
EasyChair Preprint
№ 4801

RoBA Multiplier: A Rounding-Based Approximate
Multiplier for High-Speed yet Energy-Efficient
Digital Signal Processing

Manchiryala Manogna

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 25, 2020

1

Abstract—In this paper, we propose an

approximate multiplier that is high speed yet energy

efficient. Now-a-days, Energy minimization is one

of the main design requirements especially in the

portable gadgets i.e., smart phones, tablets and so

on. In these types of gadgets, DSP blocks are key

components, where the computational core of these

blocks is the arithmetic logic unit where

multiplications have a greatest share. So, by the use

of the multipliers the computational part of

multiplications is omitted by improving the speed

and power/efficiency characteristics of multipliers

as it plays a key role. In this, the approach is to

round the operands to nearest exponent of two. By

this approximations are made for improving the

speed and efficiency. Since the final outputs are

used in two Image processing applications, i.e.,

image sharpening and smoothing. This can be

performed at different design abstraction levels i.e.,

circuit, logic and architecture levels using different

techniques, here we use function approximation

method (e.g., modifying the Boolean function of a

circuit), a number of approximating arithmetic

building blocks, such as adders, multipliers have

been suggested. Finally, It has added advantage

that it can be used as common multiplier design for

both signed and un-signed operations and reduces

logic size and facilitates with less power and delay.

Here we are using Verilog HDL and Xilinx ISE14.8

software tools for simulation and synthesis purpose.

Index Terms—Accuracy, approximate computing, energy

efficient, error analysis, high speed, multiplier.

Thisp paper submitted on 22 december of 2020 for review by Manchiryala

Manogna, M.TECH, Dept. of ECE(manchiryalamanogna369@gmail.com).

This work was submitted in the conference of "The International Conference

on Trends in Information, Management, Engineering and Sciences(ICTIMES),

organized by the World Academic - Industry Research Collaboration
Organization which takes place from 22nd January to the 23rd January 2020 at

I. INTRODUCTION

NERGY minimization is one of the main design

requirements in almost any electronic systems,

especially the portable ones such as smart phones,

tablets, and different gadgets [1]. It is highly desired to achieve

this minimization with minimal performance (speed) penalty

[1]. Digital signal processing (DSP) blocks are key components

of these portable devices for realizing various multimedia

applications. The computational core of these blocks is the

arithmetic logic unit where multiplications have the greatest

share among all arithmetic operations performed in these DSP

systems [2]. Therefore, improving the speed and power/energy-

efficiency characteristics of multipliers plays a key role in

improving the efficiency of processors.

 Many of the DSP cores implement image and video

processing algorithms where final outputs are either images or

videos prepared for human consumptions. This fact enables us

to use approximations for improving the speed/energy

efficiency. This originates from the limited perceptual abilities

of human beings in observing an image or a video. In addition

to the image and video processing applications, there are other

areas where the exactness of the arithmetic operations is not

critical to the functionality of the system (see [3], [4]). Being

able to use the approximate computing provides the designer

with the ability of making tradeoffs between the accuracy and

the speed as well as power/energy consumption [2], [5].

 Applying the approximation to the arithmetic units can

be performed at different design abstraction levels including

circuit, logic, and architecture levels, as well as algorithm

and software layers [2]. The approximation may be performed

using different techniques such as allowing some timing

violations(e.g., voltage over-scaling or over-clocking) and

function approximation methods (e.g., modifying the Boolean

function of a circuit) or a combination of them [4], [5]. In the

category of function approximation methods, a number of

approximating arithmetic building blocks, such as adders and

multipliers, at different design levels have been suggested (see

[6]–[8]).

 In this paper, we focus on proposing a high-speed low-

power/energy yet approximate multiplier appropriate for error

the Malla Reddy Engineering College in Hyderabad, India. The conference will

cover areas like Computer Science and Engineering, Information Technology,

Electronics and Communication Engineering, Mechanical Engineering and

Aerospace and many more.

RoBA Multiplier: A Rounding-Based Approximate

Multiplier for High-Speed yet Energy-Efficient

Digital Signal Processing (December2020)
Manchiryala Manogna, M.tech, Dept. of ECE, manchiryalamanogna369@gmail.com,mrce.in, PG

Student of Malla Reddy College of Engineering, MRCE, Maisammaguda, Hyderabad.

E

2

resilient DSP applications. The proposed approximate

multiplier, which is also area efficient, is constructed by

modifying the conventional multiplication approach at the

algorithm level assuming rounded input values. We call this

rounding-based approximate (RoBA) multiplier. The proposed

multiplication approach is applicable to both signed and

unsigned multiplications for which three optimized

architectures are presented. The efficiencies of these structures

are assessed by comparing the delays, power and energy

consumptions, energy-delay products (EDPs), and areas with

those of some approximate and accurate (exact) multipliers.

The contributions of this paper can be summarized as follows:

 1) presenting a new scheme for RoBA multiplication by

 modifying the conventional multiplication approach;

 2) describing three hardware architectures of the proposed

 approximate multiplication scheme for sign and unsigned

 operations.

The rest of this paper is organized as follows. Section II

discusses the related works about approximate multipliers. The

proposed scheme of the approximate multiplication, its

hardware implementations, and its accuracy results are

presented in Section III. In Section IV, the characteristics of the

proposed approximate multiplier compared with the accurate

and approximate multipliers, and also its effectiveness in image

processing applications are studied. Finally, the conclusion is
drawn in Section V.

II. PRIOR WORKS

 In this section, some of the previous works in the field of

approximate multipliers are briefly reviewed. In [3], an

approximate multiplier and an approximate adder based on a

technique named broken-array multiplier (BAM) were

proposed. By applying the BAM approximation method of [3]

to the conventional modified Booth multiplier, an approximate

signed Booth multiplier was presented in [5]. The approximate

multiplier provided power consumption savings from 28% to

58.6% and area reductions from 19.7% to 41.8% for different

word lengths in comparison with a regular Booth multiplier.

Kulkarni et al. [6] suggested an approximate multiplier

consisting of a number of 2 × 2 inaccurate building blocks that

saved the power by 31.8%–45.4% over an accurate multiplier.

 An approximate signed 32-bit multiplier for speculation

purposes in pipelined processors was designed in [7]. It was

20% faster than a full-adder-based tree multiplier while having

a probability of error of around 14%. In [8], an error-tolerant

multiplier, which computed the approximate result by dividing

the multiplication into one accurate and one approximate part,

was introduced, in which the accuracies for different bit widths

were reported. In the case of a 12-bit multiplier, a power saving

of more than 50% was reported. In [9], two approximate 4:2

compressors for utilizing in a regular Dadda multiplier were

designed and analyzed.

 The use of approximate multipliers in image processing

applications, which leads to reductions in power consumption,

delay, and transistor count compared with those of an exact

multiplier design, has been discussed in the literature. In [10],

an accuracy-configurable multiplier architecture (ACMA) was

suggested for error-resilient systems. To increase its

throughput, the ACMA made use of a technique called carry-in

prediction that worked based on a pre-computation logic.

When compared with the exact one, the proposed approximate

multiplication resulted in nearly 50% reduction in the latency

by reducing the critical path. Also, Bhardwaj et al.

[11]presented an approximate Wallace tree multiplier

(AWTM). Again, it invoked the carry-in prediction to reduce

the critical path. In this work, AWTM was used in a real-time

benchmark image application showing about 40% and 30%

reductions in the power and area, respectively, without any

image quality loss compared with the case of using an accurate

Wallace tree multiplier (WTM) structure.

 In [12], approximate unsigned multiplication and division

based on an approximate logarithm of the operands have been

proposed. In the proposed multiplication, the summation of the

approximate logarithms determines the result of the operation.

Hence, the multiplication is simplified to some shift and add

operations. In [13], a method for increasing the accuracy of the

multiplication approach of [12] was proposed.

It was based on the decomposition of the input operands. This

method considerably improved the average error at the price

of increasing the hardware of the approximate multiplier by

about two times.

 In [16], a dynamic segment method (DSM) is presented,
which performs the multiplication operation on an m-bit

segment starting from the leading one bit of the input operands.

 A dynamic range unbiased multiplier (DRUM) multiplier,

which selects an m-bit segment starting from the leading one

bit of the input operands and sets the least significant bit of

the truncated values to one, has been proposed in [17]. In this

structure, the truncated values are multiplied and shifted to

left to generate the final output. In [18], an approximate 4×4

WTM has been proposed that uses an inaccurate 4:2 counter.

In addition, an error correction unit for correcting the outputs

has been suggested. To construct larger multipliers, this 4×4

inaccurate Wallace multiplier can be used in an array structure.

 Most of the previously proposed approximate multipliers

are based on either modifying the structure or complexity

reduction of a specific accurate multiplier. In this paper, similar

to [12], we propose performing the approximate multiplication

through simplifying the operation. The difference between our

and [12] is that, although the principles in both works are almost

similar for unsigned numbers, the mean error of our proposed

approach is smaller. In addition, we suggest some

approximation techniques when the multiplication is performed

for signed numbers.

III. PROPOSED APPROXIMATE MULTIPLIER

Multiplication Algorithm of RoBA Multiplier

 The main idea behind the proposed approximate multiplier is

to make use of the ease of operation when the numbers are two

to the power n (2n). To elaborate on the operation of the

approximate multiplier, first, let us denote the rounded numbers

of the input of A and B by Ar and Br, respectively. The

multiplication of A by B may be rewritten as

 A × B = (Ar − A) × (Br − B) + Ar × B

 + Br × A − Ar × Br. (1)

 The key observation is that the multiplications of Ar × Br, Ar

3

×B, and Br ×A may be implemented just by the shift operation.

The hardware implementation of (Ar − A) × (Br − B),however,

is rather complex. The weight of this term in the final result,

which depends on differences of the exact numbers from their

rounded ones, is typically small. Hence, we propose to omit this

part from(1), helping simplify the multiplication operation.

Hence, to perform the multiplication process, the following

expression is used:

 A × B = Ar × B + Br × A − Ar × Br. (2)

 Thus, one can perform the multiplication operation using three

shift and two addition/subtraction operations. In this approach,

the nearest values for A and B in the form of 2n should be

determined. When the value of A (or B) is equal to the 3 × 2p−2

(where p is an arbitrary positive integer larger than one), it has

two nearest values in the form of 2n with equal absolute

differences that are 2p and 2p−1. While both values lead to the

same effect on the accuracy of the proposed multiplier,

selecting the larger one (except for the case of p = 2) leads to a

smaller hardware implementation for determining the nearest

rounded value, and hence, it is considered in this paper. It

originates from the fact that the numbers in the form of 3 × 2p−2

are considered as do not care in both rounding up and down

simplifying the process, and smaller logic expressions may be

achieved if they are used in the rounding up.

 The only exception is for three, which in this case, two is
considered as its nearest value in the proposed approximate

multiplier. It should be noted that contrary to the previous work

where the approximate result is smaller than the exact result,

the final result calculated by the ROBA multiplier may be

either larger or smaller than the exact result depending on the

magnitudes of Ar and Br compared with those of A and B,

respectively. Note that if one of the operands (say A) is smaller

than its corresponding rounded larger than the exact result. This

is due to the fact that, in this case, the multiplication result of

(Ar − A) × (Br − B) will be negative. Since the difference

between (1) and (2) is precisely this product, the approximate

result becomes larger than the exact one. Similarly, if both A

and B are larger or both are smaller than Ar and Br, then

approximate result will be smaller than the exact result.

 Finally, it should be noted the advantage of the proposed

RoBA multiplier exists only for positive inputs because in the

two’s complement representation, the rounded values of

negative inputs are not in the form of 2n. Hence, we suggest

that, before the multiplication operation starts, the absolute

values of both inputs and the output sign of the multiplication

result based on the inputs signs be determined and then the

operation be performed for unsigned numbers and, at the last

stage, the proper sign be applied to the unsigned result. The

hardware implementation of the proposed approximate

multiplier is explained next.

IV. HARDWARE IMPLEMENTATION OF RoBA MULTIPLIER

A. Signed RoBA Multiplier

Based on (2), we provide the block diagram for the hardware

implementation of the proposed multiplier in Fig. 1 where

the inputs are represented in two’s complement format. First,

the signs of the inputs are determined, and for each negative

value, the absolute value is generated. Next, the rounding block

extracts the nearest value for each absolute value in the formof

2n. It should be noted that the bit width of the output of this

block is n (the most significant bit of the absolute value

of an n-bit number in the two’s complement format is zero).

fig.Block diagram for the hardware implementation of the

proposed signed multiplier.

To find the nearest value of input A, we use the following

equation to determine each output bit of the rounding block:

Ar [n−1] = A[n−1] · A[n−2] · A[n−3]+ A[n−1] · A[n − 2]

Ar [n−2] = (A[n−2] · A[n−3] · A[n−4]

 + A[n−2] · A[n − 3]) ·A[n − 1]

.

.

.

Ar [i] = (A[i] · A[i−1] · A[i−2]+ A[i] · A[i−1]) ·

∏ 𝐴[𝑖]⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑛−1

𝑖=𝑖+1

.

.

.

Ar [3] = (A[3] · A[2] · A[1] + A[3] · A[2]) ·

∏𝐴[𝑖]⃗⃗ ⃗⃗ ⃗⃗ ⃗
𝑛−1

𝑖=4

Ar [2] = A[2] · A[1] ·∏ 𝐴[𝑖]𝑛−1
𝑖=3

Ar [1] = A[1] ·∏ 𝐴[𝑖]𝑛−1
𝑖=2

Ar [0] = A[0] ·∏ 𝐴[𝑖]𝑛−1
𝑖=1 (3)

In the proposed equation, Ar [i] is one in two cases. In the

first case, A[i] is one and all the bits on its left side are zero

while A[i − 1] is zero. In the second case, when A[i] and

all its left-side bits are zero, A[i − 1] and A[i − 2] are both

one. Having determined the rounding values, using three barrel

shifter blocks, the products Ar × Br , Ar × B, and Br × A are

calculated. Hence, the amount of shifting is determined based

on log2 𝐴𝑟− 1 (or log2 𝐵𝑟− 1) in the case of A (or B) operand.

Here, the input bit width of the shifter blocks is n, while their

outputs are 2n.

 A single 2n-bit Kogge-Stone adder is used to calculate the

summation of Ar × B and Br × A. The output of this adder

4

and the result of Ar × Br are the inputs of the subtractor block

whose output is the absolute value of the output of the proposed

multiplier. Because Ar and Br are in the form of 2n,the inputs

of the subtractor may take one of the three input patterns shown

in Table I. The corresponding output pattern

are also shown in Table I.

The forms of the inputs and output inspired us to conceive

a simple circuit based on the following expression:

out = (P XOR Z) AND ({(P _ 1) XOR (P XOR Z)} or

{(P AND Z) _ 1}) (4)

where P is Ar × B + Br × A and Z is Ar × Br. The corresponding

circuit for implementing this expression is smaller and faster

than the conventional subtraction circuit.

 Finally, if the sign of the final multiplication result should be

negative, the output of the subtractor will be negated in the sign

set block. To negate values, which have the two’s complement

representation, the corresponding circuit based on X¯ +1 should

be used. To increase the speed of negation operation one may

skip the incrementation process in the negating phase accepting

it's associated error. As will be seen later, the significance of

the error decreases as the input widths increases. In this paper,

if the negation is performed exactly (approximately), the

implementation is called signed RoBA (S-RoBA)multiplier

[approximate S-RoBA (AS-RoBA) multiplier].

B. Un-Signed RoBA Multiplier

fig. Block diagram for the hardware implementation of the

proposed un-signed multiplier

 we provide the block diagram for the hardware

implementation of the proposed multiplier in Fig. where the

inputs are given to rounding block. Next, the rounding block

extracts the nearest value for each absolute value in the form of

2^n. It should be noted that the bit width of the output of this

block is n (the most significant bit of the absolute value of an n-

bit number in the two’s complement format is zero).

 Having determined the rounding values, using three barrel

shifter blocks, the products Ar × Br, Ar × B, and Br × A are

calculated. Hence, the amount of shifting is determined based

on logAr2 − 1 (or logBr2 − 1) in the case of A (or B) operand.

Here, the input bit width of the shifter blocks is n, while their

outputs are 2n.

 A single 2n-bit Brent-kung adder is used to calculate the

summation of Ar × B and Br × A. The output of this adder and

the result of Ar × Br are the inputs of the subtractor block whose

output is the absolute value of the output of the proposed

multiplier. Because Ar and Br are in the form of 2n,the inputs

of the subtractor may take one of the three input patterns shown

in Table 3.1.

 In the case where the inputs are always positive, to increase the

speed and reduce the power consumption, the sign detector and

sign set blocks are omitted from the architecture, providing us

with the architecture called unsigned RoBA (U-RoBA)

multiplier. In this case, the output width of the rounding block

is n + 1 where this bit is determined based on Ar[n] = A[n − 1]

· A[n − 2]. This is because in the case of unsigned 11x ... x

(where x denotes do not care) with the bit width of n, its

rounding value is 10…0 with the bit width of n + 1. Therefore,

the input bit width of the shifters is n + 1. However, because the

maximum amount of shifting is n − 1, 2n is considered for the

output bit width of the shifters.

V. RESULTS AND DISCUSSION

A. HDL Synthesis Report for Existing and Proposed RoBA

Multipliers:

5

B. Timing Delays for Existing and Proposed RoBA

Multipliers:

C. Comparision Table:

 From the above reports, We can conclude that in the

proposed Approximate Un-Signed and Signed RoBA

Multiplier the number of gates and the delay has been reduced

compared to accurate multiplier.

 Hence,Design complexity is less. It is applicable to both

signed and unsigned multiplications. The mean error is smaller,

compared to other multipliers. Area has been reduced. The

number of gates has been reduced compared to accurate

multiplier.

V1.CONCLUSION

 We proposed a high-speed yet energy efficient approximate

multiplier called RoBA multiplier. The proposed multiplier,

which had high accuracy, was based on rounding of the inputs

in the form of 2^n. In this way, the computational intensive part

of the multiplication was omitted improving speed and energy

consumption at the price of a small error. The proposed

approach is applicable to both signed and unsigned

multiplications. The efficiencies of the proposed multipliers

were evaluated by comparing them with those of approximate

RoBA and accurate RoBA multipliers using different design

parameters. The results revealed that,in most (all) cases, the

RoBA multiplier architectures outperformed the corresponding

approximate (exact) multipliers. The comparison revealed

almost same image qualities as those of exact multiplication

algorithms.

REFERENCES

[1] M. Alioto, “Ultra-low power VLSI circuit design

demystified and explained: A tutorial,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 59,no. 1, pp. 3–29, Jan. 2012.

[2] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy,

“Low-power digital signal processing using approximate

adders,” IEEE Trans. Comput.-Aided Design Integr. Circuits

Syst., vol. 32, no. 1, pp. 124–137,Jan. 2013.

[3] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas,

“Bio-inspired imprecise computational blocks for efficient

6

VLSI implementation of soft-computing applications,” IEEE

Trans. Circuits Syst. I, Reg. Papers,

vol. 57, no. 4, pp. 850–862, Apr. 2010.

[4] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan,

“MACACO: Modeling and analysis of circuits for approximate

computing,” in Proc. Int. Conf. Comput.-Aided Design, Nov.

2011, pp. 667–673.

[5] F. Farshchi, M. S. Abrishami, and S. M. Fakhraie, “New

approximate multiplier for low power digital signal

processing,” in Proc. 17th Int. Symp. Comput. Archit. Digit.

Syst. (CADS), Oct. 2013, pp. 25–30.

[6] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy

for power with an under designed multiplier architecture,” in

Proc. 24th Int. Conf. VLSI Design, Jan. 2011, pp. 346–351.

[7] D. R. Kelly, B. J. Phillips, and S. Al-Sarawi, “Approximate

signed binary integer multipliers for arithmetic data value

speculation,” in Proc. Conf. Design Archit. Signal Image

Process., 2009, pp. 97–104.

[8] K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power high-

speed multiplier for error-tolerant application,” in Proc. IEEE

Int. Conf. Electron evices Solid-State Circuits (EDSSC), Dec.

2010, pp. 1–4.

[9] A. Momeni, J. Han, P. Montuschi, and F. Lombardi,

“Design and analysis of approximate compressors for

multiplication,” IEEE Trans. Comput., vol. 64, no. 4, pp. 984–
994, Apr. 2015.

[10] K. Bhardwaj and P. S. Mane, “ACMA: Accuracy-

configurable multiplier

architecture for error-resilient system-on-chip,” in Proc. 8th

Int.

Workshop Reconfigurable Commun.-Centric Syst.-Chip, 2013,

pp. 1–6.

[11] K. Bhardwaj, P. S. Mane, and J. Henkel, “Power- and

area-efficient approximate wallace tree multiplier for error-

resilient systems,” in Proc. 15th Int. Symp. Quality Electron.

Design (ISQED), 2014, pp. 263–269.

[12] J. N. Mitchell, “Computer multiplication and division

using binary logarithms,” IRE Trans. Electron. Comput., vol.

EC-11, no. 4, pp. 512–517, Aug. 1962.

[13] V. Mahalingam and N. Ranganathan, “Improving accuracy

in Mitchell’s ogarithmic multiplication using operand

decomposition,” IEEE Trans. Comput., vol. 55, no. 12, pp.

1523–1535, Dec. 2006.

[14] Nangate 45nm Open Cell Library, accessed on 2010.

[Online]. Available: http://www.nangate.com/

[15] H. R. Myler and A. R. Weeks, The Pocket Handbook of

Image Processing Algorithms in C. Englewood Cliffs, NJ,

USA: Prentice-Hall, 2009.

[16] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park,

and N. S. Kim,

“Energy-efficient approximate multiplication for digital signal

processing

and classification applications,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1180–1184, Jun. 2015.

[17] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A

dynamic range

unbiased multiplier for approximate applications,” in Proc.

IEEE/ACM

Int. Conf. Comput.-Aided Design (ICCAD), Austin, TX, USA,

2015,

pp. 418–425.

[18] C.-H. Lin and I.-C. Lin, “High accuracy approximate

multiplier with

error correction,” in Proc. 31st Int. Conf. Comput. Design
(ICCD), 2013,

MANCHIRYALA MANOGNA is currently pursuing Post

Graduation in Malla Reddy college of Engineering(MRCE),

Maisammaguda, Hyderabad and completed completed her

Under Graduation student of Kakatiya Institute of

Technology and Science for Women(KITSW) Implemented

this paper as her project during her under graduation and

continued works in the post graduation and submitted

paper for the conference in the ICTIMES 2020 held at

Malla Reddy college of Engineering. .

