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Abstract

Superoscillations are band-limited functions with the counterintuitive property that they can vary

arbitrarily faster than their fastest Fourier component, over arbitrarily long intervals. Modern

studies originated in quantum theory, but there were anticipations in radar and optics. The

mathematical understanding—still being explored—recognises that functions are extremely

small where they superoscillate; this has implications for information theory. Applications to
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optical vortices, sub-wavelength microscopy and related areas of nanoscience are now moving

from the theoretical and the demonstrative to the practical. This Roadmap surveys all these areas,

providing background, current research, and anticipating future developments.

Keywords: imaging, optical beams, information theory

(Some figures may appear in colour only in the online journal)
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1. Faster than Fourier (p)revisited

M V Berry

University of Bristol, Bristol, United Kingdom

Past. The modern study of superoscillations was kick-

started by Aharonov et al [1], who, in a still-unpublished

1991 preprint related to the then-new quantum weak

measurements, envisaged a box containing only red light,

which would emit gamma radiation when a window is

opened. It was soon realised [2] that underlying this

apparently paradoxical scenario was a deep mathematical

phenomenon: a band-limited function (‘red light’) can vary

arbitrarily faster than its fastest Fourier component (‘gamma

radiation’), over arbitrarily long intervals. Where

superoscillations occur, the functions are exponentially

weak (in the degree and extent of their ‘faster than Fourier’

variation), because the different Fourier components exhibit

almost-perfect destructive interference. This weakness is the

mechanism by which superoscillations evade the uncertainty

principle (Fourier duality), because the principle is a relation

between variances, and variances are insensitive to

exponentially small values.

It is easy to create superoscillatory functions. Perhaps the

simplest—certainly the most studied—is the periodic function

f x
x

N
a

x

N
cos i sin , 1

N

= +⎜ ⎟
⎛

⎝

⎞

⎠
( ) ( )

in which N is a large even integer and a>1. This is periodic
with period Nπ, and is band-limited, because when expanded

in a Fourier series, the component oscillations are all of the

form exp(iknx) with |kn|�1. It is superoscillatory, because

for |x|<√N it can be approximated by exp(iax). Outside the

interval |x|<√N, f (x) first increases anti-Gaussianly and

then rises to its enormous maximum value |f (±Nπ/2)|=aN.

The meaning of the parameters a and N is: a represents the

degree of superoscillation in the region near x=0, and N

measures the extent of this superoscillatory region.

Superoscillations were anticipated in at least two other

contexts. During World War II, research in microwave theory

demonstrated that it was possible to design a radar antenna,

consisting of many radiating elements in an arbitrarily small

region, whose radiation pattern represents a beam whose

angular width is arbitrarily small (‘narrower than Rayleigh’).

This ‘superdirectivity’ or ‘supergain’ is now understood in

terms of superoscillations: in suitable variables, the radiation

pattern is band-limited. But superdirectivity comes at a price,

which has prevented extensive practical application: the

individual elements must be driven very strongly, resulting in

a near field that is exponentially more powerful than the

narrow beam that reaches the far field.

Toraldo di Francia realised [3] that this microwave

research has implications for optics, suggesting a lens with a

focal spot small enough to enable superresolution (sub-

wavelength) microscopy—performance beyond the Abbe

resolution limit. The lens he designed required delicate

fabrication, unavailable at that time. In 2000, the technology

began to be available, and now the ‘superoscillatory lens’

(SOL) is being intensively developed, and the resulting

superresolution microscopy is becoming practical [4]. An

advantage of the SOL is that the microscopy is label-free, in

contrast to STED microscopy which involves fluorescence,

i.e. labelling. (STED also relies on superoscillation, in the

sense that the depletion beam responsible for selective

deactivation of fluorescence contains an optical vortex (see

below), which can be arbitrarily narrow: there is no Abbe

limit for dark light.)

The second early context was phase singularities (=wave

vortices, nodal points and lines, or wave dislocations),

understood as topologically stable features of waves of all

kinds [5]. Around a circuit of such a singular point P in the

plane, the phase changes by 2π; so, close to P, the local phase

gradient can be arbitrarily larger than any of the wavevectors

in the Fourier superposition representing the wave. Therefore,

all band-limited waves, in particular monochromatic ones, are

superoscillatory near their phase singularities. This under-

standing emerged belatedly, in 2007; since then, research in

superoscillations and phase singularities have merged. Dennis

calculated [6] that superoscillations in waves are unexpect-

edly common: for random monochromatic light in the plane

(e.g. speckle patterns), 1/3 of the area is superoscillatory,

with similar fractions for these ‘natural superoscillations’ in

more dimensions. A monochromatic superoscillatory wave is

illustrated in figures 1 and 2.

The large phase gradient that characterises superoscilla-

tions is alternatively described as the local wavevector. This

illustrates the quantum ‘weak measurement’ scheme intro-

duced by Aharonov and his colleagues, involving an operator

Figure 1. Superoscillatory fine detail in one square wavelength of the
monochromatic wave ψ=Jm(r)exp(imf)+εJ0(r) for m=1,
ε=10−7 over one square wavelength, The phase argψ is colour-
coded, and the optical vortices are the ten points where all colours
meet; superimposed are the lines of local wavevector grad(argψ).
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with a finite spectrum, and pre- and postselected states,

leading to a ‘weak value’ that lies outside the spectrum of the

operator. In optics, the local wavevector is the weak value of

the momentum operator, the preselected state is the wavefield

and the postselected state represents position.

Present and future. The term superoscillation is slightly

misleading, because not only fast oscillations but also fast-

varying functions of any form can be reproduced band-

limitedly. Examples are: the SOL, which generates a sub-

wavelength spot; the possibility of reproducing Beethoven’s

Ninth Symphony with 1 Hz bandlimited signal [2]; and—a

recent and extreme example—reproducing fractal functions to

any desired accuracy.

A natural question arising in quantum applications is: if

an initial state is a superoscillatory function of position, how

long do the superoscillations persist under evolution accord-

ing to the Schrödinger equation? An answer, obtained in 2006

[7], was that if the superoscillations extend over an interval

√N (where N is the large integer in (1)), the superoscillations

persist for a time proportional to N. After this, they are

destroyed by a rogue saddlepoint in the evolution integral. An

implication is that for N→∞ the superoscillations would

survive forever. The limit is strongly singular, and rigorous

proof requires more sophisticated mathematics [8], being

developed for a variety of evolutions.

In optics, the analogy between Schrödinger evolution in

time and paraxial propagation in space suggested [7] that the

√N persistence might enable sub-wavelength microscopy

without evanescent waves, because subwavelength detail in

an object could reach a distant image plane. But paraxial

propagation fails for superoscillatory light, and must be

replaced by exact propagation according to the Helmholtz

equation. It turns out, however, that there exists a class of

initial waves, which can represent subwavelength detail, that

propagate to repeat exactly at any chosen distance, and

multiples of it.

Two fundamental obstructions to all extreme applications

of superoscillations arise from their origin as a phenomenon

of near-perfect destructive interference. The first is that such

interference is inherently delicate, and survives only in the

region (of size √N, mentioned earlier) where the Fourier

amplitudes are phase-coherent. Outside this region, functions

rapidly grow to values vastly greater than where they

superoscillate. One implication is a difficulty for SOL

microscopy: the dark ring around the narrow focal spot is

surrounded by a ring of light that is exponentially brighter

than the spot, threatening to burn vulnerable speciments.

Another consequence is that near-destructive interference

is vulnerable to noise. This vulnerability has now been

quantified for superoscillations contaminated by phase noise.

As the noise increases through a tiny critical value, the phase

coherence is destroyed; the local phase gradient decreases

from its superoscillatory values and the tiny intensity

increases, to magnitudes representative of the band-limited

Fourier content.

These obstructions should be regarded positively, as

challenges to the ingenuity of experimentalists. Particularly

important is to develop ways of using superoscillations to go

beyond the rather modest sub-wavelength resolutions cur-

rently obtainable in microscopy.

The original claim that gamma radiation can be released

from a box containing red light has now been supported at the

level of classical optics [9]. In a box (actually a tube) where

superoscillatory red light is confined, a window is opened and

closed as the superoscillations (moving with speed c) pass by.

An analogy is with a curtain that is briefly opened in a lit

room at night, releasing light allowing people in the darkness

outside to see what is inside; but this is less straightforward

when the light within is superoscillatory. Nevertheless, the

exact solution of the relevant causal scattering problem shows

that the superoscillations do escape into the far field as

‘gamma radiation’: the time-dependent window converts the

fake frequencies in the superoscillations into genuine

frequencies outside. An experiment to demonstrate this

phenomenon would be worthwhile, though probably not easy.

At the quantum level, it is more difficult to understand

how the escaping gamma photons get their energy, given that

the box contains only red photons with much lower energy.

This is the subject of a new paper by the original authors [10],

arguing that the question opens basic issues concerning the

interpretation of conservation laws in quantum physics.

Figure 2. As figure 1, showing the intensity log|ψ|.
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2. Mathematical aspects of superoscillations

Yakir Aharonov1, Fabrizio Colombo 2, Irene Sabadini 2, Daniele

C Struppa1,3 and Jeff Tollaksen1

1Chapman University, Orange, CA, United States of America
2Politecnico di Milano, Milano, Italy
3Donald Bren Distinguished Chair in Mathematics, Chapman

University, CA, United States of America

Status. The formal study of the mathematical properties of

superoscillations begins by considering a real variable x, a

fixed real number a 1,> and the superoscillating sequence

F x a
x

n
ia

x

n
C n a e; : cos sin ;

n

j

n

j
ix

n

0

1
j
n
2

å= + =
=

-⎜ ⎟
⎛

⎝

⎞

⎠
( ) ( ) ( )

where

C n a; .j j
n a n j a j1

2

1

2
= + - -( ) ( )( ) ( )

It is easy to show that F x a;n ( ) converges to eiax on all of

R, but that the convergence is uniform only on compact sets

in R. More precisely [11], it is possible to obtain precise

estimates on the speed of convergence by showing that, on

compact sets, F x a e a; 1 .iax x

nn
3

2

2- -∣ ( ) ∣ ( )

The mathematical study of superoscillations has currently

been focused on three main problems: the study of super-

oscillations when evolved using the Schrödinger equation, the

search for larger classes of superoscillations, and finally the

use of superoscillations to approximate important classes of

functions and generalized functions.

Evolution of superoscillations. Consider the Cauchy problem

associated to the Schrödinger equation

i
x t

t
x tH

,
, ,

y y¶
¶

=
( )

( )

x F x a, 0 ; .ny =( ) ( )

We ask whether the solution to this Cauchy problem remains

superoscillatory. The first pioneering work on this problem is

[2], where the author shows that the superoscillating

phenomenon persists for a time of order n.

Equally important, in [2], one sees that for finite n the

functions under consideration rise to valuesO n( !) outside the

range x O n<∣ ∣ ( ) and are ultimately destroyed for times

greater than O n .( )

In a series of papers that began with [12], the authors

demonstrate that it is possible to take the limit as n  ¥ and

thus demonstrate superoscillatory behavior for all values of t.

Specifically, two case were analyzed: first, we take H to be a

constant coefficients differential operator (or a convolution

operator) in the variable x, which can be represented, for

suitable coefficients a ,m as

x t a
x t

x
H ,

,
.

m

m

m

m
0

åy y
=

¶
¶=

+¥

( )
( )

In this case [12, 13], it was shown that superoscillatory

behavior continued in a very large class of cases, and all

values of t. The idea behind the proof of such permanence

consists in showing that the solution of the Cauchy problem

can be written in the form

x t P
d

dx
F x a, ; 2n ny = ⎜ ⎟

⎛

⎝

⎞

⎠
( ) ( ) ( )

where P
d

dx( ) is a convolution operator (in some case an

infinite order differential operator) whose specific definition

reflects the definition of the Hamiltonian H. One then

complexifies equation (2) and demonstrates that the complex-

ified operator P
d

dz( ) acts continuously on an appropriate

space of entire functions to which the complexified super-

oscillating functions F z t;n ( ) belong. The fact that this is

indeed possible is non-trivial and relies on some subtle

properties of multipliers on spaces of entire functions with

growth. The desired result is then obtained by restricting back

to the real axis. A recent survey of this approach is given

in [14].

A different approach consists in considering Hamilto-

nians that originate from clear physical situations. This

includes the case of the Hamiltonians describing the harmonic

oscillator of mass m and time dependent frequency t ,w ( )

subject to an external time dependent force f t ,( ) namely

H t x
m x

m t x f t x,
2

1

2

2 2

2
2 2 w¶

¶
= - + -( ) ( ) ( )

which was extensively treated in [18], as well as the cases of

Hamiltonians representing uniform electric field [12], and

uniform magnetic field [19].

The study of these Hamiltonians is still based on the

ideas described above, but the complexity of the Green

functions associated with the corresponding Cauchy problems

has often led to the study of delicate new phenomena. We

refer the reader to [13, 15] for details.

New classes of superoscillations. The techniques that are

used to show the longevity of superoscillations also allow the

construction of large new classes of superoscillating

functions. For example, when the Hamiltonian is a

convolutor whose symbol is a holomorphic function G z ,( )

it can be shown [16] that one can construct superoscillations

of the form

x a C n a e e; ;n

j

n

j
ix itG i

0

1 1
j
n

j
n

2 2

åy =
=

- - - -( ) ( ) ( ) ( ( ))

which converge uniformly on compact sets in R to

e .iax itG ia+ ( ) Given the rather weak constraints on the

function G, this allows the construction of a large class of

new superoscillating functions.

Approximation of generalized functions. The fact that

superoscillations can be used to approximate exponentials,

and that exponentials are a basis for most spaces of functions,

suggests that one should be able to approximate functions

5
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(and generalized functions) in many spaces in a natural way.

That this is indeed the case was shown first in [11], where the

authors show how to approximate the value of a band limited

function j in the Schwartz space S(R) of rapidly decreasing

functions at an arbitrary point a, when one only knows the

values of j near the origin.

Later on (the reader is referred to [16] and the references

therein), it has been shown that in fact one can approximate

Schwartz tempered functions as well as Schwartz tempered

distributions by using superoscillations. In this case, the key

technique consists in utiliziing the Hermite orthonormal basis

for the space L2(R), and replace in it the exponentials with

their superoscillating approximants. One can use the same

technique, and the fact that we can characterize complex

tempered distributions in R via the asymptotic behavior of the

coefficients in their spectral Hermite development, to prove a

similar result for tempered distributions.

Finally, there is current work being done by the authors

in collaboration with Yger that shows that a similar process

can be used to approximate hyperfunctions. The case of

pointwise supported hyperfunctions can be easily addressed,

at least in the compact case, by noticing that every such

hyperfunction is a suitable sum of infinite derivatives of

Dirac’s deltas. The general case is still under investigation.

Current and future challenges. There are many open

problems concerning the mathematical aspects of the theory

of superoscillations. One was proposed by Berry and Morley-

Short in [17]: we know that the Weierstrass function that

generates fractals can be expressed as a series of exponentials;

since exponentials can be replaced by superoscillating

sequences, the question is whether fractal functions can be

expressed in terms of superoscillations. The proof of this

conjecture is not trivial because, as it relies on the ability to

prove the continuity of a differential (or convolution)

operator, as we indicated in the previous section, and as of

now this has not been proved yet. A second question worth

investigating is the ability to generate superoscillations within

the theory of classical groups. In [12], we describe a joint

work with Nussinov to show that superoscillations arise

naturally in SO(3); it is not clear how to generalize those ideas

to different classical groups. Another interesting question

regards the issue of optimization of superoscillations, as well

as the problems connected with noise and how noise may

indeed lead to a rapid disappearnce of superoscillations, as

well as issues of numerical stability. Finally, on the basis of

some physical considerations, one of us (Y A) has postulated

that superoscillations should be able to offer approximations

to rapidly decreasing exponentials. So far, we have not seen

yet a mathematical confirmation for this phenomenon.

6
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3. Optical superoscillatory focusing and imaging

technologies

Edward T F Rogers1 and Nikolay I Zheludev1,2

1University of Southampton, Southampton, United Kingdom
2Nanyang Technological University, Singapore

The not-so-old history of the superoscillatory lens. The next

disruptive step in nanoscale imaging, after the invention of

the acclaimed stimulated emission depletion and single-

molecule microscopies, will be the development of a far-field

super-resolution label-free technique. The Abbe-Rayleigh

diffraction limit of conventional optical instruments has

long been a barrier for studies of micro and nano-scale

objects. The earliest attempts to overcome it exploited

recording of the evanescent field of object: contact

photography [20] and scanning near-field imaging (SNOM)

[21]. Such near-field techniques can provide nanoscale

resolution, but capturing evanescent fields requires a probe

(or photosensitive material) to be in the immediate proximity

of the object. Therefore, these techniques cannot be used to

image inside cells or silicon chips, for example. More

recently, other techniques have been proposed to reconstruct

and capture evanescent fields: including the far-field

Veselago-Pendry ‘super-lens’, which uses a slab of negative

index metamaterial as a lens to image the evanescent waves of

an object to a camera [22, 23]. This approach, however, faces

substantial technological challenges in its optical

implementation and has not yet been developed as practical

imaging technique. Biological super-resolution imaging is

dominated by the powerful stimulated emission depletion

(STED) [24] and single-molecule localization (SML) [25]

microscopies: far-field techniques that have demonstrated

the possibility of nanoscale imaging without capturing

evanescent fields (which decay over a scale of about one

wavelength away from the object). These techniques, while

they have become widely used, also have their own

limitations: both STED and some of the SML techniques

use an intense beam to deplete or bleach fluorophores in the

sample. Indeed, the resolution of STED images is

fundamentally linked to the intensity of the depletion beam.

The harmful influence of these intense beams is known as

phototoxicity, as they damage samples, particularly living

samples, either stressing or killing them. SML is also

inherently slow, requiring thousands of images to be

captured to build a single high resolution image Moreover,

STED and SML require fluorescent reporters within the

sample, usually achieved by genetic modification or immune

labelling with fluorescent dyes or quantum dots [26]. These

labels cannot be applied to solid nanostructures such as

silicon chips and are known to change the behaviour of

molecules or biological systems being studied [27].

Far-field super-resolution is also possible with the

phenomenon of superoscillations, when interference of

multiple coherent waves diffracted on a mask creates an, in

principle, arbitrarily small hot-spot.

It started in 2006 when Berry and Popescu found

theoretically that an optical field with a subwavelength

structure, which was created by coherent illumination of

diffraction grating with subwavelength features, can prop-

agate paraxially in the space beyond the grating, retaining its

sub-wavelength structure without evanescent waves [28].

Almost concurrently, this phenomenon was observed experi-

mentally at the University of Southampton when patterns of

subwavlength hotspots in free space were discovered by

scanning a sub-wavelength aperture over a quasi-crystal array

of nanoholes illuminated with coherent light [29, 30], and

shortly afterwards, it was shown that such sub-diffraction

hotspots can be used for imaging [31, 32]. It was quickly

realized that an optical mask can be designed that creates a

superoscillatory constructive interference of waves leading to

a subwavelength focus of arbitrary prescribed size and shape

in an arbitrary field of view beyond the evanescent fields,

when illuminated by a monochromatic wave [33]. Moreover,

the same work demonstrated that such a mask may be used

not only as a focusing device but also as a part of a super-

resolution imaging apparatus. Recently, it was demonstrated

that the wave function of a single photon can exhibit

superoscillatory behaviour upon transmission through an

appropriately designed mask [34].

Initially, superoscillatory focusing and imaging technol-

ogies were developed using binary zone plates: masks

comprised of a complex and elaborate structure of concentric

rings fabricated from a thin metal film [35, 36]. Later, it was

found that binary superoscillatory lenses can generate optical

needles, a class of superoscillatory field localizations

resembling a needle of a subdiffraction diameter that extend

for tens of wavelengths along the axial direction [36–38].

Such lenses have been explored for high-density data storage

applications [39, 40]. Dielectric and metallic superoscillatory

lenses for the visible and infrared parts of the spectrum have

since been manufactured on silicon wafers, silica substrates

and optical fiber tips. Focusing in such lenses has been

achieved in both achromatic (at two wavelengths) and

apochromatic (at three different wavelengths) regimes [41].

Binary masks are robust and may even be fabricated from

optically rewritable media such as phase change chalcogenide

glass [42, 43]. We shall note that in a very different context

Di Francia also theoretically proposed using a phase mask in

the pupil plane of a lens to achieve small hot-spots [44].

The mechanism of superoscillatory focusing is now well

understood, and is related to the formation of nanoscale

vortices and the energy backflow zones pinned to the focal

area, where the backflow depletes the area where flow

propagates in the forward direction and thus narrows the

focus beyond the conventional diffraction limit [45].

Current state of superoscillatory imaging and challenges

ahead. The first practical imaging apparatus using a

superoscillatory lens was reported in 2012. It was based on

a conventional microscope where the object was illuminated

by a binary superoscillatory lens. The drawback of any

superoscillatory lens is that the hotspots are surrounded by

7

J. Opt. 21 (2019) 053002 Roadmap



sidebands (the halo). In imaging applications, the role of such

sidebands can be suppressed by using a confocal technique:

the image was formed by scanning the object against

superoscillatory hot-spot and re-imaging the transmitted

light onto a small pinhole. In spite of the limited bandwidth

of the optical instrument, far-field images taken with

superoscillatory illumination are themselves superoscillatory

and hence can reveal fine structural details of the object that

are lost in conventional imaging. A resolution of about 1/6 of

the wavelength was demonstrated on arrays of randomly

placed nanoholes in a metal screen [4]. Other groups followed

shortly [46].

However, the practicality of using the sub-wavelength

superoscillatory foci to image unlabelled biological samples

has never been tested. Would the precise interference of

multiple waves forming the superoscillatory focus be robust

enough to image complex samples? Would light scattering

from the sidebands accompanying the superoscillatory focus

be sufficiently supressed to allow for accurate direct imaging

without prior knowledge of the sample? Could super-

oscillatory imaging be combined with a contrast technique

that allows study of unlabelled transparent biological

samples? And finally, could a practical version of the

microscope be developed which allows for video rate

imaging? To the triumph of optical superoscillations, such

microscopy was recently developed. A high-frame-rate

polarisation-contrast microscope for imaging of living

unlabelled biological samples with resolution significantly

exceeding resolution of the same microscope with conven-

tional illumination has been developed and demonstrated on

living biological samples such as mouse bone cells and

neurons [47–49]. Figure 3 shows an example of such image.

To provide superoscillatory illumination of the object, the

laser wavefront was shaped with spatial light-modulators

allowing fast and easy reconfiguration of the hotspot and

high-speed beam scanning. With this microscope, we

demonstrated for the first time simultaneously that super-

oscillatory imaging: (1) provides greater spatial resolution

than microscopy with conventional lenses even in complex

biological samples; (2) gives radically more information on

the fine details of the object than confocal microscopy; (3) can

be combined with polarization contrast imaging for transpar-

ent objects (e.g. cells); (4) can be performed simultaneously

with epi-fluorescent imaging; (5) is possible at video

framerates and at low optical intensities. Thus, the new

imaging technology allows non-algorithmic, super-resolution,

unlabelled biological imaging at low laser intensities with

negligible phototoxicity and will be of interest in numerous

biomedical applications.

The next advances in superoscillatory imaging will be

associated with the development of compact and inexpensive

superoscillatory lenses that are based on nanoscale-resolution

optical transmission and phase retardation masks. Such masks

will achieve much better, smaller and more energy-efficient

hotspots than binary zone-plate masks that can only control

either the intensity or phase profile of the wavefront in a

binary fashion, and for which no direct instructive mathema-

tical design algorithm exists. However, no technology

currently exists that could deliver transmission and phase

retardation masks with the necessary nanoscale finesse.

Recently, a radically new type of metamaterial ‘super-lens’,

a planar array of discrete sub-wavelength metamolecules with

individual scattering characteristics that have been engineered to

vary spatially was demonstrated, which allows the creation of

superoscillatory foci of arbitrary shape and size [50]. The new

principle of the far-field metamaterial ‘super-lens’ is demon-

strated by fabricating and characterizing free-space lenses with

previously unattainable effective numerical apertures as high as

1.52 and foci as small as 0.33λ in size. This approach will make

direct retrofitting of superoscillatory lenses to conventional

commercial confocal microscopes possible. Conventional lenses

are limited to NA=1, and approaching this limit requires

expensive, complex and bulky lenses. The far-field metamaterial

super-lens is a radical step forward.

Figure 3. Superoscillatory imaging of a living unlabelled bone cell
(MG63 cell line). False colour is given by polarisation contrast,
where brightness represents magnitude of local anisotropy and hue
represents local orientation angle. The white ellipse highlights a
filopodium, a narrow actin-filled protrusion that the cell uses to sense
its environment. Image courtesy of E T F Rogers, S Quraishe, K S
Rogers, T A Newman, P J S Smith and N I Zheludev.
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Concluding remarks on the great future of the technology.

Superoscillatory imaging is advancing rapidly, and is

currently entering the all-important field of bio-imaging.

Further applications, in particular for imaging inside

microchips and nanodevices, can be expected. Recent

advances have shown that the technology is practical, but

further work is required to make high throughput efficient

achromatic lenses that will be simple inexpensive ‘drop in’

replacements for conventional lenses.
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4. Far-field label-free super-resolution imaging via

superoscillation

Fei Qin1 and Minghui Hong 2

1Jinan University, Guangzhou, People’s Republic of China
2National University of Singapore, Singapore

Status. Optical microscopy has always been an active research

area since its invention in the end of the 16th century. Numerous

techniques have been proposed in the past century to realize

super-resolution imaging in far field, but most of them comes at

the price of labelling the samples with fluorescent dyes, which

limits their applications. The superoscillation effect provides a

new route to achieve label-free super-resolution imaging.

Following the mathematical concept of optical superoscillation

proposed by Michael Berry, a superoscillatory lens (SOL)

optical microscope was experimentally demonstrated soon after.

Such lenses rely on the fabricating of a concentric binary

amplitude mask with optimized widths and diameters, which can

produce a sub-diffractive limit focal spot [4]. Combining with

the confocal microscopy technique, super-resolution imaging

results have been demonstrated, as shown in figure 4. To further

surmount several limitations of this technique to make it more

applicable, the development of supercritical lens microscopy

closely followed [51–53], which enables imaging of the large

scale non-periodic samples at high imaging speeds. As shown in

figure 5, the imaging capability of supercritical lens microscopy

overwhelms the commercial laser scanning confocal

microscope, validating its super-resolution property. Such

results are achieved by a totally non-invasive manner, free of

any pre-processing to the samples and post-processing to the

imaging results.

Current and future challenges. Although the breakthrough of

far-field label-free super-resolution imaging has been made

through superoscillation, there are still considerable

challenges which need to be addressed, including chromatic

dispersion, off-axis aberration, and low energy efficiency.

Chromatic dispersion is an issue that all diffractive

optical devices have to confront, which refers to the

wavelength dependent focal shift of a lens. A superoscillatory

lens is a diffractive optics essentially, and the focusing effect

comes from the interference phenomenon of the light

components passing through each of transmission belts. The

phase of the light components has wavelength dependent

values at the focal plane even after propagating over the same

distance. The chromatic problem severely hampers its

practical applications for superoscillation based optical

imaging. Recently, an achromatic SOL has been demon-

strated in infrared and visible ranges, through delicately

controlling the interference of the propagating waves [54].

This is because the SOL could create an extremely long depth

of focus, so the foci of different wavelengths can be partially

overlapped. Another strategy to surpass the chromatic

phenomenon is to generate multiple discrete focal spots along

Figure 4. (a) Configuration of superoscillatory lens and (b) its focal
spot distribution. (c), (d) Super-resolution imaging results by a
superoscillatory lens microscope. Reprinted by permission from
Springer Nature: Nature Materials [4], (2012).

Figure 5. (a) Intensity distributions of focal spots for sorts of planar
metalens. (b) Schematic of Supercritical lens microscope (SCL MS).
(c), (f) Imaging capability of SCL microscopy. [52] John Wiley &
Sons. © 2017 WILEY‐VCH Verlag GmbH & Co. KGaA,
Weinheim.
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the optical axis for each wavelength, then some of the focal

spots for different wavelengths may be located at the same

places. However, these strategies are only temporary and

preliminary solutions, which may be very difficult to apply in

the imaging process. The chromatic dispersion has still not

been fundamentally solved.

Due to the existence of aberration, the imaging process

for the SOL microscopy currently is performed through

sample scanning. The relatively low scanning speed of the

piezo-stage makes it not applicable for some occasions with

high speed requirements. In contrast, the beam scanning

manner could achieve much a higher speed, but needs an

imaging system without off-axis aberration. However, the

design and optimization for the SOL are usually based on the

on-axis condition, because of the complicated interference

condition of the superoscillatory lens. Previous demonstration

shows that the lens-like function of the SOL only holds the

sub-diffractive limit focusing effect for very small off-axis

displacement [36]. The distortion of the focal spot profile

greatly increases with the enlarged off-axis distance,

especially for high-NA case, which is unacceptable for the

imaging process.

So far, almost all the SOL is constructed by binary

amplitude or phase type concentric belts with optimized

parameters. The binary configuration leads to the multi-order

diffraction effect, which makes the energy utilization

efficiency of the focal spot at a very low level. In addition,

as we can see from figures 4(b) and 5(a), the superoscillation

central hot-spot is usually accompanied by a strong sidelobe,

which greatly lowers the energy utilization efficiency for the

applications. Only less than 10% of the incident energy can be

effectively used in the imaging process. Moreover, the halo

effect from the strongest first sidelobe is difficult to be

completely eliminated by the pinhole in the confocal system,

which significantly spoils the imaging contrast and field of

view. Pushing the strongest sidelobe away from the central

hotspot could be an effective way, as illustrated by the recent

works, however the focusing and imaging efficiencies are

further decreased [55].

Advances in science and technology to meet challenges.

Those above-mentioned issues might partly be resolved

through further optimization in the lens design. For

example, instead of the binary configuration, constructing

the superoscillation lens with a multi-level phase, the sidelobe

effect and the energy efficiency might be improved to some

extent, but will not get to the root of those problems. Further

development of a new approach will be required.

Metasurfaces are the latest advance in light wave

manipulation. The phase and amplitude of the light beam

could be flexibly modulated by a planar metasurface structure.

Applying this advanced strategy into the construction of a

superoscillatory lens, those essential problems are possible to

solve. An ultrabroadband superoscillatory lens for wavelength

spanning across visible and near-infrared spectra has already

been proposed by utilizing the plasmonics metasurface

[56, 57]. It claims that the ultrabroadband property arises

from the nearly dispersionless phase profile of transmitted

light from the arrayed nanorectangular apertures with variant

orientations. However, the focusing efficiency of this device

is still subjected to the ohm loss. Dielectric metasurface

metalenses have already successfully shown their potential in

the diffraction-limited domain, on the aspects of high energy

efficiency, achromatic focusing and imaging, as well as the

off-axis aberration correction, and could be the most

promising technique to surmount these roadblocks for SOL

microscopy. To modify the current design theory and

construct the SOL by dielectric metasurface, the settlement

of confronting problems for the SOL microscopy can

reasonably be expected [58].

Concluding remarks. Superoscillation is the most promising

way to realize the far-field label-free super-resolution

imaging. Significant progress has been made, and a few of

proof-of-principle experiments have already been shown in

the past few years. Nevertheless, some challenges still remain

to be overcome in terms of dispersion, aberration and

efficiency, which are important in the practical applications

of optical imaging. These issues could be tackled by the

emerging concept of dielectric metasurface. By using the

metasurface strategy into the design of the superoscillatory

lens, an achromatic, aberration-free and high efficiency

superoscillatory lens microscopy is really predictable. It is

arguable that the advances in superoscillatory lens

microscopy are extensive to rewrite the definition of the

diffraction limit in optical textbooks, and also provide a route

for the development of next generation confocal microscopy.
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5. Superoscillatory interference for super-resolution

telescope

Xiangang Luo

Chinese Academy of Sciences, People’s Republic of China

Status. As one of the most essential characteristics of all

kinds of waves, the interference effect plays an important role

in both fundamental physics and functional devices.

Unfortunately, the interference of light has resulted in some

insurmountable barriers like the Abbe-Rayleigh diffraction

limit for classic optical imaging instruments. In recent

decades, many efforts have been devoted to break the

hurdle of traditional interference theory, and one excellent

example can be found in the extraordinary Young’s

interference (EYI) experiments involving the near-field

surface plasmon polaritons (SPPs) and metasurface waves

(M-waves) [59–61], where the interference period could be

shrunk into deep-subwavelength scale. Unlike these

subwavelength interferences, superoscillation is another

kind of anomalous interference phenomenon which occurs

in both the near field and far field. Proper manipulation of the

wavelets could make light intensity function oscillate much

quicker than its highest Fourier component, leading to a

theoretically unlimited resolution in localized space.

In practice, the key point to design a superoscillatory

element relies on the optimization and realization of complex

light fields, including their phase and amplitude distributions,

by special means such as spatial light modulators, diffractive

optical elements, and phase-type metasurfaces. Figure 6

illustrates three main kinds of phase modulating techniques.

The first one is based on propagation retardation in the

vertical direction. Since the effective refractive index and the

coupling fields depend on the geometric parameters, one can

shape the two dimensional structures for various phase

generation. In particular, for the plasmonic nanoslits where

the dispersion line is located below the light line [62], the

thickness of the device could be reduced to much smaller than

the operating wavelength. The second modulation scheme is

related to the detoured phase in binary structures including

Fresnel zone plate, which is also denoted as amplitude mask

[52]. By varying the positions of these transparent slits or

apertures, part of the incoming beams are redirected to

predefined directions to form a focal spot or holographic

pattern. The third route to realize phase modulation relies on

another intrinsic property of electromagnetic waves, i.e. the

polarization or spin state of photons. By converting circular

polarization to its opposite handedness through inhomoge-

neous anisotropic structures, the outgoing beam will possess

an additional phase term known as the geometric or

Pancharatnam-Berry phase. For instance, the catenary of

equal strength has been demonstrated to be an ideal candidate

to realize true linear and broadband phase shift [63].

Current and future challenges. Despite the fact that the

current interests in superoscillatory optical imaging are

mainly triggered by the demands for super-resolution

optical microscopy and data recording, the requirement to

build a super-resolution telescope seems to be more urgent. In

fact, there are many approaches can be readily exploited for

super-resolution microscopy. But few methods could be used

to break the resolution limit of optical telescopes.

When used in telescopes, the sub-diffraction-limited

superoscillation faces two grand challenges. First, the super-

oscillation is weak and accompanied with strong side lobes.

The smaller the main beam width, the higher the side lobe

will be, which poses a great challenge for engineering

applications where the Strehl ratio is important. Conse-

quently, it is necessary to make a compromise between the

side lobe and gain. Second, traditional SOLs usually exhibit

great fragility to the change of light fields due to the delicate

wavelength-dependent interference behaviors, especially for

the spot size much smaller than the Abbe diffraction limit.

Consequently, most SOLs just realize its subdiffraction

focusing within a narrowband.

Advances in science and technology to meet challenges. In

principle, the narrow bandwidth is an inevitable drawback of

traditional phase modulation techniques based on propagation

accumulation. In the last decade, some innovative techniques

have been proposed to overcome it. Perhaps the most

ingenious way may be the utilization of photonic spin–orbit

interaction in structures like rotated nano-antennas/apertures
and optical catenaries [63–65]. Compared to discrete

subwavelength structures, the continuous metasurface

enabled by catenary optics shows great improvement of

diffraction efficiency and operating bandwidth, and thus is a

promising candidate to meet the grand challenges stated

above.

In the superoscillatory telescope, the dispersionless

property of geometric phase was utilized to construct the

phase profile required for superoscillatory imaging [65].

Figure 6. Three kinds of phase modulation techniques used for
superoscillation interference. (a) Nanoslits array and the catenary
optical fields. (b) Detoured phase. (c) Geometric phase in a single
catenary aperture.
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Unlike common phase retardation mechanisms, the geometric

phase of these rotated apertures is nearly independent of the

wavelength, and the diffraction efficiency is maintained a

constant over the entire frequency band. However, a constant

phase gradient means a varying propagating direction at

different wavelengths, which leads to a strong chromatic

change of the focal length. Thus far, many efforts have been

paid to realize achromatic flat lens. Besides utilizing space or

polarization multiplexing to focus several wavelengths to the

same point [66], one could take advantages of the dispersion

of the resonant structures and compensate dispersion induced

by diffraction [62, 64]. These achromatic lens (either flat or

not) can be combined with the geometric phase to realize true

achromatic SOLs. As demonstrated in a more recent work

[67], achromatic superoscillatory imaging was realized by

combining a geometric metasurface filter with an achromatic

lens. Figure 7(a) illustrates the experimental setup of the

system. Firstly, the point spread function (PSF) is measured

by using a 20 μm size transparent circular hole on an opaque

screen. For the case without the metasurface filters, the PSF at

CCD plane is an Airy spot with a full width of 82.8 μm, as

shown in figure 7(c). As the filter group is inserted in the

optical system, the PSF in figure 7(d) exhibits an obvious

superoscillation pattern with a much smaller bright central

spot surrounded by a wide ring. The superoscillation central

spot size is about 51.75 μm, being 0.625 times of the Airy

spot and slightly larger than the design (0.6).

Another concept related to SOLs is the Bessel lens whose

phase is composed of a radial linear function and a parabolic

function. As depicted in figure 7(e), such a lens could be

constructed using dielectric catenaries with simultaneously

high transmission coefficient and broadband response [63].

Similar to the supercritical lens [52], such designs may ensure

a better compromise between the side lobe and resolution.

Concluding remarks. Superoscillation is an exciting

manifestation of the extraordinary interference of light,

which in turn provides the key to break the fundamental

limit of far-field imaging resolution in Abbe’s interference

theory. The future development of superoscillation needs finer

and broadband phase modulation based on various fantastic

structures like the nanoslits and optical catenaries. Although

evanescent waves do not exist in the far field, the interaction

between low and high spatial optical components mediated by

subwavelength structures is crucial to control the phase and

amplitude at a scale below the diffraction limit, which forms

one essential ingredient for engineering optics 2.0 [60].
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Figure 7.Achromatic superoscillation under white light illumination.
(a) Experimental setup. AL: achromatic lens. LP: linear polarizer. (b)
Metasurface filter based on rotated gratings. (c), (d) Normal and
superoscillatory images of a hole. (e) Catenary optics for Bessel lens.
The blue curve is a schematic of the phase distribution. (a)–(d) [67]
John Wiley & Sons. © 2017 WILEY‐VCH Verlag GmbH & Co.
KGaA, Weinheim. (e) Reprinted by permission from Macmillan
Publishers Ltd: Scientific Advances [63], Copyright (2015).
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6. The simplest realization of superoscillation and its

cross-disciplinary implementations

Roei Remez and Ady Arie

Tel Aviv University, Israel

Status. The topic of superoscillation gained attention

following a paper by Berry [2], who presented few

mathematical expressions for functions that oscillate faster

than their highest Fourier component. However, probably the

simplest function that contains a superoscillation is the square

of a shifted cosine [68] (see figure 8(a)):

f x fx scos , 31
2p= -( ) [ ( ) ] ( )

where s0 1.< < The highest frequency at the Fourier

transform of this function is f . However, around x 0= , this

function contains an oscillation which has the following

width:

t s
f
cos

2
. 41

p
= - ( )

Importantly, the width of the oscillation t can be arbitrarily

small by taking s to be closer to 1, while the highest Fourier

component f remains unchanged. The concept here is simple:

the shifted cosine function intersects the zero line in two

points which are spaced a distance t apart; a distance that is

easily controllable by changing the shift s. The squaring of the

function does not change the zero nodes, but makes all the

values positive, therefore creating an oscillation. We note that

the same principle can be used to increase the number of

(super) oscillations, simply by shifting the function by half of

the amplitude of the oscillation and squaring again:

f x f x f0 0.5 . 5i i i1 1
2= -- -( ) [ ( ) ( )] ( )

In each increasing order i, the maximum Fourier component

of f xi ( ) doubles, however the width of the superoscillations
also decreases by factor of 2 or more.

Here, we show four implementations of this simple

function and its 2D manifestation, which has the same

principle but is written in terms of Bessel functions [69].

Nonlinear frequency conversion. Nonlinear crystals are used

to convert a laser beam into a beam with a different

wavelength. One of the methods to achieve high efficiency

in the conversion is to periodically modulate the sign of the

nonlinear coefficient along the propagation of the beam, a

process known as quasi-phase matching. The spectral width

of the converted beam in this case is inversely proportional to

the crystal length. In fact, there is a Fourier transform relation

between the spectral width of the converted beam and the

shape of the nonlinear coefficient (which is zero outsize the

crystal) [70]. Therefore, a longer crystal is needed for a

narrow frequency response. Unfortunately, longer crystals are

more expensive, consume a larger physical size and

moreover, the maximum length of most crystals is limited

to a few centimeters at most.

However, decoding the Fourier transform of the super-

oscillating function f1 in the modulation pattern of the
nonlinear crystal allows for a frequency response, which is a

super oscillating function (see figure 8(b)) [68], while the

function remains band limited in the spatial (crystal length)

coordinates. This means that the efficiency response has two

zero nodes placed arbitrarily close to one another, and

therefore allows for filtering of two arbitrarily close

wavelengths, while transferring the central wavelength.

Experimentally, we have demonstrated it by modulating the

nonlinear coefficient of a KTiOPO4 nonlinear crystal,

obtaining a spectral response that is narrower by 39% and

69% compared to the side lobes and main lobe of the sinc

function response of a standard frequency doubling crystal

with the same length.

Superoscillating electron wavefunction. The typical de-

Broglie wavelength of the electron in a transmission

electron microscope is only 2 picometer, about 5 orders of

magnitude smaller than that of visible lightwave. Never-

theless, a quantum treatment of free-electron paraxial beam

shows that it follows the same diffraction laws as light.

Therefore, the radius of the smallest electron spot achievable

using a magnetic lens with converging semi-angle a is

r NA0.61 ,l= / where NA sin a= ( ) andl is the de-Broglie

wavelength of the electron [71]. This is a result of the Fourier

Figure 8. (a) (Left) The shifted cosine function (dashed black) and its
square value (solid red, equation (3)), showing super oscillation.
(Right) Zoom in on the superoscillating region (solid red), in
comparison to the fastest sine wave of the function (dashed blue).
(b) A standard periodically modulated crystal (top) and a super-
oscillating nonlinear crystal (bottom) and their corresponding
spectral response function. The superoscillating crystal can have
arbitrarily narrow central lobe, allowing high-precision filtering.
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relation between the aperture of the lens and the spot shape at

its focal plane.

Using holographic methods to design an amplitude or

phase masks [72], the aperture function of the lens can be

decoded with the Fourier transform of a superoscillating

probe. Then, placing such a hologram next to a magnetic lens

will create electron probes with central hotspot having

arbitrarily small width [73] (see figure 9(a)). Experimentally,

we have generated a superoscillating beam having a central

spot with a radius of 106 pm. Furthermore, by simple

modification of the hologram, we generated a superoscillating

vortex hotspot that carries orbital angular momentum.

Particle trapping. The same concept described above can be

used for high precision particle trapping and manipulation at

the superoscillating hotspot of an optical light beam [74]. It is

well known that light beam can apply a gradient force that

will trap micro-particles. In the case of a superoscillating

beam, the narrower central feature can provide a larger

gradient force, with respect to the wider, diffraction limited

Gaussian beam with the same peak intensity (figure 9(b)). The

leads to improved localization of the trapped particle and to

stiffer trap when the superoscillating beam is used. Another

advantage is that the sidelobes that surround the central

hotspot do not disturb the trapping of the particle at the

hotspot, since their contribution to the force at the particle

location is negligible.

As in the case of electron beam, simple modification of

the hologram enables us to structure the sub-diffraction

hotspot of the superoscillating light beam. Specifically, we

utilized Hermite–Gaussian functions to generate superoscil-

lating beam with a multiple number of hotspot, thus enabling

us to trap multiple particles. We also used Laguerre–Gaussian

functions to generate vortex superoscillating beams that carry

orbital angular momentum, and utilized them to rotate the

trapped particles clockwise or anti-clockwise.

Ultrafast optics. The shifted cosine function of equation (3)

can also be used in the time domain to generate light pulses

with features that are shorter than the temporal width of

transform limited pulses [75]. This can be done using a pulse

shaper, by adding a p phase shift to central part of the pulse

spectrum. Furthermore, as in the cases discussed above,

the superoscillating pulse can be structured. More details are

provided in the section of this Roadmap (section 9), entitled

‘Applications of superoscillations in ultrafast optics’, by

Eliezer and Bahabad.

Current and future challenges. As we have shown here, a

very simple function is sufficient in order to obtain arbitrary

fast local oscillations that locally exceed the bandwidth limit.

Moreover, these local oscillations can be structured, hence

multiple hot spots, or a vortex hot spot can be obtained.

However, as the local superoscillations become faster, their

amplitude decreases, and, moreover, the sidelobes that

surround the hotspot region become larger. These unwanted

effects are not unique to the simple function we are using, and

in fact occur in all the superoscillating functions. A major

challenge, which is shared by many potential applications of

superoscillation, is how to benefit from the local increase in

the frequency, while avoiding the unwanted effect of the

strong sidebands. One possibility is to identify applications

in which the local features of the function are those that p

lay the key role. An example we showed above is that of

particle trapping, where the local gradient force of the

superoscillating hotspot governs the trapping mechanism.

However, there are other applications in which the sidebands

do play an unwanted role. One important example is scanning

probe microscopy with a superoscillating beam. Here, the

challenge is that scattering from the strong sidelobes adjacent

to the main superoscillating lobe. When scanning with the

superoscillating probe, scattering from these sidelobes create

strong artifacts in the image. While pushing the sidelobe

away from the central lobe is mathematically possible, the

resulting functions have extremely high intensity at the

sidelobes, which makes the superoscillation area highly

sensitive to noise and manufacturing errors of the generating

holograms.

Advances in science and technology to meet challenges. On

the theoretical front, it is required to study superoscillating

functions in which the strong sidelobes are located far away

from the central, high frequency regime, as well as functions

that contain an arbitrary number of hotspots. The tradeoffs in

terms of efficiency and the span of the superoscillation region

with respect to the entire span of the function should be

understood and quantified [76].

Figure 9. (a) Electron wavefunction showing a hotspot smaller than
the diffraction limit, created by placing a holographic mask close to
the magnetic lens. Reprinted figure with permission from [73],
Copyright (2017) by the American Physical Society. (b) The same
holography concept creates a hotspot in a light beam, which is used
for highly precise particle trapping.
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Concluding remarks. The advantage of the function presented

here is in its simplicity, which allows for relatively easy

implementation of the superoscillation concept to different

disciplines. Here, we discussed its implementation in nonlinear

optics, electron microscopy, particle manipulation and ultrafast

optics The inherent limitations are the decrease of efficiency

when the oscillations becomes narrower (s closer to 1) and the

large sidelobes that accompany the superoscillation region.

Future research should concentrate on strategies and applications

that can benefit from the fast oscillating region, and avoid the

unwanted contributions of the sidelobes.
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Status. In the widest sense, the concept of beam shifts

describes all deviations from the laws of geometrical optics

for reflection and transmission. In particular, they refer to

polarisation dependent, spatial and angular shifts either in the

plane of incidence, the Goos-Hänchen shift, or transverse to

it, the Imbert-Fedorov shift [77] (see figure 10). They come

about because the collective behaviour of plane waves

bundled into an optical light beam is altered by the

presence of an interface or constrained by the transversality

condition [78].

Regions of superoscillatory behaviour were discovered at

an early stage of the research on optical beam shifts, when in

1950 Wolter published a study of the details of the optical

energy flow for total internal reflection, by considering the

displacement of a fringe (nodal line) formed from the minimal

interference of two plane waves [79]. Wolter also noted the

presence of a circulating wave in the superposition of incident

and reflected fields, which we would identify today as an

optical vortex. With its emphasis on the behaviour of nodal

structures, Wolter’s work anticipates the modern notion of

superoscillations (see section 1).

Wolter’s assertion is still relevant today for a number of

different reasons. Firstly, regions of superoscillation and

optical backflow, as well as polarization singularities, have

recently been found in a variety of reflection and refraction

settings, extending Wolter’s approach to transverse and

angular beam shifts and partial reflection [80]. Secondly, on

a fundamental level, there exists a formal analogy between

beam shifts for light beams with polarization selection and

filtering and quantum weak measurements based on an

operator description [81]. This analogy has been exploited in

the precision metrology of optical beam shifts to enhance

them by orders of magnitude [82] giving rise to observed

shifts well outside the spectrum of the associated operators; a

signature of superoscillation. Lastly, optical beam shifts for

light beams with embedded optical vortices, and hence

regions of superoscillations, have proven to be a particularly

interesting case in this research area, as they inherently

combine spatial and angular shifts in the longitudinal and

transverse direction in a vortex induced beam shift [83]. They

highlight the difference between shifts of the singularities and

the envelope to the light beam [84] and even provide a testing

ground for the depth of the analogy between beam shifts and

optical vortices [80].

Current opportunities and challenges. The intricacies of a

vortex induced beam shift in particular offer a number of

interesting challenges for optical precision metrology.

Wolter’s approach to use destructive interference to mark

changes in the light beam shows that structured light is a good

probe for Goos-Hänchen and Imbert-Fedorov shifts [80].

Transferring his idea from two plane waves to light beams

suggests that the shift of the nodal line transverse to the plane

of incidence in a Hermite-Gaussian HG10 beam would probe

the Goos-Hänchen shift, while a suitably polarised HG01 with

an orthogonally orientated nodal line would be sensitive to

Figure 10. Schematic of a beam shift for a beam with an embedded
superoscillatory region (optical vortex). The Goos-Hänchen (GF)

and Imbert-Fedorov (IF) shifts are widely exaggerated for clarity.
Beam shifts affect the position, propagation angle, profile of the
beam envelope and shape of the superoscillatory region. In
particular, the dark core containing the superoscillatory region may
shift differently to the beam centroid. Without weak value
amplification, spatial beam shifts are of the order of the wavelength
of the light, to which they are proportional.

Figure 11. Differently structured light probes different relative shifts
between the centroid and internal structure, e.g. a nodal line. Upon
reflection (or refraction), the nodal line of a HG10 beam is sensitive
to a relative Goos-Hänchen (GH) shift, whereas a relative Imbert-
Fedorov (IF) shift can be measured using the nodal line of a HG01
beam. This explains why a vortex beam, as a complex superposition
of these two beams, offers sensitivity in both directions.
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the Imbert-Fedorov shift (see figure 11). This serves as an

illustrative explanation as to why vortex beams are of

particular interest in the study of optical beam shifts: a

complex superposition of a HG10 and HG01 produces a first

order Laguerre–Gaussian beam, with a superoscillatory

region of destructive interference at its centre. Such a

superposition is therefore able to probe beam shifts in both

directions, while the complex character combines spatial and

angular shifts, which are associated with the real and angular

part of the corresponding operators [81, 83].

Because optical beam shifts are sensitive to the refractive

index, they can generally be used to probe optical interfaces. A

challenge for measurements lies in isolating the shifts from

other effects affecting the beam stability and the lack of an

absolute reference point. This makes it often necessary to use

differential measurements, for example by quickly switching

between different polarizations. Because the dark vortex is in

general shifted differently to the bright background of the beam

envelope [81], using a superoscillatory region embedded in a

light beam overcomes some of these challenges and forms the

underlying principle of a vortex microscope [85].

A vortex microscope’s sensitivity can be enhanced by

using optical vortices of higher order, as the vortex induced

shift of the beam envelope scales with the order of the

embedded vortex [83] (an enhancement scheme based on the

analogy to weak measurements). As a superoscillation-like

phenomenon, the higher-order vortex induced shift generates

increasingly larger displacements than the fundamental beam

shifts. A drawback of using high-order vortex beams is that

they are unstable under perturbation, and even a simple

interaction, such as reflection, leads to splitting of a higher

order vortex into a constellation of vortices [84]. However,

this splitting can be determined and accounted for, and

potentially might be used a probe in its own right. A

disruption to a low-intensity superoscillatory structure would

similarly occur on oblique reflection or refraction.

In short, the sensitivity of superoscillatory regions to

perturbation provides a new method of optical precision

metrology, but the general principle that reflection, transmis-

sion and scattering typically generate, alter and destroy

regions of superoscillation constitutes a formidable challenge

which requires both a comprehensive theoretical under-

standing and excellent control over light preparation and

detection.

Future developments. The framework of beam shifts is very

general. Beyond spatial or angular deviations, there are subtle

effects concerning circular birefringence or delays in the time

domain. Beam shifts are not restricted to optics and can occur

for other frequency regions and for particle beams [86].

Recent years have seen the generation of electron, neutron

and atom vortex beams, all of which have a region of

darkness at the centre along the beam axis. All the necessary

components to explore the connection between beam shifts

and superoscillatory regions in particle beams are therefore in

place (see section 6), and it will be interesting to see how the

framework of beam shifts can be transferred to particle

beams. Of course, the implementation of interfaces will differ

from case to case; beam shifts only require an interaction

which affects constituent parts of a beam differently. It is

likely that because of the small wavelength of particle beams,

beam propagation effects play an even more prominent role

[82] for particle beam shifts than for light beams.

Electron vortex beams in particular can readily be

manipulated with electromagnetic fields, but also neutrons

could interact with them via the anomalous magnetic

moment. In the latter case, beams shifts are likely to be

small, which suggest that amplification schemes based on

weak measurements may be needed to measure such shifts.

This in turn requires control over the polarization of particle

beams, which, given the current interest in vortex beam of

fermionic particles, such as electron and neutron, is a topical

area of research activity with direct relevance for the

development of beam shifts for particle beams.

As particles have mass it is necessary to distinguish

between the non-relativistic and relativistic regime in the

study of particle vortex beams. For the former, the

wavefunction is identical to the paraxial Laguerre–Gaussian

beams in the optical regime with a well-defined super-

oscillatory region at the centre of the beam. For massive

relativistic spin ½ particles, free space spin–orbit locking can

destroy the vortex at the centre of the beam. Combined with

the inevitable vortex splitting on reflection and scattering [84]

for particle beams will no doubt reveal interesting new

superoscillation-related physics.

Concluding remarks. Starting with the work of Wolter

almost 70 years ago, deep and multifaceted connections

between superoscillations and beam shifts have been

discovered. In optics, this has been explored in both theory

and experiment, and is now in the process of being exploited

as a technique in precision metrology. There is still much

scope for discoveries and we can expect exciting

developments in the future, such as applications of weak

measurement enhancement and higher order vortex probes.

The wavefunction of increasingly more fundamental particles

can be shaped into a vortex beam, creating in general a

superoscillatory region within the beam, which can be used to

characterise the path of the beam or perhaps even scattering

events. Applying the framework of beam shifts to these cases

may uncover new connections between these fundamental

concepts.
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Status. It is widely accepted that initial works on

superoscillation took place in the early 1960s in a series of

works on bandlimited and time delimited signals, published by

Slepian et al at Bell Labs [87]. It was rediscovered around 1990 in

a series of works by Aharonov et al in the context of weak values

of electron spin in quantum physics (see section 2). This

rediscovery initiated studies on the manifestation and application

of superoscillations in wide-ranging mathematical and scientific

fields (see section 3). In this context, it was understood that ideas

pertinent to superoscillations actually surfaced in the 1930s—

about a quarter century before the first recognized studies on

superoscillations—in the study of superdirective antennas [88, 89].

We first point out that similar mathematical forms

describe the radiation from antenna arrays and the fields

from the spatial superposition of plane waves. The radiation

pattern from an array of N isotropic sources is given by its

array factor

A c jnk dexp sin 6
n

N

n

0

1

0åq q=
=

-

( ) ( ) ( )

where q is the radiation angle, k0 is the free-space

wavenumber, d is the separation between adjacent antenna

elements and cn is the weighted excitation current on the nth

antenna. An electric field profile as a superposition of N plane

waves can be written as
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where an is the weighted complex amplitude of the nth plane

wave and kxD is the change in spatial frequency between

adjacent plane waves (adjacent in terms of the propagation

angle). The transverse spatial frequency is related to the wave

propagation angle through

k k sin . 8x 0 q= ( )

A superdirective antenna is typically built from an array of

closely-spaced elements (d 2l< / ) driven by alternating

currents (figure 12(a)). When adjacent elements are driven

with opposite phase and a tapered amplitude, an antenna

beam of arbitrarily narrow angular width can, in principle, be

generated (figure 12(b)), which seemingly violates the angular

diffraction limit [88, 89].

Adopting a spatial frequency perspective, one sees that

this sub-diffraction angular beamwidth is achieved by hiding

most of the waveform’s energy in the invisible region (i.e. the

region of evanescent waves). Figure 12 compares the

operation of a superdirective antenna with that of a spatial

domain superoscillation: a superdirective antenna has limited

support in the spatial domain (figure 12(a)), but has sharp

oscillations in the angular domain, which maps to the spatial

frequency domain via (8) (figure 12(b)); a spatial super-

oscillation waveform has limited bandwidth in the spatial

frequency domain (figure 12(c)), but sharp oscillations in the

spatial domain (figure 12(d)). Both phenomena achieve

unconventionally sharp waveform variations in a region of

interest (ROI) at the price of pushing most of the wave’s

energy outside the ROI. With superdirectivity, most of the

wave’s energy is kept in the invisible region (near-field) and

hence is hidden from the antenna far-field. This leads to a

practical difficulty, since the excitation of a very strong near-

field often leads to severe mismatch losses and power

dissipation from metallic antenna components. On the other

hand, with spatial superoscillation, the high-energy region

still resides in the visible space, but appears outside the field

of view of the imaging system. While its presence may be

undesirable, it does not suffer the same sensitivity problems

that have heretofore precluded the widespread application of

superdirective antennas. Notwithstanding this physical differ-

ence, this comparison clarifies that a superdirectivity is

achieved by constructing a superoscillation waveform in the

spatial frequency (kx) domain.

Realizing the strong connection between the concepts of

superdirectivity and superoscillation, established antenna

design methodologies can be adapted to design superoscilla-

tion waveforms, as illustrated in the following cases. Wong

et al [89] experimentally demonstrated a subwavelength-

focused microwave hotspot ( f 3= GHz) at a working

distance of five wavelengths—an order of magnitude

increased from previous subwavelength focusing devices

(figure 13(a)). Wong et al [46] also used a superoscillation

filter to build an optical super-microscope (OSM), which

performed far-field super-resolution microscopy at 633 nm

Figure 12. Superdirectivity versus superoscillation. (a) A set of
current excitations to a superdirective antenna array with d 6,l= /

plotted with respect to antenna position. (b) The corresponding
antenna beam pattern. The shaded area indicates the invisible region.
(c) The spectral distribution of several plane waves. (d) The spatial
electric field profile formed by their superposition. A super-
oscillatory subwavelength hotspot is generated.
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(figure 13(b)). Unlike previous works, the OSM generated a

superoscillating point spread function as opposed to a

superoscillating focal spot. This enabled one to image, in

real-time, an object within the field of view without any

scanning and data post-processing whatsoever, and hence

paved way to capturing super-resolution images and videos of

moving objects. Other works in this direction included a

microscope that featured superoscillating ripples [90] and a

formulation for broadband 3D superoscillation microscopy

[91]. These varied applications demonstrate the viability of

the zero-based antenna design approach to both (i) design

superoscillation features and (ii) control the non-super-

oscillatory high amplitude region outside the ROI.

Current and future challenges. The following overviews

promising research directions which apply an antenna-based

approach to design and synthesize superoscillations. Firstly,

while most antenna array methods pertain to the design of 1D

antenna arrays, it remains unclear as to what is the optimal

way of extending such designs to higher dimensions. As

demonstrated in [92], the method of separable functions can

indeed be used to generate a higher-order superoscillation

function. However, this method causes the amplitude of the

non-superoscillatory region to be squared (for 2D) or cubed

(for 3D) from the 1D counterpart. In this perspective, it is

more energy-efficient to construct the superoscillation

waveform with radially symmetric functions, as was done

in [46, 91] for 2D and 3D superoscillations, respectively. In

these works, radially symmetric superoscillation waveforms

are constructed by applying a null matching procedure to a

1D superoscillation waveform constructed from the antenna

array design approach. Using this method, the amplitude ratio

between the hotspot and the non-superoscillatory region

remains by and large unchanged when one extends from the

1D superoscillation waveform into a 2D or 3D counterpart.

Notwithstanding, it remains unclear how a similar extension

is best accomplished when the desired superoscillation

waveform does not have radial symmetry.

Another area worthy of investigation is the application of

the antenna-based approach to facilitate the practical

construction of extreme superoscillation features, for exam-

ple, a hotspot with a spot width ten times beyond the

diffraction limit. It has been theorized that such wave-

forms feature a non-superoscillatory region with very high

energy [93]. The non-superoscillatory region typically has

orders-of-magnitude larger field amplitudes compared to the

superoscillatory features. Hence, the generation of such

superoscillation features requires systems of exorbitantly

high signal-to-noise (SNR) ratios. However, it has been

shown that using the antenna-based approach, one can lower

the maximum amplitude of the non-superoscillatory region

and thereby reduce the required SNR for the construction of

superoscillation waveforms [46]. It would be of profound

impact to design and construct practical superoscillation

waveforms with features markedly improved from the

diffraction limit; we think the antenna-based approach has

proven itself as a valuable design tool for such desirable

extreme waveforms.

A third research direction applies the antenna-based

approach to design complex and arbitrary superoscillations.

Whilst traditional works on antenna design generate a single

radiated beam, ample works exist on designing multiple

custom-shaped radiation patterns from antenna arrays in all

kinds of geometrical arrangements. For example, satellite

antennas often aim to optimize their power efficiencies by

tuning their antenna beam shapes to match the geographical

contours of a country (e.g. India) or region (e.g. California)

which they service. The lessons learned from designing and

optimizing these elaborate antenna pattern can be leveraged to

help design intricate superoscillation waveforms with widely-

varying support in the spectral domain.

Finally, we envision that impactful research can be

performed on the use of antennas to synthesize super-

oscillation waveforms. Antenna arrays and metasurfaces can

synthesize electromagnetic waveforms with high-fidelity.

Previous works have demonstrated that when deployed in

planar formation, antenna arrays can generate superoscillation

waveforms in the radiating near-field [89]. An important

future direction is to demonstrate the generation of super-

oscillation waveforms with an antenna array or a metasurface

deployed in a 3D formation. Successful efforts in this area can

lead to the experimental generation of 3D sub-wavelength

hotspots [91] and superoscillation features without the high-

energy region [94]. These systems would be very useful for

3D sub-diffraction medical imaging and RF hyperthermia

therapy.

Concluding remarks. In this article, we have reviewed the

strong connection between superoscillations and superdirective

Figure 13. Examples of antenna-based approach to spatial super-
oscillation design. (a) 1D subwavelength hotspot in a waveguide.
Schematic (left) and the simulated subwavelength focus (right).
© IEEE. Reprinted, with permission, from [89]. (b) Experimental
measurements using the optical super-microscope (OSM). The
OSM’s point-spread function (left) and the resolving of two
apertures (right: top row=OSM, bottom row=diffraction limit).
Reprinted by permission from Springer Nature: Scientific Reports
[46], (2013).
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antennas. This strong connection can be leveraged to design

superoscillations using established antenna design

methodologies. We have reviewed examples of antenna-based

designs for generating superoscillation hotspots, with

applications in electromagnetic-wave focusing, super-resolution

imaging and radar (depth) imaging. Promising research

directions include the design of (i) efficient 2D and 3D

superoscillations, (ii) practical superoscillations with deep

subwavelength features and (iii) complex and arbitrary

superoscillations, as well as (iv) their practical implementation,

particularly in a 3D environment. The antenna-based approach

leverages the vast resource in antenna design and application.

This makes it a powerful tool for designing and synthesizing

superoscillation waveforms.
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9. Applications of superoscillations in ultrafast

optics

Yaniv Eliezer and Alon Bahabad

Tel-Aviv University, Israel

Status. To date, most of the applications of superoscillations

in optics were realized in the spatial domain, applicable to

optical microscopy, while generating small volumes of

focused light [46, 95–97]. However, it is only recently that

superoscillations have started to emerge in the optical

temporal domain and more specifically in the realm of

ultrafast optics where the available bandwidth is wide enough

to allow synthesis of superoscillating waveforms. The first

work in this field suggested to modulate the carrier frequency

of a light field by superposing together several

monochromatic fields whose frequencies are harmonics of a

given fundamental frequency [98]. Although each field by

itself is monochromatic with an infinitesimal bandwidth, the

superposition of the waves spans a significant bandwidth, and

so formally such a signal is in the realm of ultrafast optics.

Such a superoscillatory field carries local oscillations whose

local frequency exceeds the frequency of the fastest mode in

the superposition. If this field is propagated through a medium

while the superoscillatory local frequency matches a

resonance of the medium, it can still propagate with hardly

any absorption of the superoscillation, realizing ‘super-

transmission’ [98]. This corresponds to the spatial case in

which a local frequency in a beam of light matches the

frequency of an evanescent wave, but can still be carried to

the far field [28]. In the temporal domain, dispersion in the

medium dephases the signal and eventually destroys the

superoscillation. However, the superoscillation can revive,

where the dynamics of revivals depend on the number of

modes comprising the superoscillation and the dispersion

properties of the medium [98].

Modulating the carrier frequency of a light field is a

major challenge requiring the generation of different

harmonic orders of a given fundamental and then controlling

the amplitude and relative phase of these harmonics. It is

much easier to modulate the envelope of a given pulse—that

is, to modify a phase locked spectrum around a single

harmonic. Indeed, recently the first experimental demonstra-

tions of synthesizing a superoscillating optical pulse envelope

were carried out by using a standard pulse-shaping technique

in which the spectral amplitude and phase of a pulse envelope

are directly modified. Two different approaches were used for

this purpose—the first was just a straightforward adaptation

of the real part of the canonical superoscillatory function [28]:

f t t ia tcos sin N= +( ) [ ( ) ( )] with a N1, > Î + for the

functional form of the envelope of the pulse, where each

Fourier mode in the expansion of f t( ) is translated to a beat

mode overlaid on the envelope [99]. The benefit of this

method is that the superoscillatory region can be designed

analytically. The result of using this method to synthesize a

superoscillating pulse is shown in the bottom panel of

figure 14. The second approach for synthesizing a

superoscillatory optical envelope used a windowed spectral

phase-shift transformation [75]. This method is general in the

sense that it can be applied to pulses in almost any initial

functional form, but it does not provide for a simple analytical

characterization of the superoscillation.

Most importantly, the synthesis of superoscillating pulses

allowed us to experimentally demonstrate temporal super-

resolution detection in the time domain [99]. This demonstra-

tion relied on an analogy with microscopy. In microscopy, the

image of an object is the result of convolution of the point-

spread-function of the system and the function describing the

object. Similarly, in the time domain, the temporal image was

realized as the cross-correlation of a test (object) signal

comprised of two close-by consecutive pulses with a

synthesized signal playing the role of a temporal point

spread function. It was verified that when the synthesized

probe signal was superoscillatory, it could better resolve

the existence of a double-pulse test signal than when

the probe signal was a transform limited Gaussian with the

same bandwidth (see figure 15). It is noteworthy that in the

time domain there are, at the moment, no competing super-

resolution schemes which do not involve post-processing.

Further, temporal optical superoscillations have the potential

to impact many activities relying on femtosecond light

sources—such as spectroscopy, nonlinear optics and

metrology.

Current and future challenges. In order to advance the use of

superoscillations in ultrafast optics, better pulse synthesis

methods are required. The superoscillating beat that was

demonstrated in [99] used only two modes for its

construction. The advance in the usage of superoscillations

Figure 14. Pulse synthesis: theoretical (dashed lines) and exper-
imental synthesis (continuous line) of different temporal ultrafast
waveforms sharing the same bandwidth. Left column: frequency
domain. Right column: temporal domain. From top to bottom: a
Gaussian, a Sinc, a single beat (temporal double slit) and a
superoscillating optical beat. Reprinted figure with permission from
[99], Copyright (2017) by the American Physical Society.
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for imaging came when many modes were combined together

to create a superoscillatory region which was well isolated

from the large side lobes accompanying such signals. We can

similarly expect that advances would follow in the time

domain once temporal optical waveform synthesis would be

on par with its spatial counterpart. However, it is more

difficult to generate complex optical temporal waveforms than

spatial waveforms due to two main reasons. First, pulse

shapers suffer from aberrations, which are not simple to

compensate for. Second, pulse characterization is much more

involved than beam characterization as it requires

complicated setups involving nonlinear interactions. When

considering synthesizing the carrier of the field instead of its

envelope, matters gets much worse as the shaping and

analysis need to be performed over an enormous bandwidth.

Another major future challenge lies in finding ways for

utilizing temporal superoscillations. As superoscillations are a

local interference phenomenon, there are two ways in which

they can be utilized. The first is to use them to measure or

manipulate temporal events which are short enough in time

that they will not interact with the slow intense side lobes of

the superoscillatory signal. The second way is to find and

employ some gating mechanisms that would be susceptible to

the fast local dynamics of the superoscillation [100]. Such a

gating mechanism in effect would project, so to speak, the

superoscillation unto an actual Fourier component and it

would no longer be an interference of other Fourier

components. Such a gating can be the result of some

dephasing mechanism acting on time scales similar or shorter

than the duration of the superoscillation. A gating can also be

realized as some externally applied nonlinear interaction.

Advances in science and technology to meet challenges. In

recent years, there have been significant advances in the

ability to synthesize the carrier of light waves based on

nonlinear optical systems [101]. Such methods can help us

realize experimentally waveforms with a superoscillating

carrier. For superoscillating envelope synthesis, there is a

need for higher spectral resolution pulse shapers with better

treatment of ailing aberrations. Such an advance can

either be gained by modifying the applied modulation

functions to compensate for the aberrations, or by looking

for compensating optical hardware. Additionally, better

understanding through analytical and numerical methods is

required for the ways in which local superoscillations can be

utilized and/or ‘projected’ to a Fourier component so they

can efficiently interact with different media. Initial steps in

such directions have already started [100, 102].

Concluding remarks. The use of superoscillations in ultrafast

optics has only seen its first steps. There is still much to

explore and to gain in this field, especially if superoscillations

would be used to measure rapid spectroscopic transients. The

are several possible interesting directions in which this field

can progress; for example, by connecting superoscillations to

other unique temporal optical phenomena such as fast and

slow light. Additionally, the complementary phenomenon of

suboscillations [103], where a signal can oscillate locally at a

rate below its slowest Fourier components, might be utilized

to produce THz local oscillations by interfering optical fields.

Figure 15. Demonstration of temporal super resolution. A series of
test signals comprised of a pair of time-delayed Gaussian pulses with
different delays (top row) are cross-correlated with one of two
probing signals having the same bandwidth (left column): a
superoscillating beat and a Gaussian pulse. The theoretically
calculated (dashed lines) and experimentally measured (continuous
lines) cross-correlation are shown in the middle. A minimum in the
middle of the cross-correlation attest to the existence of two distinct
temporal events. The Gaussian only resolves case III, while the
superoscillating beat resolves both cases II and III. Reprinted figure
with permission from [99], Copyright (2017) by the American
Physical Society.
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10. Superoscillation focusing of cylindrically

polarized light

Gang Chen, Zhongquan Wen and Gaofeng Liang

Chongqing University, People’s Republic of China

Status. The earliest recorded use of lenses can be traced

back to the ancient Romans. Conventional simple lenses have

two curved surfaces of different curvatures, which can be

positive, negative, or infinite. The properties of such lenses

are determined by the refractive indexes of its materials and

the curvature of the two surfaces. One major function of a

lens is to focus light to form a localized hot spot with high

optical intensity, and tight focusing of light waves is of a

major interest in a variety of applications, including

microcopy, materials processing, optical micro-machining,

optical storage, and optical manipulation. The conventional

way to generate tight focal spots is to utilize a high-

numerical-aperture objective lens to focus light in

combination with optical filters, π-phase shift plates, and

other components. Polarization plays an important role in the

tight focusing of light. Recently, there has been increasing

interest in cylindrical vector (CV) beams because of their

excellent focusing properties. CV beams exhibit a cylindrical

symmetry in their polarization distribution on the beam cross-

sections. CV beams can be treated as a linear superposition of

radially and azimuthally polarized beams. It is well known

that radially polarized light can be focused into longitudinally

polarized spots of sub-diffraction size [104], and the

superposition of radially and azimuthally polarized waves

allows flexible shaping of the three-dimensional (3D) profile

of the optical field around the focus [105]. However, due to

the diffraction property of conventional lenses, it is

challenging to further reduce the focal spot size. In

addition, conventional optics are bulky, and have difficulty

in optically aligning CV beams, especially in the case in

which an additional filter mask is required. Superoscillation is

a phenomenon in which a local oscillation can be faster than

the highest global Fourier component. Theoretically,

superoscillation enables the creation of arbitrary small

optical structures in propagating waves [33], and provides

an alternative way to generate sub-diffraction and sub-

wavelength features in far-field optical fields. The past few

decades have seen growing interest in developing a variety of

optical devices based on the concept of superoscillation. Most

superoscillation focusing devices are designed in the binary-

amplitude and binary-phase planar mask configuration for

ease of fabrication. Their design critically depends on

vectorial diffraction methods and optimization approaches,

such as particle swarm and genetic algorithms. Figure 16(a)

illustrates focusing of CV beam by a binary mask. For

cylindrically polarized light, 2D sub-diffraction azimuthally

polarized hollow spots and longitudinal polarized focal spots

have been experimentally demonstrated. Figure 16(b) depicts

the experimental results of a longitudinal polarized optical

needle generated by focusing radially polarized beam with a

binary-phase mask. As shown in figure 16(c), a 3D hollow

spot of sub-diffraction transverse size was also realized with a

cylindrically polarized wave by optimizing the ratio between

the radial and azimuthal polarization components. Based on

the concept of normalized angular spectrum compression

(NASC), as shown in figure 16(d), superoscillation quasi-

non-diffraction (QND) beams can be generated with

azimuthal polarization and a smallest transverse size of

0.34λ by carefully designed binary phase planar lenses [106].

This concept also enables executing a rapid design of a single

lens with an ultra-long working distance for generation of

sub-diffraction QND beams for multiple types of polarization,

such as circular, azimuthal, and radial polarizations, which is

critical for practical applications in super-resolution

microscopy [107] and high-density optical storage [108].

Current and future challenges. The design approaches for a

superoscillation focusing lens for cylindrically polarized light

mainly rely on optimization algorithms, which give a limited

physical picture of the nature of superoscillations. Although

the feature size of superoscillation optical fields has no

theoretical limit, a trade-off has to be made among the field of

view, efficiency, sidelobe intensity and spot size. Using band-

limited circular prolate spheroidal wave functions to construct

the scalar superoscillation wave can reduce the spot size down

to approximately λ/4 [109]; however, the same approach is

not directly applicable to waves with cylindrical polarization.

It is still a challenge to design a superoscillation lens to

achieve feature sizes of approximately or below λ/4 for

cylindrically polarized light, especially for QND beams. In

the generation of a superoscillation QND CV beam, the

NASC approach offers no flexible control of the transverse

size within the beam-propagation distance, while the existing

controllable design methods are extremely time-consuming,

even for a propagation distance of a few wavelengths.

Since the phase distribution plays a key role in reducing

the spatial frequency of complex optical fields [110], the

manipulation of phase is of great importance in super-

oscillation focusing. Up to now, the experimentally reported

focusing planar lenses for cylindrically polarized light have

mainly been based on binary amplitude or phase masks.

Because the diffraction behavior is quite different for radial

and azimuthal components, the independent manipulation of

the wavefront of each polarization component is essential for

the 3D shaping of a CV beam consisting of hybrid

polarizations, which cannot be achieved with commonly

employed amplitudes or phase masks. In addition, the precise

characterization of a superoscillation CV optical field is still a

great challenge due to the polarization-selective response of

present testing systems.

All the reported superoscillation and sub-diffraction

focusing lenses for cylindrical polarization have been made

in the form of either amplitude or phase modulation without

any control of wave polarization (see figure 16). Since the

symmetrical optical configuration requires extremely precise

alignment in generating cylindrically polarized superoscilla-

tion focus, particularly when the spot size is much smaller

than a wavelength, any slight misalignment will lead to
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deformation in the intensity profile of the focal spot and

destroy the superoscillation features. One possible solution to

this problem is the integration of both phase and polarization

manipulations in a single lens, which offers independent

control of phase and polarization of light, and hence the

alignment is automatically guaranteed in the lens design and

fabrication.

Achromatic performance is a challenging issue in

superoscillation focusing, and it was not until very recently

that such lenses with sub-wavelength focusing ability were

demonstrated with binary dielectric and metallic planar lenses

[111]. However, such lenses are only designed for several

working wavelengths, and the contribution to the focus comes

from different parts of the lens at different wavelengths,

greatly reducing efficiency. Moreover, the superoscillation

features only consist of the transverse component of the total

optical field.

Broadband performance is not only necessary for achro-

matic operation, but it is indispensable in the generation of 3D

superoscillation features. Current demonstrated superoscillation

features of CV light are only restricted to the 2D plane for a

single wavelength, because 3D shaping requires superposition

of light waves with broadband wave vectors, which are

necessary to span a 3D spatial frequency domain [91].

Advances in science and technology to meet challenges.

Full control of light waves, including independent

manipulation of the phase and polarization, is essential in

shaping light waves with cylindrical polarization. Recent

advances in metasurfaces provide a promising way of

efficiently manipulating light waves on the sub-wavelength

scale. In particular, all-dielectric metasurfaces offer high-

efficiency building blocks for quasi-continuously tuning the

light-wave phase profile for broadband operation. In addition,

all-dielectric metasurfaces also provide a promising solution

for broadband achromatic operation by compensating the

chromatic aberration with carefully designed structural

dispersion. Metasurfaces also enable continuous tuning of

the polarization of transmitted waves for incident waves with

circular polarization, which can be done with metallic stripe

gratings and glass nano-gratings. In addition, polarization

convertors, such as quarter-wave plates, half-wave plates,

polarization rotators, and vector wave polarization convertors,

have been demonstrated in the form of metasurfaces.

Independent manipulation of phase and polarization is also

implementable with specially designed birefringent meta-

surfaces. Hence, metasurfaces offer an irreplaceable way of

meeting the challenges in achieving broadband, achromatic,

high-efficiency 3D superoscillation shaping of cylindrically

polarized light waves.

Concluding remarks. Optical superoscillation has emerged

as a hot topic in present optical research, but it is still in its

infancy, notwithstanding a variety of theoretical and

experimental demonstrations of superoscillation focusing,

imaging, and microscopy applications. A wide range of

challenges remain to be overcome both theoretically and

experimentally. We expect future advances in superoscillation

focusing of CV beams that will lead to breakthroughs in far-

field super-resolution applications in fields such as

microscopy, data storage, materials processing, micro-nano

fabrication, and others.
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Figure 16. (a) Superoscillation focusing of cylindrically polarized
light: (b) lingitudinally polarized focus, (c) 3D hollow spot with sub-
diffraction transverse size, and (d) azimuthally polarized super-
oscillation quasi-non-diffraction beam.
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11. Superoscillations in magnetic holography and

acoustics

Chenglong Hao and C-W Qiu

National University of Singapore, Singapore

Status. Superoscillation phenomena have triggered curiosity

in exploring intrinsic mathematics as well as man-made

generation mechanisms for niche applications. Optics is thus

far one of the few areas to which intensive effort of the

superoscillation research has been dedicated [4, 112, 113]. It

was discovered that a superoscillatory lens can break the

diffraction and reach the resolution of λ/6 [4]. Super-

oscillations in optics have opened up possible avenues of

application and are actively being pursued for super-

resolution imaging [4, 112, 113], high-resolution photo-

graphy, and ultrafast pulse generations.

Beyond optical realms, other forms of superoscillation

and its related concept—the supercritical phenomenon—have

been addressed recently, such as magnetization [114] and

acoustics. Therefore, it is necessary to cast a holistic outlook

for superoscillation and supercritical phenomena.

Current and future challenges. Superoscillations have been

widely investigated in optical realms. It is imperative to give

clear demonstrations as to how small a focal spot has to be so

that it can be considered as a superoscillatory spot. Although

both the Rayleigh criterion (RC) and Berry and Denis’s

method [6] have been used to define the superoscillation, both

criteria have their limitations. On one hand, the RC is very

rough since superoscillation is involved. On the other

hand, Berry and Dennis’s suggestion only predicts the

superoscillation at the zero-intensity position for some

cases. Therefore, it is better to give a definition of optical

superoscillation by measuring the phase-changing rate in a

certain region.

Although superoscillation could generate an infinitesimal

hot spot theoretically, the price needing to be paid is the high

energy sidelobes, resulting in very low energy efficiency.

Thus, an approach which could achieve enhanced resolution

and acceptable sidelobes simultaneously becomes a natural

question. The supercritical phenomenon gives the answer.

The supercritical applications work in the intermediate zone

between Rayleigh limit and superoscillation. Therefore, they

gain benefits of superoscillation and avoid the unfavorable

high energy sidelobes, which are highly desired for applica-

tions requiring enhanced resolution and high energy effi-

ciency, for example, light induced magnetic data storage.

In the era of big data, there exists a growing gap between

data generated and limited storage capacity using two-

dimensional magnetic storage technologies (e.g. hard disk

drive), since they have reached their performance saturation.

Three-dimensional (3D) volumetric all-optical magnetic

holography has rapidly emerged as a promising roadmap to

realizing high-density capacity for its fast magnetization

control and sub-wavelength magnetization volume. However,

most of the reported light-induced magnetization confronts

the problems of impure longitudinal magnetization, diffrac-

tion-limited spot, and uncontrollable magnetization reversal.

Therefore, new approaches, e.g. supercritical resolved light

induced magnetization, are proposed to overcome these

challenges.

Lastly, similar to optical focusing, the diffraction limit

also sets an ultimate limit for acoustic focusing, which greatly

hinders the applications of acoustic imaging and particle

manipulation via acoustic forces. Few approaches are

available to transcend this limit. Therefore, superoscillation

based far-field focusing provides a practical roadmap for

super-resolved acoustic applications.

Advances in science and technology to meet challenges.

Generally, for the spherical-lens-based optical imaging

system, the lateral size of its focal spot is limited by 0.61λ/
NA (above the diffraction limit, where NA is numerical

aperture), which is well known as the RC mentioned in the

previous section. Sub-diffraction focusing is feasible at the

cost of the increasing side lobes. For unpolarized incident

beams, light with higher spatial frequencies corresponds to a

smaller spot. The extreme case is that light with only the

maximum spatial frequency can be focused into a hotspot

with intensity distribution similar to that of J krNA ,0
2∣ ( )∣

which is named as the ‘maximum-frequency spot’, where

k=2π/λ and λ is the wavelength [112]. The first zero point

of this zero-order Bessel function gives the superoscillatory

criterion, which is 0.38λ/NA. This criterion is shown in

figure 17(a), which is a finely distinguished roadmap

providing an instructive guide that the cyan area between

Rayleigh and superoscillation criterion is the best choice with

Figure 17. (a) Superoscillation criterion; (b) schematic of 3D light-
induced-magnetic holography in 4Pi microscopy; (c) schematic and
principles of acoustic superoscillation; (d) experimental and
simulation results on focal plane. (a) From [114]. © The Authors,
some rights reserved; exclusive licensee American Association for
the Advancement of Science. Distributed under a CC BY-NC 4.0.
license. (b) [55] John Wiley & Sons. © 2013 WILEY‐VCH GmbH
& Co. KGaA, Weinheim.
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superresolution and moderate side lobes in the far-field. This

region is defined as the supercritical region.

Based on this criterion, an optimization-free super-

oscillatory lens (SOL) with phase and amplitude masks

[112], a SOL using nanosieves with circular symmetry, a

supercritical lens with ultra-long working distances [52], and

a 3D supercritical resolved light-induced-magnetic hologra-

phy [114] have been proposed and validated experimentally

or numerically. Next, we will briefly introduce applications

with this criterion with supercritical resolved magnetic

holography and acoustic SOL in far field.

Due to the low energy main lobe and high energy

sidelobes in superoscillation, it cannot be implemented in

applications requiring superresolution and high energy main

lobes, such as light induced magnetic holography for data

storage. To address the challenges in light induced magnetic

data storage, a novel roadmap for all-optical magnetic

holography based on the conceptual supercritical design with

multi-beam combination in 4π microscopic system was

proposed, which is shown in figure 17(b). A 3D deep

super-resolved (∼λ3/59, λ=800 nm) pure-longitudinal

magnetization spot by focusing six coherent circularly

polarized beams with two opposing high numerical aperture

objectives was demonstrated theoretically. That allows 3D

magnetic holography with volumetric storage density up to

1872 Tb/in3. It was also revealed that the number and

locations of the super-resolved magnetization spots are

controllable and thus desired magnetization arrays in 3D

volume can be produced with properly designed phase filters.

Moreover, flexible magnetization reversals were also demon-

strated in multifocal arrays by utilizing different illuminations

with opposite light helicity. In additional to data storage, this

magnetic holography may find application in information

security, such as identity verification for credit cards with a

magnetic stripe.

Beyond optical and magnetic realms, superoscillation has

been successfully implemented to acoustics based on the

superoscillation criterion. By employing the quantum-acous-

tical analog to investigate the ultrasound version of quantum

superoscillation and utilizing an optimization-free groove-

structured meta-lens, Qiu’s group successfully focused

underwater ultrasound into a diffraction-limit-broken spot in

the far field with a superoscillatory pattern. The schematic of

this acoustic superoscillatory lens and the experimental result

are shown in figures 17(c) and (d), respectively. A super-

oscillatory spot with 0.3λ (λ=1.5 mm) radius is focused at

z=7.8 mm. This acoustic superoscillation ensures the

generation of a nontrivial acoustic radiation force, which is

verified through the robust ring-shaped trapping of micro-

particles.

Concluding remarks. In summary, this report gives a mini

review on superoscillation criterion, super-critical resolved light-

induced-magnetic holography, and acoustic superoscillation.

New realms of superoscillation beyond optics by using

superoscillatory and supercritical criterion are anticipated to

empower future developments in interdisciplinary fields between

optics, magnetics, acoustics, information, and biotechnology.
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12. Superoscillations and information theory

Achim Kempf

University of Waterloo, Canada

Status. Waves are commonly used to carry information, in

particular, for purposes of communication or measurement. In

this context, it is a curious fact that among the waves of a

fixed bandwidth, there are waves that locally oscillate

arbitrarily fast [115, 116]. The existence of these so-called

superoscillatory waveforms is challenging our understanding

of how densely information can be packed for a given

bandwidth.

This suggests that the study of superoscillations could

lead to a deeper understanding of information theory and that

it could also inspire the development of new information-

theoretic tools. Conversely, adopting an information-theoretic

perspective on the phenomenon of superoscillations may help

the practitioner to determine how superoscillatory waveforms

may best be deployed.

To begin with, let us recall a central theorem of

information theory: the noisy channel coding theorem.

The noisy channel coding theorem [117] states the

maximum rate at which information can be transmitted

through a noisy communication channel for any given

tolerance of error probability. Concretely, the theorem states

that as long as the data transmission rate, R, is smaller than the

channel capacity, R<C, any arbitrarily small error prob-

ability E>0 can be chosen and there will exist an encoding/
decoding scheme such that the information is transmitted with

at most the error rate E. Here, the channel capacity, C, is

defined via the mutual information, I(Y;X), between the input

and the output of the channel through C=supp(X) I(Y;X). The

supremum is taken over all probability distributions p(X) for

X. The theorem is sweepingly general but in practice it can be

unwieldy. On one hand, this is because it is hard to find

optimized coding schemes. On the other hand, and this will be

our concern here, it can be hard to explicitly calculate the

capacity, C.

A special case of great practical importance where C can

be calculated is the case of communication channels that are

based on the transmission of waves. For simplicity, let us first

consider the case of scalar waves in one dimension, such as

time, e.g. electric current in a wire. In this context, the

Shannon–Hartley theorem provides a very useful explicit

expression for the channel capacity, C, of a bandlimited

channel with Gaussian additive white noise.

Concretely, consider a channel of bandwidth B with

Gaussian additive white noise with average power N.

Furthermore, assume that the average power of the signal is

S. Then, the Shannon–Hartley theorem states that the channel

capacity is given by:

C B S Nlog 1 . 92= +( ) ( )/

For later reference, we note here that while the Shannon–

Hartley theorem is of great practical importance, it suffers

from the drawback that is assumes one particular noise model;

that of Gaussian additive bandlimited white noise. For any

other type of noise, a new theorem of the type of the

Shannon–Hartley theorem needs to be derived.

Let us now consider how equation (9) of the Shannon–

Hartley theorem can be compatible with the existence of

arbitrarily strongly superoscillatory signals, f (t), among the

signals with bandlimit B. In fact, it has been shown [118] that

within any interval of finite length, an arbitrarily large number

nmax of points {tn} and amplitudes {an} can be chosen and

there will always exist signals, f (t), of finite energy and of

bandwidth, B, which pass through these N prescribed points:

f (tn)=an for all n=1Knmax. This implies, for example,

that a function, f (t), exists which possesses bandwidth 1 Hz

but whose amplitudes coincide with those of a 20 KHz

recording of a Beethoven symphony at 10^100 points in time,

e.g. spread out evenly within a recording of T=30 min

duration. The two signals would not be practically distin-

guishable in that 30 min time interval.

Indeed, for any arbitrary bandwidth B, signals can be

found which in an arbitrarily chosen finite time interval pass

through arbitrarily many prescribed points. Since it would

appear that the amplitudes of these prescribed points can be

chosen to carry arbitrarily large amounts information, the

challenge arises to determine how this phenomenon is

consistent with the Shannon–Hartley theorem.

Current and future challenges. The reason why the Shannon–

Hartley theorem is not violated by superoscillatory waveforms is

subtle and it points towards an opportunity to generalize the

Shannon–Hartley theorem to a new theorem that is independent

of any choice of noise model.

First, to see why there is no contradiction to the Shannon–

Hartley theorem we begin by considering one of these low-

bandwidth signals, f, that is designed to carry a high density of

information in a time interval T by passing, in the time interval,

T, through prescribed points whose number far exceeds the

number of Nyquist points inside the time interval T. Since the

prescribed amplitudes are to carry information, they will

generally be uncorrelated and as a consequence the signal, f,

will generally oscillate in the time interval T at local frequencies

that far exceed the bandwidth. Here, the term local oscillation

frequency refers to the Fourier spectrum obtained from a Fourier

transform that is windowed to the time interval T. In other

words, the signal, f, is superoscillatory.

Now in order for this low-bandwidth superoscillatory

signal, f, to pass through a channel of its low bandwidth, it is

important to note that the signal, f, cannot be truncated, as its

truncation, for example, a truncation to the main interval of

interest, T, would not obey the original low bandwidth. In

particular, the superoscillations would not pass through the

channel.

It is necessary, therefore, to send the entire super-

oscillatory signal through the channel in order to ensure that

its superoscillatory interval, T, with its information cargo,

passes through the low bandwidth channel. This may appear

to be a small price to pay but in fact it is known that every

superoscillatory signal possesses extremely large amplitudes
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before and after the superoscillatory stretch, T. The following

scaling behavior of superoscillatory functions was proven in

[93, 119, 120]: the L2 norm of a superoscillatory signal must

grow at least exponentially with the number of super-

oscillations (and polynomially with the frequency of the

superoscillations). It was also shown that these large norms

are achieved not by a slow decay of the signal towards the

infinite past or future. Instead, the large norm is obtained

because of large amplitudes just before and after the

superoscillatory stretch.

The price to pay, therefore, for being able to send a low-

bandwidth signal with a superoscillating stretch, T, through a

low-bandwidth channel is, therefore, that along with the

superoscillatory interval T, parts of the signal also must be

transmitted whose amplitudes are excessively large. Given the

above-discussed scaling behavior, this means that super-

oscillatory signals possess a dynamic range (i.e. amplitude

range) that grows exponentially with the number of super-

oscillations, i.e. with the length of the superoscillating stretch.

For a channel to be able to transmit such a superoscillating

signal well enough for the receiver to be able to resolve the

then relatively small superoscillatory amplitudes, the chan-

nel’s signal-to-noise ratio must also exponentially grow with

the number of superoscillations, and therefore with the

amount of information that is to be encoded in the

superoscillatory amplitudes.

This observation shows why superoscillatory signals are

consistent with the Shannon–Hartley theorem. The Shannon–

Hartley theorem states that even when holding the bandwidth

fixed, the channel capacity can be increased arbitrarily—at the

expense of requiring an exponential improvement in the

signal-to-noise ratio.

The scaling behavior of the phenomenon of super-

oscillations, is, therefore, expressing the same tradeoff as is

expressed by the Shannon–Hartley theorem: keeping the

channel capacity fixed, the bandwidth can be reduced at the

cost of a necessarily exponentially increase of the dynamic

range.

Crucially, however, the Shannon–Hartley theorem makes

specific assumptions regarding the noise model, namely that

the noise is additive Gaussian bandlimited noise, and any

other noise model requires a fresh derivation of a Shannon–

Hartley type theorem. In contrast, the scaling behavior of

superoscillatory functions is expressing this exponential

tradeoff between dynamic range and bandwidth in a noise-

model independent way.

This suggests that there exists a generalization of the

Shannon–Hartley theorem for bandlimited signals which does

not require an assumption of any particular noise model. To

find this generalized channel capacity theorem, the challenges

will include finding definitions that suitably relate the

descriptors of superoscillatory functions to the descriptors

of noisy channels. These relationships are intuitively

relatively clear but there remains the challenge to make those

relationships quantitative. In particular, it will be necessary to

quantitatively relate the concept of dynamic range to that of

signal-to-noise ratio and the concept of prescribing nmax

number of amplitudes of a superoscillating signal to encoding

a certain number of bits.

Advances in science and technology to meet challenges.

Both the Shannon–Hartley theorem and the scaling behavior

of superoscillations describe a trade-off between band-

width on one hand and dynamic range and signal-to-noise

ratio on the other hand. In practice, different circumstances

can require one to work in various ranges of the trade-

off spectrum. For example, if bandwidth is scarce, the signal-

to-noise ratio must be improved to raise the capacity.

Conversely, if signal power is scarce, e.g. in commu-

nication with far-away space probes, it can be preferable to

increase the bandwidth in order to raise the capacity.

Superoscillations appear to be at the extreme end of the

tradeoff, where the bottleneck is bandwidth while there is

large freedom in the dynamic range. The bandwidth bottle-

neck could be, for example, a bandlimitation in time. In

practice, and mathematically equivalently, a bandwidth

bottleneck may arise for various other reasons, such as an

aperture or a diffraction limit in spatial or angular resolution.

A bandwidth bottleneck may also arise, for example, from the

need to propagate waves through media that possess

inconvenient absorption bands. As was pointed out in [32],

suitably large dynamic ranges can possibly be utilized in such

cases of a bandwidth bottleneck, for example, for optical

measurements. There, it is realistic to produce beams of, for

example, 1020 photons per second while even single photons

can be detected. In [121], it was pointed out that super-

oscillations may also be useful for probing or utilizing the

very absorption processes that cause bandwidth bottlenecks in

media, e.g. in optogenetics.

Concluding remarks. From the perspective of the

information-theory of continuous channels, superoscillatory

signal waveforms arise at the extreme end of the regime

characterized by low bandwidth and high signal-to-noise

ratio. Correspondingly, the study of superoscillations may

inspire new coding schemes for this regime, and it may lead

to a generalized Shannon–Hartley theorem that is noise model

independent. The role of superoscillations in the transmission

of classical and quantum information through quantum fields

is starting to be explored [122].
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Status. Since the invention of superoscillations by

Aharonov [1] and Berry [116], it was clear that the

common belief that bandlimited signals cannot exhibit an

oscillation which exceeds the band limit is strictly speaking

invalid. However, at the same time it was realized that from a

practical point of view, there is some truth in this belief, in the

sense that the energetic efficiency of generating

superoscillatory (SO) signals was very low. Gradually, it

became clear that designing the superoscillations to more

desirable/applicable shapes was possible, e.g. via

interpolating superoscillations [93]. Ferreira [93] also

allowed some understanding of the basic energetic

limitations involved in exceeding the Nyquist rate. Further

theoretical progress [123] revealed that superoscillations are

actually much more abundant than previously realized,

namely that any random band-limited function naturally

contains many superoscillatory intervals, implying that in a

sense the high energetic price tag attached to superoscillations

is related to the need to concentrate them in a-priori well-

defined region(s) with a given SO frequency. This can be

(morally) interpreted as an entropic effect. A major

breakthrough that ignited the current wide interest in

superoscillations was the theoretical [28] and experimental

[124] insight that optical superoscillations could be used to

obtain superresolution without evanescent waves—or using a

paraphrase on the provocative title of [124]: ‘superoscillations

can fair and square beat the diffraction limit’.

However, although superoscillations suggest many

practical applications, their uses are presently rather limited,

because SO signals exist in limited intervals and the

amplitude of the superoscillations in those regions is

extremely small compared to typical values of the amplitude

in non-superoscillating regions. In an attempt to quantify and

control this effect, the concept of the superoscillatory yield

[76] has been introduced. Within the context of periodic

superoscillations, forcing a signal to superoscillate with a

given frequency in a prescribed subinterval a a,-[ ] within the

unit cell , ,p p-[ ] the superoscillatory yield is defined by

Y ,
f x dx

f x dx

a

a
2

2

ò
ò

=
p

p
-

-

∣ ( ) ∣

∣ ( ) ∣
namely as the energy of the superoscillatory

part of the signal normalized by its total energy per period. As

explained above, one expects that the SO-yield would be

‘exponentially’ small, or more precisely should be orders of

magnitude smaller than unity. The basic question underlying

our research is whether this situation can be ameliorated, or:

what are the fundamental limits on the SO yield?

In [76], a method to generate interpolating SO signals,

which are optimal with regards to the yield was developed.

From a mathematical point of view, the method can be cast as

some generalized eigenvalue problem, with the largest

eigenvalue representing the optimal yield. In figure 18(a),

we show an example for the yield-optimised signal that is

designed to pass through 14 equally spaced points within the

interval 1, 1-[ ] where we have used N 14= Fourier

components in f x a nxcos .
n

N
n0å= =( ) ( ) In figure 18(b),

we demonstrate that the superoscillatory interval can actually

be composed of two (or more) subintervals at the same level

of mathematical complexity. Interestingly, within this frame-

work the subleading generalized eigenvalues and eigenvec-

tors have a very simple meaning. It turns out that two

consecutive eigenvalues differ by another zero crossing,

which enters the SO interval in the corresponding eigenfunc-

tions. This leads to the surprising conclusion that absolute

upper-bound on the yield for a signal with a given frequency

within a certain SO interval is given by an eigenvalue of the

problem where no constraint is imposed at all.

Further analysis [125] reveals that optimising the yield

can be very profitable, and result in a SO signal which is

orders of magnitude more energetic than that of a randomly

chosen (interpolating) signal with the same SO frequency. In

addition, a stability analysis [125] shows that the generated

SO signals are sensitive to noise in their Fourier coefficients

but less than expected, in the sense that the generation of the

interpolating SO signal is far more sensitive and requires a

Figure 18. Two SO yield-optimised signals composed of N 12=
Fourier components and interpolating over 14 points in (a) a
single SO interval 1, 1-[ ] and (b) a union of two SO intervals

1, 0.5 0.5, 1 .È- -[ ] [ ]
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much more precise calculation than the one needs to

reproduce such a signal given the coefficients.

In the above, we have emphasized the importance of

superoscillations in imaging, however the scientific and

technological potential of superoscillations goes far beyond,

and is relevant to any effort in focusing energy into sub-

wavelength structures, such as nano-drilling. Actually,

optimisation is even more crucial in this case, because in

this case not only is the yield (i.e. the energy ratio) important,
but also absolute power. A light beam with 1019 photons per
second can suffer a damping factor of 1010 and still allow

imaging, while drilling necessitates the maximal possible

power.

Current and future challenges. In spite of the big progress,

there are still many challenges in optimising SO signals which

are of great importance both theoretically and experimentally,

and are actually crucial for technological applications. Below,

we identify a few such important directions which could

impact the field significantly.

1. Consolidation and extensions of the energetic aspects:

Currently, the optimisation of the yield requires

significant numerical precision, which limits its imple-

mentation to high precision platforms, such as MATH-

EMATICA running on a computer. It would be

important to improve the implementation of these

procedures such that they could be performed using

double-precision (or even lower), and on standalone

hardware platforms. This could be achieved via

analytical results combined with iterative methods.

Furthermore, it is important to extend these results

beyond one-dimensional signals so that they could be

used to construct 2D beams (radially symmetric or not),

which are often needed experimentally. From a

fundamental point of view, the holy-grail is to establish

absolute upper bounds for the yield of a superoscillatory

signal with a given frequency in a given subinterval,

among all signals. This can be thought of as ‘Heisen-

berg uncertainly relations’ between frequency and

yield. A related question worth mentioning is determin-

ing the smallest (sub-wavelength) hotspot possible with

a given yield? Needless to say that a constructive

procedure, which is able to realize these upper bounds,

would be desirable.

Further questions related to energetic optimisation

are: (a) how does the discreteness of the spectrum affect

the yield, namely to what extent can the existence of a

continuous set of oscillatory signals up to the band-limit

improve the yield compared to a signal composed of a

discrete set? (b) If we allow a small fraction of

frequencies above the bandlimit (even such that we

cannot control, but do know its properties), can that be

used to improve the SO yield?

2. Optimisation of the shape: The current experience with

SO functions shows that very often the shape, even if

optimised with regards to the yield, is irregular in ways

that limit their applicability. Common artefacts are an

amplitude that grows towards the boundaries of the SO

region (e.g. figure 18) and a frequency that is irregular

across that region. The basic challenge would be to

devise an effective tool to control the shape of the signal

with as low an energetic price as possible. More

generally, determining the minimal energetic cost for

shaping the superoscillatory signal, such that it would

match a desirable shape at a prescribed level of

similarity. For example, in imaging, it would be greatly

advantageous for the signal to resemble as close as

possible a perfect sinusoidal function. A related, less

demanding improvement could be made by spreading

the zero crossings as regularly as possible, or control the

amplitude at a uniform level across the SO region.

3. Interaction of SO signals with matter: A major

challenge in the application and the design of useful

SO signals comes from the fact that the current

description of interactions of light and matter is based

on perturbation theory and hence may be not precise

enough for an adequate understanding of the way such

violently fluctuating waves affect matter. Such effects

can sometimes limit the relevance of superoscillations

[126] and sometimes be utilized to stabilize them [68].

At any rate, a better understanding of the interaction can

imply novel optimisation criteria which target more

directly the desired effect rather than just controlling the

yield or the shape. This challenge is obviously at a

much higher level and hence much more prospective.

Concluding Remarks. Optimisation of SO signals is of great

importance in both theory and applications of super-

oscillations. In this section, we tried to portray recent

developments in this subject. The introduction of the

concept of the superoscillatory yield marks a milestone in

energetic optimisation, which demonstrated improvement of

the energetic loss by orders of magnitude. We believe that

further experimental progress in the coming years will go

hand-in-hand with achievements related to optimisation of the

yield and shape of SO signals. Furthermore, we believe that a

better quantitative understanding of the interaction between

light and matter is needed to allow a more principled design

of superoscillations to target the goals we assign to them.
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