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Abstract

Background: Breast cancer is a highly heterogeneous disease resulting in diverse clinical behaviours and

therapeutic responses. DNA methylation is a major epigenetic alteration that is commonly perturbed in cancers.

The aim of this study is to characterize the relationship between DNA methylation and aberrant gene expression in

breast cancer.

Methods: We analysed DNA methylation and gene expression profiles from breast cancer tissue and matched

normal tissue in The Cancer Genome Atlas (TCGA). Genome-wide differential methylation analysis and methylation-

gene expression correlation was performed. Gene expression changes were subsequently validated in the

METABRIC dataset. The Oncoscore tool was used to identify genes that had previously been associated with cancer

in the literature. A subset of genes that had not previously been studied in cancer was chosen for further analysis.

Results: We identified 368 CpGs that were differentially methylated between tumor and normal breast tissue

(∆β > 0.4). Hypermethylated CpGs were overrepresented in tumor tissue and were found predominantly (56%)

in upstream promoter regions. Conversely, hypomethylated CpG sites were found primarily in the gene body

(66%). Expression analysis revealed that 209 of the differentially-methylated CpGs were located in 169 genes

that were differently expressed between normal and breast tumor tissue. Methylation-expression correlations

were predominantly negative (70%) for promoter CpG sites and positive (74%) for gene body CpG sites.

Among these differentially-methylated and differentially-expressed genes, we identified 7 that had not

previously been studied in any form of cancer. Three of these, TDRD10, PRAC2 and TMEM132C, contained CpG

sites that showed diagnostic and prognostic value in breast cancer, particularly in estrogen-receptor (ER)-

positive samples. A pan-cancer analysis confirmed differential expression of these genes together with

diagnostic and prognostic value of their respective CpG sites in multiple cancer types.

Conclusion: We have identified 368 DNA methylation changes that characterize breast cancer tumor tissue, of which

209 are associated with genes that are differentially-expressed in the same samples. Novel DNA methylation markers

were identified, of which cg12374721 (PRAC2), cg18081940 (TDRD10) and cg04475027 (TMEM132C) show promise as

diagnostic and prognostic markers in breast cancer as well as other cancer types.
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Background
Breast cancer (BC) is a highly heterogeneous disease,

comprising multiple histological and molecular subtypes

that are associated with distinct clinical behaviours and

therapeutic responses [1, 2]. Early detection and improved

treatment have lead to better outcomes, however BC still

ranks among the leading causes of cancer-related deaths

[3]. BC has traditionally been classified based on tumor

size, regional lymph node infiltration, histology, grade, and

immunohistochemical evaluation of estrogen receptor

(ER), progesterone receptor (PR), human epidermal

growth factor receptor 2 (HER2) and proliferation marker

Ki-67 [4, 5]. These factors are the most significant prog-

nostic and therapeutic predictors in current BC clinical

practice.

Recently, with the advent of high-throughput technolo-

gies, gene expression profiling has enabled a more com-

prehensive view of the molecular identity of breast cancer.

Five major molecular and outcome related BC subtypes,

known as PAM50 subtypes, were identified based on

genome-wide expression analyses: Luminal-A, Luminal-B,

HER-2, Normal-like and Basal-like [2, 6–8]. Breast cancer

classification based on PAM50 subtypes and risk of recur-

rence (ROR) score have shown to significantly contribute

to prognostic assessment and to facilitate more precise

therapeutic decisions [9]. Other genomic tests, such as

Mammaprint (Agendia, Huntington Beach, CA) and

Oncotype DX (Genomic Health, Redwood City, CA) may

also be used to provide prognostic and/or predictive infor-

mation in early-stage breast cancer beyond the standard

clinicopathological assessment and to determine the likeli-

hood of benefit from adjuvant chemotherapy [5, 10]. Tai-

loring treatment to individual tumor subtypes has the

potential to greatly improve breast cancer management

and survival [11, 12].

Epigenetic marks, including DNA methylation, his-

tone modifications and miRNAs, are important regula-

tors of gene expression in normal development and

disease [13, 14]. They also serve as prognostic bio-

markers [15, 16] in cancer and are increasingly being

investigated as therapeutic targets [17, 18]. DNA

methylation involves addition of a methyl group to the

cytosine pyrimidine ring in CpG dinucleotides by DNA

methyltransferases (DNMTs) [19]. Canonically, pro-

moter methylation is thought to decrease gene expres-

sion by recruitment of methyl-binding domain proteins

(MBDs), that change chromatin conformation thereby

preventing binding of transcription factors [15, 20, 21].

In BC, several studies have reported promoter hyper-

methylation leading to silencing of tumor suppressor

genes, including BRCA1 [22], E-cadherin [23] and

TMS1 [24]. However, the Wilms’ tumor suppressor 1

(WT1) gene is overexpressed in breast tumor tissue

despite hypermethylation of its promoter [25]. Thus

methylation changes in the gene promoter may correl-

ate with either upregulation or downregulation of the

associated gene [15, 20, 26, 27].

Differences in DNA methylation profiles between nor-

mal and malignant breast tissue have the potential to serve

as a diagnostic and/or prognostic tool in breast cancer

[21, 24, 28]. To date, most studies have examined a small

number of genes [21, 22, 24], and only a few studies have

performed genome-wide analyses across multiple BC

subtypes [8, 29, 30]. As a result, further studies regarding

genome-wide DNA methylation profiles are needed to

better understand the contribution of DNA methylation

patterns to breast cancer heterogeneity. Here we

investigate whole genome DNA methylation patterns in

BC, highlighting the potential importance of epigenetic

changes in breast carcinogenesis, and identifying novel

DNA methylation markers that could be useful for breast

cancer classification and prognosis.

Methods

Datasets

Bioinformatic analyses were performed on publicly avail-

able databases including DNA methylation and gene ex-

pression data from breast tumor samples derived from

The Cancer Genome Atlas Consortium (TCGA) [8] and

the Molecular Taxonomy of Breast Cancer International

Consortium (METABRIC) [31].

DNA methylation and gene expression analysis

All TCGA data was retrieved from TCGA data portal

(https://portal.gdc.cancer.gov/). The DNA methylation

data was derived from the Illumina Infinium Human

Methylation 450 k array. The methylation score for each

CpG site is represented as beta values and range from 0

to 1, corresponding to unmethylated and completely

methylated DNA, respectively. Gene expression data was

derived from Illumina HiSeq 2000 RNA Sequencing.

This dataset includes gene-level transcription estimates,

expressed in RSEM normalized count.

METABRIC gene expression data was retrieved from

the METABRIC dataset [31] for 1992 primary breast can-

cer and 144 normal tissue samples. Gene transcriptional

profiling derived from the Illumina HT-12 v3 platform

and data were normalized as previously described [31].

We used DAVID (http://david-d.ncifcrf.gov/) for Gene

Ontology enrichment analysis.

Gene set enrichment analyses

Genes ranked according to the coefficient of Spearman

correlation were analysed for pathway enrichment using

the Gene Set Enrichment Analysis software [32]. Gene

sets were retrieved from the KEGG database [33, 34]

and pathways with a False Discovery Rate (FDR) lower

than 5% were considered significantly enriched.
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Principal component and hierarchical clustering analyses

Principal component and hierarchical clustering analyses

were performed using FactoMineR [35] and gplots [36]

R packages, respectively.

OncoScore

OncoScore is a bioinformatics tool that ranks genes ac-

cording to their association with cancer, based on the

available scientific literature. OncoScore data was accessed

on 22/06/2017 through the R package OncoScore [37], ver-

sion 1.4.2. https://github.com/danro9685/OncoScore.

Diagnostic and prognostic value analyses

Differentially-methylated CpG sites located in the

OncoScore-selected genes were analysed in terms of

their diagnostic potential. The specificity and sensitivity

of methylation levels for breast cancer diagnosis were

evaluated by receiver-operator curve (ROC) analysis [38]

with diagnostic validity suggested by an area under the

ROC curve (AUC) ≥ 0.8.

To evaluate the prognostic ability of CpG sites,

Kaplan-Meier survival curves were generated and log-

rank p-value and Hazard Ratios with 95% confidence in-

tervals were calculated [39]. Based on the AUC, a cut-off

value was established for each probe in order to

distinguish hypomethylated patients (blue) from hyper-

methylated patients (red). Optimal cut-off values were

identified according to maximal sensitivity and specifi-

city generated previously by the AUC. In addition, we

performed multivariate Cox proportional-hazards model

survival analyses with ER status as covariate. Only breast

cancer patients with DNA methylation data and overall

survival data were included in the analysis.

Roadmap Epigenomics database analysis

Epigenomic data from normal breast myoepithelial cells

was analysed using the Roadmap Epigenomics database

[40] and release 9 of the Human Epigenome Atlas from

the NIH Roadmap Epigenomics Mapping Consortium

(http://www.roadmapepigenomics.org/data/). Data in-

cluding DNA methylation levels (MeDIP), histone modi-

fication marks (ChIP), and chromatin accessibility

(chromHMM) datasets. DNA methylation patterns, ac-

tive histone marks H3K4me3 and H3K4me, repressive

histone marks H3K27me3 and H3K9me3, and chroma-

tin status (chromHMM) were mapped for each CpG lo-

cation based on the GRCh37/hg19 genome assembly.

Pan-cancer analysis of gene expression and CpG

methylation and prognostic potential

We examined 13 cohorts from the TCGA containing

both tumor and normal samples (≥ 20 samples in each

group). All cohorts contained gene expression data and

12 also contained patient survival data. For each gene/

CpG, we calculated the proportion of cohorts with ex-

pression results concordant with results in the breast

cancer cohort, as well as methylation levels and prog-

nostic ability in these cohorts.

Statistical analysis

Preprocessing and normalization of data as well as all

statistical analyses were performed using the R comput-

ing framework, with the exception of Kaplan-Meier sur-

vival curves, which were generated using GraphPad

Prism5.0. Differential methylation and expression ana-

lyses were performed using the Mann-Whitney test,

while correlation analyses were assessed using Spearman

correlations. Kaplan-Meier survival curves and compari-

sons were performed using the log-rank test.

Results

Genome-wide DNA methylation analysis reveals 368

differentially methylated CpG sites in breast cancer tissue

We set out to investigate the genome-wide DNA methy-

lation profiles in a panel of 780 breast tumor samples

and 83 matched normal samples from The Cancer Gen-

ome Atlas (TCGA). Although methylation of distal re-

gions, such as enhancers, is relevant for gene regulation

in breast cancer [41], we intentionally focused on prox-

imal gene regions by limiting our analysis to CpG probes

mapping to a known gene (n = 251,574) to facilitate the

link with the respective target gene. To identify CpG sites

showing the most significant and relevant tumor-specific

changes in methylation, CpG’s with a ∆β (between tumors

and normal tissues) equal to or greater than 0.4 were se-

lected. We identified 368 differentially-methylated CpG

sites that distinguished tumor and normal breast tissues

(∆β ≥ 0.4 and FDR ≤ 5%), mapping to 286 unique genes

(Fig. 1a; Additional file 1: Table S1). Hypermethylated

CpG sites (80.7%) predominated in tumor tissue relative

to hypomethylated sites (19.3%) (P < 2.2 × 10− 16; Fig. 1b).

Hypermethylated and hypomethylated probes also

localized to different areas within their associated genes

(P = 0.001). More than 50% of hypermethylated CpG sites

were localized in upstream regulatory regions including

the promoter, 5′ untranslated region, and 1st exon

(TSS1500, TSS200, 5’UTR and 1st exon), while only 30%

of hypomethylated CpG sites localized to these regions

(Fig. 1b). Conversely, hypomethylated CpG sites were

localized predominantly in the gene body (66.2%), a

phenomenon that has been postulated in other cancers to

contribute to activation of aberrant intragenic promoters

that are normally silenced [42, 43].

Functional enrichment analysis revealed that genes as-

sociated with hypermethylated CpG sites are enriched

for homeobox genes and transcription factors, while

those associated with hypomethylated CpG sites are

de Almeida et al. BMC Cancer          (2019) 19:219 Page 3 of 12

https://github.com/danro9685/OncoScore
http://www.roadmapepigenomics.org/data/


enriched for transmembrane proteins and immunoglob-

ulins (Fig. 1c-d, Additional file 2: Table S2).

Correlation of DNA methylation with gene expression

change in BC

To explore the relationship between DNA methylation

and gene expression in BC, we compared the direction of

CpG methylation change (hyper- vs hypomethylated) with

the direction of expression change in the corresponding

genes. Among the 368 differentially-methylated CpG sites,

we identified 209 that were associated with differen

tially-expressed genes (FDR < 5%), representing a total of

164 genes. We then correlated the direction of methyla-

tion change with the direction of expression change of the

cognate gene. Negative correlations (59%) predominated

relative to positive correlations (41%) (p < 2.2 × 10− 16,

Additional file 3: Figure S1), driven by a large number of

hypermethylated CpG sites that were associated with

downregulated genes (Additional file 4: Table S3). When

negative and positive correlations were subdivided accord-

ing to CpG location within the associated gene, > 70% of

negative correlations involved CpG sites located in the up-

stream regulatory regions (promoter, 5’UTR, 1st exon),

while 74% of positive correlations involved CpG sites found

in the gene body (Fig. 2a). Thus promoter hypermethyla-

tion correlated with gene downregulation, while gene body

hypermethylation correlated with gene upregulation, as

previously observed in a separate genome-wide study [29].

We next analyzed the same 209 CpG sites (associated

with differentially-expressed genes) to ascertain the

sources of variability at these methylation sites. Principal

Component Analysis confirmed that sample type (nor-

mal breast vs breast tumor) is the primary source of

variability underlying the methylation signature, ac-

counting for 53.9% of variability (Fig. 2b). The second

component (6.25%) was putatively explained by the

PAM50 subtypes within the breast tumors as identified

in TCGA (Fig. 2c), with higher Principal Component 2

values associated with basal breast tumors and poorer

outcomes (P = 0.01, Log-rank test, Additional file 3:

Figure S2). Unsupervised hierarchical clustering, using

the same 209 CpG probes, revealed the existence of two

A

C D

B

Fig. 1 Genome-wide DNA methylation changes in breast cancer. a Stacked bar plot showing localization of the 368 differentially-methylated CpG

sites in breast tumor tissue relative to their cognate genes. b Stacked bar plot showing localization of hyper- and hypomethylated CpG sites in breast

tumor tissue relative to their cognate genes. The distributions are significantly different (P < 2.2e− 16, Pearson’s chi-squared test). c and d Enriched Gene

Ontology categories using DAVID clustering enrichment scores for genes c hypermethylated or d hypomethylated in tumors. TSS1500, within 1500 bp

of the transcriptional start site; TSS200, within 200 bp of the transcriptional start site; 5’UTR, 5′ untranslated region; 3’UTR, 3′ untranslated region
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major groups, however, these did not show obvious clus-

tering of clinical traits (Additional file 3: Figure S3).

Functional enrichment analysis of the 164 differen

tially-methylated and differentially-expressed genes re-

vealed enrichment for homeobox genes (positively corre-

lated with methylation change, upregulated expression)

as well as transcription factors (negatively correlated with

methylation change, downregulated expression) and cell

differentiation genes (negatively correlated with methyla-

tion change) (Fig. 2d, Additional file 2: Table S2).

METABRIC validation and OncoScore analysis reveal 7

new genes related to BC

To validate our gene expression results we used tran-

scriptomic data from the METABRIC dataset [31], which

comprises 1992 breast tumor samples and 144 normal

adjacent tissues. We were able to validate 88 of the 164

genes (53.7%) as differently expressed in breast tumor

tissue relative to normal tissue, with the direction of ex-

pression change being concordant between the datasets

(Additional file 5: Table S4). Of the remaining 76 genes,

68 genes did not show differential expression in the

METABRIC dataset while no data was available for the

final 8 genes.

We next determined which of the 96 differentially-

methylated genes with validated (88) or unconfirmed (8)

gene expression changes had previously been associated

with cancer in the medical literature. We used the

OncoScore tool [37], a text-mining algorithm that ranks

genes according to their appearance in the cancer litera-

ture, to analyse the 96 genes. The top ranked gene,

WT1, had an Oncoscore of 77.5 while 81 genes had

A B

C D

Fig. 2 209 CpG probes are correlated with cognate gene expression. a Stacked bar plot showing localization of differentially-methylated CpG

sites within their cognate genes subdivided by the correlation between methylation change and expression change. Negatively-correlated CpG

sites are shown in the first bar, and positively-correlated CpG sites in the second bar. The distributions are significantly different (P < 2.2 × 10− 16,

Pearson’s chi-squared test). b and c Principal Component Analyses using the 209 differentially-methylated probes located in differentially-

expressed genes, colored by (B) sample type or (C) PAM50 subtype. d Enriched Gene Ontology categories using DAVID clustering enrichment

scores for genes with negative (blue) or positive (red) correlations
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Oncoscores ≥1, indicating at least one citation in a

cancer-related article (Additional file 6: Table S5). A

total of 7 genes had Oncoscores of 0, indicating no prior

association with cancer in the medical literature. No

Oncoscore data was available for 8 genes.

After Oncoscore analysis we selected the top 7 genes

(strongly associated with cancer: WT1, BCL9, SMYD3,

ZNF154, ZNF177, HOXD9, and ITIH5) and the bottom 7

genes (no published association with cancer: TMEM132C,

TDRD10, RNF220, RIMBP2, PRAC2 (C17orf93), EFCAB1,

and ANKRD53) for further analysis of diagnostic and

prognostic potential (Fig. 3).

Identification of candidate diagnostic and prognostic

biomarkers in breast cancer

Within the 14 genes selected for closer analysis, 18

differentially-methylated CpGs were identified (Table 1).

These CpG sites were analysed for diagnostic and prog-

nostic potential using the area under the ROC curve

(AUC) method [38] and Kaplan-Meir survival curves,

respectively.

Within the “top 7” genes, there were 9 differentially-

methylated CpG sites, of which 7 were hypermethylated

and 2 hypomethylated (Table 1). All 9 CpG sites were

able to distinguish breast tumor tissue from normal tis-

sue (AUC > 0.8 and p < 0.0001; Table 1). Only 2 CpG

sites showed an association with poor prognosis. These

were both hypermethylated CpG sites located in the pro-

moters of the ZNF154 and HOXD9 genes respectively

that were negatively correlated with gene expression

(ZNF154: p = 0.0097 and HOXD9: p = 0.0266, Additional

file 3: Figure S4). When the different ER status were

taken into account as covariates in a multivariate ana-

lysis, only the HOXD9 CpG methylation remained

significantly associated with poor prognosis (p = 0.02,

Additional file 3: Figure S4E,F). These findings suggest

that silencing of these genes by DNA methylation may

have negative implications for prognosis, which is in ac-

cordance with previous data from triple negative breast

cancer [44] and metastatic melanoma [45].

Within the “bottom 7” genes not previously associated

with cancer there were a further nine differentially-

methylated CpG sites (5 hypermethylated, 4 hypomethy-

lated) (Table 1). All 9 CpG sites were able to distinguish

breast tumor tissue from normal tissue (AUC > 0.8 and

p < 0.0001, Table 1). Site cg10216717, located in gene

TMEM132C, showed the highest discriminative accuracy

with an AUC of 0.9920 (Table 1). Only 3 CpG sites

showed an association with poor prognosis (Fig. 4). Site

cg12374721 (PRAC2 gene) was hypermethylated in

breast tumor tissue and positively correlated with gene

expression (p = 0.0134, Fig. 4d). Sites cg18081940

(TDRD10 gene) and cg04475027 (TMEM132C gene)

were also hypermethylated but were negatively corre-

lated with gene expression (p = 0.0037 and p = 0.0291 re-

spectively, Fig. 4e, f ). All 3 CpG sites were associated

with poor prognosis in ER-positive breast cancer sam-

ples, but none in ER-negative (Fig. 4g-l). The overall as-

sociation of TDRD10 and TMEM132C’s CpG sites

remained significant when ER status was taken into ac-

count as covariate in a multivariate analysis (p = 0.06

and 0.03, respectively, Additional file 3: Figure S5).

When a combined signature of these 3 CpG sites was

analysed, patients with a higher hypermethylation index

showed poorer overall prognosis (p = 0.02; HR: 1.853;

Additional file 3: Figure S6). These data suggest a pos-

sible role for PRAC2 (increased expression in tumor tis-

sue) as an oncogene and TDRD10 and TMEM132C

Fig. 3 OncoScore of the “top 7” (green) and “bottom 7” (red) genes
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(decreased expression in tumor tissue) as tumor sup-

pressor genes.

Roadmap of epigenomic regulatory elements

We used the Roadmap Epigenomics database [40] to

analyze the 5 CpG sites that showed both diagnostic and

prognostic potential in BC. Using data from normal

breast myoepithelial cells, we plotted DNA methylation

status, histone modification marks and chromatin acces-

sibility (chromHMM) data for these CpG sites and their

associated genes.

Sites cg01268824 (ZNF154), cg22674699 (HOXD9),

cg18081940 (TDRD10), and cg04475027 (TMEM132C)

localized to gene promoter regions, were hypermethy-

lated, and were negatively correlated with expression in

breast tumor tissue, suggesting that DNA methylation at

these sites may silence gene transcription (Table 1). At

all 4 of these CpG sites Roadmap Analysis revealed that

in normal breast cells low methylation levels was associ-

ated with open chromatin and active histone modifica-

tion marks, namely H3K4me1 and H3K4me3 (Fig. 4b

and c, Additional file 3: Figure S4). Accordingly, hyper-

methylation of these CpG sites may hinder the binding

of transcription factors or enhancers and/or modify

chromatin accessibility leading to gene silencing in

breast cancer.

Conversely, site cg12374721 (PRAC2) was hyper-

methylated and positively correlated with gene transcrip-

tion in tumor tissue (Table 1). Roadmap analysis

revealed that cg12374721 was located in a polycomb re-

pressive region in normal breast myoepithelial cells,

which is associated with repressive chromatin marks, in-

cluding enrichment of H3K27me3 marks (facultative

heterochromatin) and lack of H3K4me1 and H3K4me3

(Fig. 4a). Therefore, the gain of methylation in this CpG

may contribute to transcriptional activation by inhibiting

the binding of transcriptional repressors or altering the

repressive chromatin conformation in cancer.

Identification of 3 new breast cancer-related genes

Genes PRAC2, TDR10 and TMEM132C showed differ-

ential methylation and differential expression in breast

tumor samples relative to normal breast tissue and also

contained CpG sites showing diagnostic and prognostic

value in breast cancer. None of these genes has previ-

ously been reported in the cancer literature. PRAC2 is

upregulated in breast tumor tissue whereas TDR10 and

TMEM132C are both downregulated.

We further analyzed expression of these 3 genes in 13

non-breast cancer TCGA cohorts including colorectal

adenocarcinoma, head and neck cancer, hepatocellular

carcinoma, lung adenocarcinoma, lung squamous cell

carcinoma, prostate adenocarcinoma, and thyroid

Table 1 List of the Top and Bottom 7-ranking methylation markers selected as potential biomarkers

CpG ID Gene ∆β methylation
(tumor - normal)

Correlation
(methylation-expression)

AUC Overall Survival

Top 7 cg10244666 WT1 0.44; p = 2.57e-40 r:0.17; p = 1.09e-6 0,9430 (CI:0.9279–0.9582); p < 0.0001 ns

cg03441279 BCL9 −0.41; p = 5.8e-25 r:-0.32; p = 1.58e-19 0,8434 (CI:0.8184–0.8684); p < 0.0001 ns

cg25025181 SMYD3 −0.45; p = 6.18e-39 r:-0.31; p = 2.36e-19 0,9324 (CI:0.9163–0.9486); p < 0.0001 ns

cg01268824 ZNF154 0.42; p = 4.68e-34 r:-0.63; p = 1.44e-85 0,9002 (CI:0.8778–0.9226); p < 0.0001 p = 0.0097

cg09578475 ZNF177 0.51; p = 4.87e-40 r:0.20; p = 2.73e-8 0,9378 (CI:0.9219–0.9537); p < 0.0001 ns

cg08065231 0.46; p = 9.51e-39 r:0.23; p = 1.54e-10 0,9320 (CI:0.9153–0.9486); p < 0.0001 ns

cg13703871 0.47; p = 2.91e-40 r:0.17; p = 3.13e-6 0,9410 (CI:0.9257–0.9562); p < 0.0001 ns

cg22674699 HOXD9 0.40; p = 3.15e-28 r:-0.17; p = 1.12e-6 0,8679 (CI:0.8427–0.8931); p < 0.0001 p = 0.0381

cg10119075 ITIH5 0.41; p = 1.51e-39 r:-0.26; p = 1.73e-13 0,9397 (CI:0.9243–0.9552); p < 0.0001 ns

Bottom 7 cg15165122 ANKRD53 0.41; p = 2.09e-34 r: −0.48; p = 2.34e-46 0,9028 (CI:0.8827–0.9229); p < 0.0001 ns

cg12743248 EFCAB1 −0.45; p = 5.39e-45 r: 0.44; p = 8.49e-38 0,9664 (CI:0.9553–0.9775); p < 0.0001 ns

cg12374721 PRAC2 0.46; p = 9.42e-36 r:0.39; p = 1.63e-30 0,9118 (CI:0.8923–0.9313); p < 0.0001 p = 0.0134

cg27170427 RIMBP2 −0.46; p = 1.24e-46 r:0.35; p = 1.79e-24 0,9766 (CI:0.9680–0.9851); p < 0.0001 ns

cg17192862 −0.41; p = 1.29e-46 r:0.45; p = 6.74e-40 0,9765 (CI:0.9675–0.9856); p < 0.0001 ns

cg10224098 RNF220 0.45; p = 1.01e-39 r:-0.09; p = 1.51e-2 0,9393 (CI:0.9220–0.9566); p < 0.0001 ns

cg18081940 TDRD10 0.41; p = 1.58e-39 r:-0.20; p = 4.17e-8 0,9360 (CI:0.9189–0.9531); p < 0.0001 p = 0.0037

cg10216717 TMEM132C −0.45; p = 2.02e-49 r:0.46; p = 3.44e-42 0,9920 (CI:0.9872–0.9968); p < 0.0001 ns

cg04475027 0.42; p = 1.19e-40 r:-0.23; p = 3.24e-11 0,9446 (CI:0.9289–0.9604); p < 0.0001 p = 0.0291

ns not significant

The “Top 7” and “Bottom 7” genes (based on OncoScore results) selected for analysis as potential methylation biomarkers

de Almeida et al. BMC Cancer          (2019) 19:219 Page 7 of 12



A B C

D E F

G H I

J K L

Fig. 4 Epigenetic analysis of CpGs sites from PRAC2, TDRD10 and TMEM132C (“bottom 7” genes). a MeDIP-Seq data shows that cg12374721 (PRAC2) is

hypomethylated in normal breast cells. ChIP-Seq data shows enrichment of H3K27me3 histone repressive marks (green peaks) and lack of H3K4me1

and H3K4me3 active histone marks. ChromHMM classified this region as a poly comb repressive region (grey color). b cg18081940 (TDRD10) and c

cg04475027 (TMEM132C) sites are hypomethylated in normal cells and overlap with open chromatin and H3K4me1 and H3K4me3 histone

modification peaks associated with active transcription (green peaks). ChromHMM classified b cg18081940 (TDRD10) region as an active TSS (red) and

c cg04475027 (TMEM132C) as a bivalent enhancer (dark yellow). d-l Kaplan-Meier curves for the CpG probes located in d PRAC2, e TDRD10 and f

TMEM132C showed that hypomethylation is associated with better overall survival. Hypomethylation of the 3 CpGs was also associated with better

prognosis in ER-positive samples (g-i), but not in ER-negative samples (j-l). Based on the AUC, a cut-off value was established for each probe in order

to distinguish hypomethylated patients (blue) from hypermethylated patients (red). The following cut-offs were used: d 0.5503, corresponding to the

37th percentile (PRAC2-cg12374721); e 0.5243, 35th percentile (TDRD10-cg18081940); f 0.4014, 33rd percentile (TMEM132C-cg04475027); g 0.5503, 39th

percentile; h 0.5243, 35th percentile; i 0.4014, 33rd percentile; j 0.5503, 25th percentile; k 0.5243, 35th percentile; l 0.4014, 32th percentile

de Almeida et al. BMC Cancer          (2019) 19:219 Page 8 of 12



carcinoma (Additional files 7 and 8: Table S6 and S7).

Expression of TMEM132C was downregulated across all

13 non-breast cancer cohorts while PRAC2 was upregu-

lated in 77% of cohorts. TDRD10 was downregulated in

46% of cohorts (similar to BC) but was upregulated in

kidney clear cell carcinoma and thyroid carcinoma co-

horts (Fig. 5). We further analysed the diagnostic ability

of the 3 CpG sites associated with these genes in

non-breast cancer cohorts. All 3 sites correlated with

cancer diagnosis in 10 or more of the 12 TCGA cohorts

containing methylation data (Fig. 5). Correlation with

survival was identified in 50% (TDRD10), 42% (PRAC2),

and 25% (TMEM132C) of the 12 TCGA cohorts, with

no significant opposing results (Fig. 5). None of the 3

CpGs sites showed diagnostic or prognostic potential in

the thyroid carcinoma cohort, suggesting that these

pathways are not important for the pathogenesis of this

particular cancer.

Discussion

DNA methylation is an important epigenetic alteration

that can modify gene expression and is commonly per-

turbed in cancer [14]. Its impact on aberrant gene ex-

pression in breast cancer remains poorly understood.

Here we report a roadmap of DNA methylation changes

in breast cancer and their association with gene expres-

sion changes in matched samples. Using a breast cancer

cohort from TCGA we identified 368 individual CpG

sites that were differentially methylated between tumor

and normal breast tissue. A majority of sites were hyper-

methylated and located in upstream transcriptional regu-

latory regions, including the promoter. This finding is in

agreement with previous studies reporting promoter

hypermethylation as a mechanism of tumor suppressor

gene silencing in breast cancer [46]. Functional analysis

revealed that the hypermethylated gene set was enriched

for homeobox genes and transcription factors. Homeo-

box genes have previously been reported as differently

methylated in breast cancer [47], as well as in other can-

cer types [48]. Hypomethylated CpG sites were located

primarily in the gene body, consistent with intragenic

DNA hypomethylation as a feature of many tumors,

where it enables spurious transcription initiation and

consequent abnormal transcripts [42, 43].

Our results also confirm that DNA methylation is

strongly associated with repression of gene expression in

breast cancer. A majority of the 209 CpG sites located in

differentially-expressed genes showed negative correla-

tions between the direction of methylation change and

the direction of expression change. These CpG sites

were located primarily in upstream transcriptional regu-

latory regions. Conversely, CpG sites showing positive

correlations with direction of gene expression change

were found primarily in the gene body. Functional en-

richment of these latter genes was positive for homeo-

box genes. Further studies are required to elucidate the

role of DNA methylation in the regulation of this im-

portant class of genes.

Fig. 5 Pan-cancer analysis of CpGs sites from PRAC2, TDRD10 and TMEM132C. Bar plots showing the proportion of cohorts with results concordant

with breast cancer (green), opposite to breast cancer (red) or non-significant (grey)
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Using the METABRIC [31] dataset we were able to

validate the direction of expression change in 88 of the

differentially-methylated genes. The OncoScore tool [37]

was used to identify which of these genes (along with 8

genes that did not appear in the METABRIC data) had

previously been associated with cancer in the medical lit-

erature. We then selected the 7 genes with the highest

OncoScores and 7 genes with the lowest OncoScores to

analyze their associated CpG sites as potential diagnos-

tic and prognostic biomarkers in breast cancer. Intri-

guingly, all of the CpG sites in all 14 genes, including

those not previously associated with cancer, were able

to accurately distinguish breast tumor and normal tis-

sue (AUC > 0.8 and p < 0.0001, Table 1). The highest

discriminative accuracy was shown by site cg10216717

located in the TMEM132C gene (Table 1). Furthermore,

3 CpGs located in genes not previously associated with

cancer, PRAC2, TDRD10 and TMEM132C, were able to

predict breast cancer overall survival, and more

particularly survival of ER-positive patients (Table 1,

Fig. 4), suggesting their potential as diagnostic and

prognostic markers in BC.

The PRAC2 gene is located between the HOXB13 and

PRAC genes, both of which encode small nuclear pro-

teins. PRAC2 is highly expressed in prostate tissue and

has been suggested to play a role in prostate growth and

development [49]. For this reason PRAC2 was given the

name “Prostate Cancer Susceptibility Candidate 2” gene.

However, it has not previously studied or associated with

any type of cancer [37]. In the TCGA dataset, PRAC2

was highly expressed in breast tumor tissue relative to

normal tissue (Additional file 5: Table S4). Methylation

of its associated CpG site, cg12374721, which is located

in the gene promoter, was positively correlated with gene

transcription in tumor tissue. This contradicts one of

the central paradigms of DNA methylation, namely that

promoter methylation results in gene silencing [20].

Analysis of data from the Roadmap Epigenetics Atlas

shows enrichment of H3K27me3 in this region in normal

breast cells, a histone mark that is associated with repres-

sive chromatin. Thus methylation of this site in breast

tumor tissue may contribute to PRAC2 transcriptional ac-

tivation by blocking the binding of transcriptional repres-

sors. Additionally, hypermethylation of site cg12374721

was associated with reduced survival (Table 1, Fig. 4d).

This may suggest an oncogenic role for PRAC2 in BC, as

has been suggested in prostate cancer [49].

Unlike PRAC2, genes TDRD10 and TMEM132C are

both downregulated in breast tumor tissue when com-

pared to normal tissue (Additional file 5: Table S4).

Their hypermethylated CpG sites, cg18081940 (TDRD10

5’UTR) and cg04475027 (TMEM132C gene body), are

negatively correlated with gene expression (Table 1).

Methylation of both of these sites is also associated with

reduced survival (Fig. 4e and f), independent of ER sta-

tus (Additional file 3: Figure S5). Analysis of histone

marks in normal breast tissue reveals that cg18081940

(TDRD10) and cg04475027 (TMEM132C) both overlap

with open chromatin and histone modification marks as-

sociated with enhancers (H3K4me1 and H3K4me3) (Fig.

4b and c). Accordingly, hypermethylation of these CpGs

may hinder the binding of transcription activators lead-

ing to gene silencing in breast cancer, suggesting a

tumor suppressor function for those genes. TDRD10

(Tudor domain containing 10) is a member of the TDRD

protein family, that binds to methylated arginine/lysine

residues and plays a crucial role in chromatin and

transcriptional regulation, genome stability and RNA

metabolism [50, 51]. Dysregulation of TDRDs has been

reported in BC. Surprisingly, a negative correlation has

been observed between DNA copy number and mRNA

expression for TDRD10, demonstrating its importance in

suppressing carcinogenesis [50]. Finally, the TMEM132C

(Transmembrane Protein 132C) gene belongs to a family

of five TMEM132 proteins, which are associated with

hearing loss, panic disorder and cancer [52, 53]. However,

the biological function of these genes is still under investi-

gation and as yet there is no scientific literature relating to

TMEM132C.

In addition to the identification of PRAC2, TDR10 and

TMEM132C as novel DNA methylation-gene markers in

breast cancer, analysis of their expression and diagnostic

and prognostic potential revealed they may also be rele-

vant in other cancer types (Fig. 5). Interestingly, in thyroid

carcinoma, which is a relatively indolent tumor, none of

the 3 CpGs analyzed showed diagnostic or prognostic po-

tential (Additional file 7: Table S7). Thus PRAC2, TDR10

and TMEM132C may be more relevant in rapidly growing

cancers. These genes merit further study to better under-

stand their role in breast cancer pathogenesis. Moreover,

validation of these and other DNA methylation-based

diagnostic and prognostic markers may have significant

clinical benefits, namely in terms of sample stability and

cost when compared to RNA-based tests (eg. Oncotype

and Mammaprint) [5, 10].

Conclusion
We have investigated DNA methylation patterns in BC

using a genome-wide approach and have correlated

methylation changes with gene expression data from

TCGA and METABRIC datasets. This work provides a

landscape of aberrant DNA methylation changes in

breast cancer and their association with gene expression

regulation. Both positive and negative correlations were

observed, suggesting that both CpG hypermethylation

and hypomethylation may be crucial events in breast

carcinogenesis. Three novel DNA methylation-gene can-

didate biomarkers for breast cancer were identified and
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validated in other cancer datasets. Sites cg12374721

(PRAC2), cg18081940 (TDRD10) and cg04475027

(TMEM132C) may be effective as diagnostic and prog-

nostic tools not only in breast cancer but also in other

cancer types.
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