallel analysis of single cells, which are
capable of processing hundreds of single cells within one
experiment, they still cannot be used to process cell samples
with heterogeneity (e.g. tumor samples with at least one
million cells) due to their limited throughputs. Thus,
tremendous effortneeds to be devoted to this field with the
purpose of further scaling up these assays. As to microflow
cytometry, further technical improvements shouldfocus on
the extension of this serial approach to function in parallel.

Concluding remarks and perspectives. In this study, we
summarize key developments of optofluidic platforms
enabling the quantification of single-cell proteins. Although
significant improvements have been made within the last
decade, an ideal tool of single-cell protein quantification
featured with absolute quantification and high throughput is
still not available.
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15. Optofluidics for DNA analysis

Markus Pollnau

University of Surrey

Relevance of the topic. Capillary electrophoresis (CE) is a
powerful method for biomolecule separation and analysis.
The sorting and sizing of DNA molecules within the human
genome project [170] haslargely beemenabledby CE
separation and analysis. The human genome project has
also led to the genetic mapping of various human illnesses
[171]. The traditional techniques, e.g. using a bulk glass
capillary filled with agarose gel [172], providehigh
separation resolution, but typically require rather long
analysis times and bulky instrumentation.

These issues are addressed by the development of
microchip CE. Integration of a lab-on-a-chip, thereby
ensuring compactness and introducing the potential for mass
fabrication, paves the way for device portability and in-field
or point-of-care applications. Furthermore, DNA sequencing
by microchip CE allows for cheap, high-speed analysis of low
reagent volumes. In recent years, on-chip integration of DNA
sequencing [173] and genetic diagnostics [174] have become
feasible. One of its potential applications is the identification
of genomic deletions or insertions associated with genetic
illnesses.

Current status and challenges. Laser-induced fluorescence
exploiting fluorescent dye labels is the most popular
microchip CE monitoring technique. Conventional
instruments use confocal setups to focus the excitation light
and to collect the resulting fluorescence. Such schemes can
provide high sensitivity down to a detection limit of ∼200 fM
[175], corresponding to merely eight molecules in the
excitation volume, making plausible the vision of going
down to interrogation at the single-molecule level. However,
these schemes require accurate mechanical alignment of the
optics to the microfluidic channels and are sensitive to
mechanical vibrations and drifts. The need to use microchip
CE in combination with a massive benchtop instrument, such
as an optical microscope, frustrates many of the microchip CE
advantages, in particular it strongly limits device portability
and prevents in-field or point-of-care applications. In the
future optical components, including light generation,
transportation, interaction with the reagents, collection and
detection, need to be integrated, partly directly, on the
optofluidic chip.

Sizing accuracy poses an inherent challenge to CE, and
particularly microchip CE, and achieving sufficient and
reliable sizing accuracy for the envisaged DNA analysis is
probably the biggest hurdle. Application of CE-based DNA
sequencing in a lab-on-a-chip to identify genomic deletions or
insertions associated with genetic illnesses, such as breast
cancer or anemia, critically depends on the detection of
single-base-pair insertions or deletions from DNA fragments
in the diagnostically relevant range of 150–1000 basepairs.
The sizing accuracy is related to DNA plug formation and

depends on many factors, including the range of DNA
fragment sizes to be separated, the choice of,and the changes
in,the sieving gel matrix inside the microfluidic channel and
its inner-wall coating, temperature and actuation voltage, as
well as the choice of microfluidic channel cross section, dye
label and, finally, the calibration procedure. A number of
empirical studies have been performed to shed light on this
complex situation, but results are sometimes not reproducible
and existing models are typically inaccurate and unable to
predict device performance.

Advances in science and technology to meet challenges.
With the general advancement in microfabrication, significant
technical progress has alsobeen madein merging
microfluidics and micro-optics in an optofluidic chip. For
example, post-processing of commercial microfluidic chips
by femtosecond laser writing of optical waveguides [37, 176]
that can direct laser light to the interaction point and/or
collect fluorescence from the excited dye labels and deliver it
to the detection unit is a suitable method for optofluidic
integration. This technique has the additional capability of
writing three-dimensional optical structures into the
microfluidic chip [177]. The light source and the detection
unit are preferably placed in a small portable instrument that
also includes the steering unit for the actuation voltages and to
which the optofluidic chip can be precisely attached.

The technique of multiplex ligation-dependent probe
amplification [178] allows for the simultaneous extraction and
individual end-labeling of DNA fragments from independent
human genomic segments. In order to exploit this technique,
parallel optical processing of the prepared sample is
required.Demonstrated parallel optical processing method-
saremodulation-frequency-encoded dual-wavelength laser
excitation, fluorescence detection with a single ultrasensitive,
albeit color-blind photomultiplier, and Fourier analysis
decoding [179, 180]; see figure 24. To make the laser
excitation of dye labels selective, each label must absorb light
in a different wavelength range. Typical dye labels exhibit
rather large absorption bandwidths, thereby strongly limiting
the number of exclusive labels that can be employed
simultaneously. Consequently, the extension of dual-wave-
length analysis to a larger number of wavelengths faces the
challenge of development of novel, narrow-excitation-band
fluorescent labels. Alternatively, fluorescent labels with
spectrally overlapping absorption bands can be excited with
a single laser, thereby reducing the necessary infrastructure on
the excitation side, and their individual fluorescence lines can
be either detected by a color-sensitive detector array or
spectrally dispersed and then detected by a detector array.
However, any complication on the detection side that wastes
fluorescence intensity or provides less sensitivity than a
photomultiplier impairs the detection limit.

The dependence of sizing accuracy on the important
system parameters must be investigated more systematically
and its theoretical background needs to be improved. For
example, recently it has been identified that the choice of
fluorescent dye label can significantly influence the sizing
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accuracy and that a proper choice can largely improve the
accuracy [182]; see figure 25, but the reason for this effect is
unknown and systematic investigations are lacking. In the
same work it has been demonstrated that the calibration
strategy influences the sizing accuracy [182]. On the one
hand, it may not matter much whether the optofluidic device
is calibrated by flow of a known reference sample in the same
or in a separate experiment, and whether the DNA fragments
of the reference sample are almost identical or slightly
different from those of the unknown sample to be
investigated. On the other hand, applying the same fluor-
escent dye label to the two samples appears to be crucial.

Most importantly, the dependence of migration time on
base-pair size needs to be understood theoretically. The
results displayed in figure 25prove that a quadratic fit
reproduces the measured data significantly better than a linear
fit, indicating that the assumption of a simple logarithmic

dependence of migration time on base-pair size underlying
the production of DNA ladders with a logarithmic increase in
base-pair size is not justified by the experiment [182].
Nevertheless, the sizing accuracy crucially depends on the
applied law to fit the reference data. At present, in the absense
of a proper theoretical understanding of DNA plug formation
and flow mechanism the choice of fit function is merely a best
guess and may even change with the underlying system
parameters.

Choice of a suitable dye label, combined with reference
calibration and sample investigation by fluorescent detection
in consecutive experiments, and application of a best-guess fit
function, has resulted in capillary electrophoretic separation
of fluorescent-labeled DNA molecules in the 150−1000 base-
pair range with single-base-pair resolution [182] (see
figure 25), thereby paving the way towards the detection of

Figure 24. Multicolor fluorescence DNA analysis in an optofluidic
chip.(a) Schematic diagramof the optofluidic chip. (b) Transient
fluorescence from a molecule plug passing by the excitation
waveguide (with background illumination outside the detection
window). Reproduced from [181]. CC BY 3.0. Individual signals
separated by Fourier analysis of (c) 12 DNA molecules from a breast
cancer gene and (d) 23 DNA molecules from an anemia gene.
Reproduced from [179] with permission from The Royal Society of
Chemistry.

Figure 25. Migration time (linear scale) versus base-pair size
(logarithmic scale) of (a) 12 blue-labeled and (b) 23 red-labeled
DNA molecules simultaneously migrated and separated in experi-
ment 1 (circles) and experiment 2 (squares). Linear and quadratic fits
(solid lines) shown only for experiment 1. Variance σ

2 measured in
experiment 1 or 2 from (c) the linear fit and (d) the quadratic fit,
obtained from the measured reference data from the same or the
different experiment. Reproduced from [182]. CC BY 3.0.
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single-base-pair insertion or deletion in a lab-on-a-chip with
low reagent volumes in a few-minute experiment.

Concluding remarks and perspectives. Through the efforts
of many scientists in this research area, in-field and point-of-
care applications have become feasible, but a considerable
amount of work remains to be performed to better understand
the dependence of sizing accuracy on the various system

parameters by establishing a better theoretical framework, and
to improve the measurement repeatability and reliability.
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16. Nanoscale optofluidics

Sha Xiong and Ai-Qun Liu

Nanyang Technological University

Relevance of the topic. Over the past few decades,
optofluidic devices have been extensively exploited for
novel functions and promising applications in chemical and
biological analysis, imaging and energy by combining the
merits of both fluids and optics in the microscale platforms
[183, 184]. Recently, researchers have shown great interest in
scaling down the channel size and studying both the
fundamental and applied science on the nanoscale. When
the channel dimension is comparable with the size of
molecules, the fluid transport and molecular behaviors are
different [185]. Up to now, the most promising applications
and phenomena related to nanofluidic devices have been
based on electrokinetic effectssuch as water desalination,
fluidic diodes and energy harvesting. Bycontrast, the big
potential of nanofluidics has not been exploited in the realm
of optics. The functions of nanochannels inoptofluidic
devices are mainly in two aspects as shown in figure 26.
First, the nanochannels provide a solution for local tunability
over photonic circuits. Their sensitive response to the change
in the refractive index can also be used for biosensing.
Second, the nanochannels offer effective confinement of
biomolecules to facilitate biological analysis, especially for
DNA related genomic applications. Despite the great
expectation of expanding optofluidics on the nanoscale, it
leaves ample room not only for basic discovery but also for
technical improvement in current directions.

Current status and challenges. Here, we discuss the state-of-
the-art and highlight the technical barriers impeding the
development of nanoscale optofluidics.

Although enormous progress has been made in the
development of nanofabrication over recent years, fabricating
well-defined nanochannels with low cost and high throughput
is still a challenge. Typical nanofabrication is completed in a
well-equipped clean room using a lithography process, such
as electron-beam lithography or focused-ion beam lithogra-
phy. It is usually expensive and laborious with a long
processing time. Inspired bysoft lithography with PDMS
molding, nano-imprint lithography has been employed for
large-scale fabrication of nanochannels. Although the replica-
tion method improves the throughput, it has limitations in
fabricating the nanomolds. Researchers are looking for
alternative materials and techniques for fabricating nanode-
vices in order to make them commercially viable.

Dynamic reconfiguration of photonic functions is one of
the representative topics of optofluidics. It tunes the optical
properties of the device by controlling fluid flows with
various refractive indices. The nanochannels can infiltrate the
liquid into well-defined defects of a photonic crystal [186], or
form a tunable grating by filling liquid into the nanochannel
array [187]. Introducing the nanofluidic modulation into the
photonic circuits provides a powerful approach for realizing

compact and reconfigurable optical functionalities with
precise localized control. The major challenge for the tuning
of photonic functions isnanofluidic handling. The volumetric
flow rate of the liquids transported through the nanochannel is
extremely low. Conventional transport methods, such as
capillary filling, pressure drop or electroosmosis, are not
effective.

Another hot research topic on nanoscale optofluidics is
the analysis and detection of a single molecule. Nanochannels
are used to confine the sample volume to match the
dimensions of the detection volume, increase its concentration
for optical detection, or do precise manipulation of individual
molecules, which enhance the sensitivity and resolution of the
detection. Researchers have achieved length measurement,
sizing and optical mapping of DNA by stretching or
separating the molecules in nanochannels [188]. In most
cases, the detection depends onfluorescent labeling, which is
costly and time-consuming. Alternatively, scattering signals
can also be used for detecting molecules in the nanochannels,
which, however, has stringent requirements on the optical
detection system. Improving the detection limit remains a
bottleneck.

Although new phenomena keep being discovered, it is
difficult to precisely probe the transport properties on the
nanoscale and get good control over the nanoflow. The

Figure 26. Illustration of nanochannel-based optofluidic devices.
(a) Nanochannel bonded onto a planar photonic-crystal for optical
tuning. Reproduced with permission from [186]. © 2006 Optical
Society of America. (b) Nanochannels for biomolecule confinement.
Adapted by permission from Macmillan Publishers Ltd: Nature
Materials [189], Copyright 2007.
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existing techniques are mostly based on an electrical
measurement. Optical detection may offer alternative strate-
gies, but has to overcome several limitations in nanochannels,
such as the influence of Brownian motion and wall effects.

Advances in science and technology to meet challenges. A
revolution innanofabrication is expected, just as the sprint in
microfluidics following the development of PDMS-based soft
lithography techniques. Recently, mechanical deformation of
elastomeric materials (e.g. wrinkling, cracking and
microchannel collapsing) was taken advantage of in
fabricating nanochannels. These techniques are cost-
effective and can adjust the channel size by controlling the
stress applied on the materials [189]. Meanwhile, wide
attention has been drawn towards bottom-up methods, in
which the nanostructures are directly assembled by atoms and
molecules. Novel materials, such ascarbon nanotubes and
graphene, have shown their unique properties in nanofluidic
transport. One could exploit the newly emerging 3D printing
technology to fabricate nanochannels inoptofluidic systems.

Optical actuation is a burgeoning method for fluid
control, which includes optical driven flow through the
photothermal effect of nanoparticles, direct optical manipula-
tion of particles/structures in the fluid,laser-induced cavita-
tion, etc. Optically driven nanofluidic transport is insensitive
to surface or solution conditions. Even though all the dynamic
processes slow down due to the dominating surface forces, it
is still possible to generate a high-speed jet by using a pulsed
laser to drive flow, as shown in figure 27[190].

In addition to developing a new optical detection concept
and optimizing the optical system, sorting and pre-concentra-
tion of the targeted samples before detection is a feasible
approach to improving the detection limit. Conventional
approaches cannot precisely separate the samples. A more
robust solution is offered by continuous flow separation of
structures such as an entropic trap [191] and nanoscale
deterministic lateral displacement pillar arrays [192], which
havesuccessfully demonstrated the sorting of DNA and
exosomes. Theycan enhance the specificity of biomolecules,
and therefore increase the sensitivity and resolution of
detection. Advanced techniques are expected to increase the
throughput of the separation and offer sophisticated manip-
ulation of individual molecules.

A better understanding of mass transport at the nanoscale
is required to reach the full potential of nanodevices. The next
generation of cameras is expected to have higher frame rate
and resolution, which will make itpossible to improveflow
characterization in the nanochannels. Combining other
imaging techniques such as plasmonics and nanophotonics
holds great promise to further improve detection. Moreover,
optically induced perturbation on the nanoscale can be an
alternative strategy to gain new insight intoflow dynamics.

Nanophotonics-based optical manipulation may lead to an
advantageous nanofluidic transport technique without the
confinement of nanochannels [193].

The integration of nanofluidics and optical components
in a fully automated system is a key point for transferring
laboratory-based technologies into the real market. Advanced
techniques are expected to integratefluidic modulators, light
sources and optical detection systemsintothe same miniatur-
ized chip, as well as facilitate large-scale production with
parallel nanochannels.

Concluding remarks and perspectives. Nanoscale
optofluidics is an exciting frontier field, which carries the
hope that new opportunities will emerge withreducing scales.
Atthe point of application, genomic study is still a hot
subject. Its potential in the detection and analysis of exosomes
and viruses opens new windows intodiagnostics and
environment monitoring. The advanced techniques for
optical detection and manipulation should be taken
advantage of to go deeper on the fundamental research of
nanofluidics such as flow characterization and precise control
of flow on the nanoscale. Nanoscale optofluidics
hasthepotentialto bring breakthrough discoveries, new
devices and functions by studyingmolecule level
interactions.

Acknowledgments. This work was mainly supported by
Singapore National Research Foundation under the Incentive
for Research and Innovation Scheme Programme (1102-IRIS-
05-01) administered by PUB, and under the Competitive
Research Program (NRF-CRP13-2014-01).

Figure 27. Jetting caused by the laser at a gas/liquid interface in
ananochannel. Adapted from [190] with permission from The Royal
Society of Chemistry.
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17. Optofluidic immunoassays

Chia-Chann Shiue and Shih-Kang Fan

National Taiwan University

Relevance of the topic. Integrating and combining optics and
microfluidics, optofluidics [2] has been investigated to
achieve precise and adaptive photonic components that
generate, shape, route, switch and discriminate light for
integrated optical systems. With spatial and temporal control
of a fluid on the microscale, the optical properties can be
altered and monitored; this capability has been developed
further for imaging, light routing, biosensors, energy and
other purposes. For applications in biological and chemical
analysis, various mechanisms involving photonic detection
have been studied in integrated optofluidic systems [194],
including metallic nanohole array plasmonics, photonic
crystals, photonic-crystal fibers, ring resonators, Mach–
Zehnder interferometers, and Fabry–Perot cavities to sense
the RI,which have beenemployed as label-free
immunosensors. Beyond improving the performance of
photonic sensing, the precise and automated manipulations
of fluids and suspended particles with microfluidic techniques
[195] facilitate assay protocols and enhance biomedical
analyses. Among diverse analyses, an optofluidic
immunoassay [196] is an essential and common practice in
biomedical study and in vitro diagnosis (IVD) to analyze a
target analyte, for example proteins and small molecules, by
exploiting the sensitivity, specificity and affinity of antibody–
antigen interactions.

Current status and challenges. Immunoassays are generally
classified as homogeneous or heterogeneous. In homogeneous
immunoassays, antigens and antibodies are dispersed and
interact in solutions, whereas in heterogeneous immunoassays
the target antigens or antibodies suspended in the solution
are detected with specific antigens or antibodies immobilized
on a solid support surface. Figure 28shows various
heterogeneous immunoassays that occur on a solid surface
with appropriately immobilized and labeled antigen or
antibody molecules that have been developed. In a
competitive configuration, the sensing signal is inversely
proportional to the amount of target antibody present
in the sample solution. In the non-competitive mannerof
both sandwich and indirect configurations, a detectable
signal from the labeled antibody or secondary antibody is
proportional to the amount of target antigen. With
optical labels, the signal can be detected with colorimetry,
fluorescence, photoluminescence, chemiluminescence
and electrochemiluminescence methods simply with a
photodiode, photomultiplier tube (PMT), charge-coupled
device (CCD) or CMOS image sensor. Without labeled
molecules, various optical immunoassays were demonstrated,
such as surface plasmon resonance, interferometers, ring
resonators, and photonic crystals [197]. Other non-optical
means were achieved usingvarious techniques, for example
electrochemical, piezoelectric (quartz-crystal microbalance

and microcantilever), calorimetric methods and with field-
effect transistors).

Concurrently with advances inantigens/antibodies,
labeled molecules of immunoassays and optical methods of
detection, microfluidic devicedriven fluids, liquids or gas,
typically along microchannels fabricated on silicon, glass or
PDMS, to offer a miniaturized, automatic, rapid and cheap
analysis with decreased consumption of reagents. Hatch et al

investigated a homogeneous immunoassay conducted along
T-shaped microchannels by flowing two fluid streams
containing antibodies and labeled and target antigens [198];
the diffusion and interaction between the two streams under a
laminar-flow regime with a small Reynolds number was
monitored usinga CCD to analyze the concentration of the
target antigen. Although the detection was performed within
1 min, the laminar flow maintained by the continuous flow
kept consuming the samples and reagents during the
measurement. Depending on the tubing between the pump
and chip, the dead volume might waste more sample and
reagents.

Heterogeneous immunoassays with antigens or antibo-
dies absorbed physically or immobilized covalently on a
microchannel surface have also been studied. To simplify the
fabrication of a microchannel, and modification and immo-
bilization of a surface, conjugated microbeads, in particular
magnetic particles, have been widely adopted for the
development of optofluidic heterogeneous immunoassays that
have been applied successfully to clinical samples; to

Figure 28. Heterogeneous immunoassay configurations.
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complete the immunoassay, repeated microfluidic procedures,
including mixing, incubation, and washing of samples and
reagents with precisely metered volumesare necessary but
challenging for microfluidic devices with fixed microchannels
that are not reconfigurable during operation.

Advances in science and technology to meet challenges. An
alternative means to perform optofluidic immunoassays is
based on digital microfluidics (DMF) that has demonstrated
promising DNA analysis, drug discovery and real-time
biomolecular detection with precise, reprogrammable and
individual control of multiple droplets. Among techniques of
droplet actuation, EW is the most efficient, and has been
widely adopted in DMF devices composed of parallel plates
free from issues of complicated microchannel fabrication and
dead volume. Figure 26 shows how droplets are generated,
transported, mixed and split between two plates of glass,
silicon or printed circuit board (PCB) on applying electric
signals to the electrodes that are covered with a dielectric or
hydrophobic layer. For instance, Sista et al reported a
heterogeneous immunoassay to detect insulin and cytokine
interleukin-6 (IL-6) on a DMF platform within 7 min
[199].Adroplet of sample containing insulin or IL-6 was

first mixed with the reagent droplet containing magnetic
beads coated with a primary antibody, a secondary antibody
labeled with alkaline phosphate (ALP) and blocking proteins.
The antibody–magnetic bead–antigen sandwich complex was
then collected and fixed on transporting the droplet near a
permanent magnet placed either above or beneath the two
plates for the following washing steps. The supernatant liquid
was removed with droplet splitting; one part of the split
droplet containing unbound components was discarded. The
magnetic beads in the remaining droplet were resuspended on
mixing with an additional fresh washing buffer droplet. The
washing was repeated until all unbound components were
removed. The chemiluminescence signal was eventually
measured with a PMT on mixing the droplet containing the
antibody-magnetic bead-antigen complex with a droplet of
CL substrate, Lumigen APS-5. Such a DMF platform capable
of automated fluid actuations to conduct multiple assay
protocols has been applied to multiplex newborn screening.

With the sandwich heterogeneous immunoassay config-
uration using magnetic beads, the fluorescence signal from
the fluorophore labeled with secondary antibody was
enhanced with appropriately collected and gathered magnetic
beads (diameter 6 μm) in a shallow fluidic space (height
10 μm) between plates [200]. The volume of the sample was
2.5 nl; the limit of detection was 15 pg ml−1 with coefficient
of variability 3%. Moreover, without the top plate a sessile
droplet typically performing as a liquid lens was applied to
focus the fluorescence on the detector and to enhance the
detection sensitivity [201]. The detection was performed in a
compact and shielded light-proof box (7×7×7 cm3

) with
all components, achieving a sensitive, cost-effective and
portable optofluidic bioassay system.

Concluding remarks and perspectives. To date, various
microchannel-based and droplet-based digital microfluidic
techniques have been demonstrated for homogeneous and
heterogeneous optofluidic immunoassays. Label-free
photonic sensors generally require advanced fabrication
techniques and are less suitable for the application of
disposable IVD medical devices. DMF with modified
magnetic beads to perform bioassays with individually
driven droplets simplifies the fabrication and the antigen or
antibody immobilization to realize optofluidic immunoassays
for clinical diagnostics, enabling the performance of robust
fluidic procedures with reliable droplet and magnetic-bead
manipulation without volume variation, bead loss or
biofouling. The integration of detectors in the DMF
platform [202] to eliminate optical alignment is essential to
the development of disposable cartridges for IVD.

Figure 29. Parallel plate device configuration of a DMFplatform
performing a magnetic bead-based heterogeneous optofluidic
immunoassay with EWdriven droplets and precisely metered
volumes.
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18. Optofluidics and point-of-need diagnostics for

precision medicine and global health

David Erickson

Cornell University

Relevance of the topic

Point-of-care and point-of-need diagnostics. Point-of-care
diagnostics formally refers to the ability to identify the
nature of an illness or health concern at the location where
care is provided. From the engineer’s or technologist’s point
of view, this typically concerns the development of devices or
systems thatcan provide actionable information to a
healthcare provider within a timeframe compatible with the
likely patient–provider interaction. A variation on this, which
we will focus on here, is point-of-need diagnostics. This
differs from point-of-care in an important way, in that the best
place for administering the diagnostic may not be where
patient care is provided. There are numerous examples of this,
including: mobile breast cancer screening programs, precision
medicine where time tracking of health markers requires both
sample collection and analysis to be done in a personalized
unit, and infectious diseases monitoring where cases can
originate far away from a proper healthcare site and
preliminary screening can help ensure referral is done
properly. The technologies that enable these diagnostics can
exploit chemical, biological or physical measurements of
health, be single-point measurement or involve monitoring
over time, and address acute or chronic health issues.

Optics and optofluidics for point-of-care/need diagnostics.
Since the early days of what we now call microfluidics,
roughly the mid-1990s, point-of-care/need diagnostics were
seen as one of the key applications. The concept was, and
stillis, simple; in the same way that modern integrated
electronics enabled mobile, portable computers, microfluidics
was going to put the power of a traditional analytical lab into
a physician’s office through the lab-on-a-chip.

When optofluidics first emerged as a formal term roughly
tenyears later, in the mid-2000s, diagnostics were still
viewed as one of the major drivers. Indeed the seminal paper
in the field by Psaltis et al [2] lists an anticipated market
demand for the development of ‘portable devices for
environmental monitoring, medical diagnostics and chemi-
cal-weapon detection’ as one of the key applications
optofluidics wastrying to realize.

The need for the ‘fluidics’ part of optofluidics in
diagnostics is fairly obvious in that if one is taking,
processing, and analyzing a biological sample (e.g. blood,
sweat, saliva, biopsy, etc) there is likely to be at least some
form of liquid-based sample processing involved. Addition-
ally, optical methods, like florescence, have been used in lab-
on-a-chip devices for many years prior to the advent of the
term optofluidics. As such one could view the goal of the field
in this area over the last dozen years as examining ways in which
one might be able to: (1) use light and fluidics synergistically or
(2) take advantage of advanced photonic/optical methods in

ways that lead to bettercost, reliability, deployment, accuracy or
outcome advantages than would otherwise be possible.

Current status and challenges. There are numerous excellent
examples of optofluidic diagnostic technology including
recent work ondiagnostics for concussion recovery [203],
rapid single virus detection [204], and minimally invasive
malaria diagnostics [205]. Limitations on the length of this
article prevent providing a comprehensive review, so rather I
will provide two case studies in involving precision medicine
and global health. In the final subsection, I will point to some
needed technological advancements that could have
significant impact on the field.

Case study I:optofluidics for precision medicine. The US
National Institutes of Health defines precision medicine as ‘an
emerging approach for disease treatment and prevention that
takes into account individual variability in environment,
lifestyle and genes for each person’. There are a number of
ways in which optofluidics can play a number of roles in
precision medicine with the most relevant to this article being
to enable the point-of-need diagnostics that can enable the
better, easier, and more accurate tracking of biomarkers at the
individual level. Being able to fuse biomarker data with
changes in behavior or environment is key to understanding
how individuals react.

Given the current worldwide near-ubiquity of mobile
technology, it is reasonable to pair these types of diagnostics
with mobile technologies, such as mobile phones and tablets
[206]. As one example, our group and the Mehta group in
Nutritional Sciences at Cornell have been working on
coupling optofluidics-based micronutrient level tracking
diagnostics with mobile phones. Our ‘NutriPhone’, see
figure 30(A), uses a specially developed paper microfluidics
card coupled with an optofluidic reader system to enable
individuals to easily track how changes in diet and lifestyle
can affect circulating levels of different micronutrients.
Monitoring nutritional outcomes is a particularly good
candidate for personalized medicine because responses to
changes in diet and lifestyle can be very individualized and
often difficult to quantify the magnitude of changes a priori.
To date, we have developed tests for vitamin D (25-OH-D3)

[207], iron (ferritin), vitamin B12 [208], and others.

Case study II: optofluidics for global health. Formally ‘global
health’ refers to the health of everyone on the planet,
independent of country of origin. When used in the context of
technology development, however, it often refers to systems
for use in so-called ‘limited resource settings’ or places where
access to reliable infrastructure ideally required to operate the
technology may not be available. In 2012, our group
published a paper broadly describing the optofluidic
opportunities within global health [209], including point-of-
care diagnostics.

Numerous agencies and foundations have published
criteria for what is required for a successful point-of-need
diagnostic in limited resource settings. These requirements
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vary slightly depending on the source but most include
requirements for devices to be: operable in locations with
limited or no medical infrastructure, simple to operate and
interpret, and able to provide actionable information with
fidelity similar to what one could expect with the state-of-the-
art test. Coupled with these technical requirements, there is an
equally important need that the technology be coupled with a
sustainable business/deployment model. This means that the
system and any required consumables need to be able to be
manufactured, serviced, distributed, and operated in a way
that is compatible with the existing healthcare system. Since
these requirements (including, but not limited to, price-point)
vary from location to location, it is key to involve local
expertise as early on in the process as possible.

An example of how we have used optofluidics to address
some of these concerns is our KS-Detect system [210, 211]

(see figure 30(B)). The technology focuses solar or other light
through a shadow mask onto an optically absorbing
microfluidic chip. The system is designed such that the
projection of this light onto the chip creates a radial thermal
pattern in steps whose temperatures match those required to
conduct a PCR reaction. The channels on the microfluidic
chip are designed so as to move the sample through the static
temperature zones with the proper residence time. This
technique, coupled with the use of a mobile phone to read and
interpret the results, allows the device to be operated under
conditions where power may not be available or reliable. This
enables one to have more flexibility in performing the
diagnosis at the true point-of-need rather than just the point-
of-care. As can be seen in the above-mentioned papers, we
have demonstrated the technology for the diagnosis of
Kaposi’s sarcoma.

Advances in science and technology to meet challenges.
There are numerous opportunities for optofluidic technology
in point-of-need diagnostics. The key technological and
scientific advancements that will likely be required include:
further and more seamless integration of optofluidic systems
with mobile technology, reduction or elimination of the need
for peripheral equipment needed to operate technology (e.g.
tunable lasers), reduced material and fabrication costs for
consumables to hit consumer-level or internationally
acceptable price points, and an increased emphasis on the
skill set of the end user resulting in lower complexity, easier
to use devices and systems.

Concluding remarks and perspectives. A transformative
change would be the ability to use optofluidic or optical/
spectroscopic methods to reduce the invasiveness of
diagnostics. This has proven difficult in the past, due to
challenges with accuracy and high per-unit cost of the
resulting instrumentation and thus technologies that can
address these two challenges would be highly desirable.
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Figure 30. (A) NutriPhone,personalized nutrition tracking, and (b)
KS-Detect,SolarThermal PCR.
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19. Optofluidics in energy

David Sinton

University of Toronto

Relevance of the topic. With broad economic and
environmental impacts, the energy sector is at the forefront
ofthe minds of policy makers, technology developers and the
general public. The dominant demand for global energy usage
is in fluids (oil and gas)and the ultimate source of global
energy is light (solar radiation). The tight integration of light
and fluids via optofluidics thus presents various opportunities
for current and future energy technologies. The small scale of
traditional optofluidics technologies, however, is in stark
contrast with the scale required for impact in the energy
sector. Thus, as with microfluidics for energy applications, the
challenge here is to develop optofluidic technologies that can
leverage the integration of light and fluids fundamental to the
area, while enabling scaling of the technology. The two
established routes to scale are: leveraging already-scaled
materials such as fiber optics (energy or energy conversion is
the product),and employing optofluidics to inform processes
at larger scales (information is the product).

An early vision for the field of optofluidics for energy
was mapped in our perspective paper five years ago [212].
My focus here is the recent developments in these areas,
newly emerging energy applications and the roadmap ahead
to broader application of optofluidics in energy. Specifically, I
first outline recent progress and a roadmap for optofluidics in
photosynthetic and photocatalytic energy conversion—exam-
ples of tight integration of fluids and light—followed by
emerging and hybrid approaches that leverage elements of the
optofluidics toolbox for application in energy. In this short
overview, I unfortunately cannot do justice to other exciting
developments in this arena such as liquid lensing for solar
energy collection, photothermochemical conversion, and
solar steam generation, to name a few.

Current status and challenges. Photosynthesis is nature’s
method of converting light energy into chemical energy, and
is well suited to optofluidics [212, 213]. Most of the
challenges in this approach stem from the fundamental low
efficiency of the photosynthetic process,effectively the
overhead associated with biological machinery in series
with losses of light energy at both the reactor scale and the
organism scale. Although these challenges can be overcome
to varying degrees with engineering, implementation
increases cost in an already-strained sector [214]. Fuel
production represents the largest volume potential market
for photobioreactor products, but it is also provides the lowest
margin. The low price of conventional hydrocarbons made
biofuels a challenging market, and the economics became
bleaker with the advent of unconventional oil and gas made
possible by the combination of horizontal drilling and
hydraulic fracturing in shale and tight oil reservoirs. As a
result, biofuel producers and technology developers are
focusing on niche high-value chemical outputs, such as

neutraceuticals, in which optofluidicphotobioreactors can
better compete. Optofluidics has also enabled very controlled
multiplexed experiments to determine optimal conditions for
photosynthetic energy conversion in operations of all scales
[215, 216].

Converting light energy into chemical energy using
photocatalysts is an alternative to the biological approach.
Integrating photocatalysts and fluid in optofluidic systems
presents several attractive features, most notably enhanced
transport of reactants to photocatalysts and products away, as
well as leveraging the excellent control associated with
optofluidics systems to ensure conditions throughout [217].
Analogous to the photosynthetic energy conversion (above),
however, there are challenges of both cost and efficiency for
optofluidics photocatalysis. Specifically, there is a mismatch
between the goals of light collection (favoring large areas)
and conversion (favoring dense reactors). This mismatch can
be technologically addressed by separately collecting and
concentrating solar energy and feeding light to, and
distributing within, a dense reactor system using waveguides.
There are associated challenges of minimizing losses and
costs in this waveguiding approach, but there are exciting
developments in this area.

Separating light collection and reactor functions by using
conventional solar photovoltaics to collect and convert solar
energy into electrical energy is another approach [218]. The
result is not the tight integration of light and fluids germane to
optofluidics, but the advantages are worth considering. Most
notably, this approach leverages the massive scaling and cost
reductions already achieved in solar photovoltaics, as well as
the ease with which electrical output can be controlled and
distributed. The fluids-half of the challenge is then in
designing effective electrochemical reactors for which there
is a long history from fuel cells and electrolyzers. Electro-
catalytic conversion of CO2 into (or back into) useful
chemical feedstocks using solar-generated renewable elec-
trons is an attractive approach that is gaining traction,
particularly with advancements in both nanostructure electro-
catalysts [219] and gas diffusion electrode cell designs [220].

Advances in science and technology to meet challenges. In
the area of optofluidics photobioreactors, a promising
approach is unifying light and fluid delivery within single
materials, such as light-guiding gas-permeable membranes
illustrated in figure 31[221]. This approach removes the
necessity for separate light/fluid infrastructure and associated
costs. The next logical step in this progression of
simplification might be to integrate immobilized
photosynthetic organisms within such materials. Challenges
of this approach are many, particularly as the one material
must serve many separate functions, but there is an
opportunity for cost reductions through the integration. A
less exotic and more accessible approach would be to improve
the optical function of existing medium- or large-scale
facilitiesby, for instance, providing excitation light that is
off-absorption-peak. Providing light that matches the
absorption peak of the photosynthetic organism is a
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common practice, which is grounded in the idea of feeding
the organism the light it is tuned to absorb best. The result,
however, is rapid absorption of light by the culture, and
very poor light distribution, resulting in poor light use
efficiencies overall. The penetration of various wavelengths
into identical cultures is shown in figure 32. Illuminating
cultures with wavelengths that are off-peak-absorbance, can
allow much deeper penetration of the exciting light while
maintaining photosynthetic productivity and boosting overall
performance [222].

Photocatalytic reactors have made impressive advances
over the last few years—both in the context of wastewater
treatment and light-to-chemical energy conversion. The
photocatalysis community has the challenge of engineering
catalysts that efficiently manage both light utilization and
chemical conversion while minimizing electron–hole recom-
bination, bandgap, activity loss, toxicity and material cost.
Despite these fundamental challenges there is much progress
and reason for optimism in this area. Analogous to
photosynthesis, there are also roles for optofluidics systems
in informing both the synthesis of photocatalysts and how
they might be used in larger systems, such as reactors with
disperse photocatalytic nanoparticles [222].

Hybrid methods that separate solar-PV and electrocata-
lytic conversion have challenges to address particularly in the
electrochemical reactions and reactors. Electrocatalytically
upgrading CO2 is energy intensive and advances are needed
in catalysts and cells to increase Faradaic efficiency for
intended products, increase current densities, and reduce the
cost of catalysts. A challenge shared with photocatalysis is the
production of long-chain hydrocarbons from CO2 (something
photosynthesis accomplishes). Although these long-chain
liquid hydrocarbons are the preferred energy currency
worldwide, producing them from CO2 is a veritable, multistep
photo/electrochemical challenge. Particularly with the
increase in activity in this area of late, there is great potential
for rapid advances.

The role of optofluidic systems to study and inform on
photosynthetic and photocatatlyic processes is noted above.
We see additional, broader opportunities for this approach
here. Specifically, these same methods are very well suited to
quantify the environmental impacts of anthropogenic CO2

emissions on organisms and microcosms, in combination with
light variables and/or a variety of local stressors. One can
imagine independently controlled optofluidic reactors as
multiplexed microgreenhouses, or micro-ecosystems, that
can provide the massive amount of data necessitated by
fundamentally complex, multivariable coupled interactions of
the natural environment.

Concluding remarks and perspectives. A major barrier to
wider application of renewable energy is the lack of storage.
The optofluidic approaches outlined here aim to overcome this
barrier by converting—directly or in hybrid—our most plentiful
energy source, solar energy, into our most demanded energy
form, liquid hydrocarbons. Converting these concepts and
demonstrations into useful, scalable approaches will take a
sustained effort from the science and engineering communities, as
well as funding from policy makers and venture capital. This
short overview covered some recent developments and
opportunities in photosynthetic, photocatalytic and hybrid solar-
PV-electrocatalysis approaches. All three of these approaches
have shared challenges of cost and present opportunities for both
fundamental science and engineering advancement, the most
promising of which will keep cost minimization as the guiding
and motivating principle.

Acknowledgments. We gratefully acknowledge support
from the NSERC E.W.R. Steacie Memorial Fellowship,
Discovery program, MEET CREATE program, and
infrastructure funding from CFI.

Figure 31. Breathable waveguides for combined light and fluid
delivery to photosynthetic micro-organisms. Reprinted from [221],
Copyright 2016, with permission from Elsevier.

Figure 32. Demonstration of wavelength-dependant light penetration
in dense cultures. The productivity of green light was ∼4× that of
red due to better light distribution of the weaker absorbed
wavelength. [222] John Wiley & Sons. © 2017 Wiley Periodicals,
Inc.
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