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Abstract—In this paper, we propose an 

approximate multiplier that is high speed yet energy 

efficient. Now-a-days, Energy minimization is one 

of the main design requirements especially in the 

portable gadgets i.e., smart phones, tablets and so 

on. In these types of gadgets, DSP blocks are key 

components, where the computational core of these 

blocks is the arithmetic logic unit where 

multiplications have a greatest share. So, by the use 

of the multipliers the computational part of 

multiplications is omitted by improving the speed 

and power/efficiency characteristics of multipliers 

as it plays a key role. In this, the approach is to 

round the operands to nearest exponent of two. By 

this approximations are made for improving the 

speed and efficiency. Since the final outputs are 

used in two Image processing applications, i.e., 

image sharpening and smoothing. This can be 

performed at different design abstraction levels i.e., 

circuit, logic and architecture levels using different 

techniques, here we use function approximation 

method (e.g., modifying the Boolean function of a 

circuit), a number of approximating arithmetic 

building blocks, such as adders, multipliers have 

been suggested. Finally, It has added advantage 

that it can be used as common multiplier design for 

both signed and un-signed operations and reduces 

logic size and facilitates with less power and delay. 

Here we are using Verilog HDL and Xilinx ISE14.8 

software tools for simulation and synthesis purpose. 
 

Index Terms—Accuracy, approximate computing, energy 

efficient, error analysis, high speed, multiplier. 
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I. INTRODUCTION 

NERGY minimization is one of the main design 

requirements in almost any electronic systems, 

especially the portable ones such as smart phones, 

tablets, and different gadgets [1]. It is highly desired to achieve 

this minimization with minimal performance (speed) penalty 

[1]. Digital signal processing (DSP) blocks are key components 

of these portable devices for realizing various multimedia 

applications. The computational core of these blocks is the 

arithmetic logic unit where multiplications have the greatest 

share among all arithmetic operations performed in these DSP 

systems [2]. Therefore, improving the speed and power/energy-

efficiency characteristics of multipliers plays a key role in 

improving the efficiency of processors. 

 Many of the DSP cores implement image and video 

processing algorithms where final outputs are either images or 

videos prepared for human consumptions. This fact enables us 

to use approximations for improving the speed/energy 

efficiency. This originates from the limited perceptual abilities 

of human beings in observing an image or a video. In addition 

to the image and video processing applications, there are other 

areas where the exactness of the arithmetic operations is not 

critical to the functionality of the system (see [3], [4]). Being 

able to use the approximate computing provides the designer 

with the ability of making tradeoffs between the accuracy and 

the speed as well as power/energy consumption [2], [5]. 

 Applying the approximation to the arithmetic units can 

be performed at different design abstraction levels including 

circuit, logic, and architecture levels, as well as algorithm 

and software layers [2]. The approximation may be performed 

using different techniques such as allowing some timing 

violations(e.g., voltage over-scaling or over-clocking) and 

function approximation methods (e.g., modifying the Boolean 

function of a circuit) or a combination of them [4], [5]. In the 

category of function approximation methods, a number of 

approximating arithmetic building blocks, such as adders and 

multipliers, at different design levels have been suggested (see 

[6]–[8]). 

 In this paper, we focus on proposing a high-speed low-

power/energy yet approximate multiplier appropriate for error 
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resilient DSP applications. The proposed approximate 

multiplier, which is also area efficient, is constructed by 

modifying the conventional multiplication approach at the 

algorithm level assuming rounded input values. We call this 

rounding-based approximate (RoBA) multiplier. The proposed 

multiplication approach is applicable to both signed and 

unsigned multiplications for which three optimized 

architectures are presented. The efficiencies of these structures 

are assessed by comparing the delays, power and energy 

consumptions, energy-delay products (EDPs), and areas with 

those of some approximate and accurate (exact) multipliers. 

The contributions of this paper can be summarized as follows: 

 1) presenting a new scheme for RoBA multiplication by 

        modifying the conventional multiplication approach; 

 2) describing three hardware architectures of the proposed 

        approximate multiplication scheme for sign and unsigned                

    operations. 

The rest of this paper is organized as follows. Section II 

discusses the related works about approximate multipliers. The 

proposed scheme of the approximate multiplication, its 

hardware implementations, and its accuracy results are 

presented in Section III. In Section IV, the characteristics of the 

proposed approximate multiplier compared with the accurate 

and approximate multipliers, and also its effectiveness in image 

processing applications are studied. Finally, the conclusion is 
drawn in Section V. 

 

II. PRIOR WORKS 

 In this section, some of the previous works in the field of 

approximate multipliers are briefly reviewed. In [3], an 

approximate multiplier and an approximate adder based on a 

technique named broken-array multiplier (BAM) were 

proposed. By applying the BAM approximation method of [3] 

to the conventional modified Booth multiplier, an approximate 

signed Booth multiplier was presented in [5]. The approximate 

multiplier provided power consumption savings from 28% to 

58.6% and area reductions from 19.7% to 41.8% for different 

word lengths in comparison with a regular Booth multiplier. 

Kulkarni et al. [6] suggested an approximate multiplier 

consisting of a number of 2 × 2 inaccurate building blocks that 

saved the power by 31.8%–45.4% over an accurate multiplier. 

 An approximate signed 32-bit multiplier for speculation 

purposes in pipelined processors was designed in [7]. It was 

20% faster than a full-adder-based tree multiplier while having 

a probability of error of around 14%. In [8], an error-tolerant 

multiplier, which computed the approximate result by dividing 

the multiplication into one accurate and one approximate part, 

was introduced, in which the accuracies for different bit widths 

were reported. In the case of a 12-bit multiplier, a power saving 

of more than 50% was reported. In [9], two approximate 4:2 

compressors for utilizing in a regular Dadda multiplier were 

designed and analyzed. 

 The use of approximate multipliers in image processing 

applications, which leads to reductions in power consumption, 

delay, and transistor count compared with those of an exact 

multiplier design, has been discussed in the literature. In [10], 

an accuracy-configurable multiplier architecture (ACMA) was 

suggested for error-resilient systems. To increase its 

throughput, the ACMA made use of a technique called carry-in 

prediction that worked based on a pre-computation logic. 

When compared with the exact one, the proposed approximate 

multiplication resulted in nearly 50% reduction in the latency 

by reducing the critical path. Also, Bhardwaj et al. 

[11]presented an approximate Wallace tree multiplier 

(AWTM). Again, it invoked the carry-in prediction to reduce 

the critical path. In this work, AWTM was used in a real-time 

benchmark image application showing about 40% and 30%  

reductions in the power and area, respectively, without any 

image quality loss compared with the case of using an accurate 

Wallace tree multiplier (WTM) structure. 

 In [12], approximate unsigned multiplication and division 

based on an approximate logarithm of the operands have been 

proposed. In the proposed multiplication, the summation of the 

approximate logarithms determines the result of the operation. 

Hence, the multiplication is simplified to some shift and add 

operations. In [13], a method for increasing the accuracy of the 

multiplication approach of [12] was proposed. 

It was based on the decomposition of the input operands. This 

method considerably improved the average error at the price 

of increasing the hardware of the approximate multiplier by 

about two times. 

 In [16], a dynamic segment method (DSM) is presented, 
which performs the multiplication operation on an m-bit 

segment starting from the leading one bit of the input operands. 

 A dynamic range unbiased multiplier (DRUM) multiplier, 

which selects an m-bit segment starting from the leading one 

bit of the input operands and sets the least significant bit of 

the truncated values to one, has been proposed in [17]. In this 

structure, the truncated values are multiplied and shifted to 

left to generate the final output. In [18], an approximate 4×4 

WTM has been proposed that uses an inaccurate 4:2 counter. 

In addition, an error correction unit for correcting the outputs 

has been suggested. To construct larger multipliers, this 4×4 

inaccurate Wallace multiplier can be used in an array structure. 

 Most of the previously proposed approximate multipliers 

are based on either modifying the structure or complexity 

reduction of a specific accurate multiplier. In this paper, similar 

to [12], we propose performing the approximate  multiplication 

through simplifying the operation. The difference between our 

and [12] is that, although the principles in both works are almost 

similar for unsigned numbers, the mean error of our proposed 

approach is smaller. In addition, we suggest some 

approximation techniques when the multiplication is performed 

for signed numbers. 

 

 

III. PROPOSED APPROXIMATE MULTIPLIER 

Multiplication Algorithm of  RoBA Multiplier 

   The main idea behind the proposed approximate multiplier is 

to make use of the ease of operation when the numbers are two 

to the power n (2n). To elaborate on the operation of the   

approximate multiplier, first, let us denote the rounded numbers 

of the input of A and B by Ar  and  Br, respectively. The  

multiplication of A by B may be rewritten as 

          A × B = (Ar − A) × (Br − B) + Ar × B  

                     + Br × A − Ar ×  Br.                                 (1) 

   The key observation is that the multiplications of Ar × Br, Ar 
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×B, and Br ×A may be implemented just by the shift operation. 

The hardware implementation of (Ar − A) × (Br − B),however, 

is rather complex. The weight of this term in the final result, 

which depends on differences of the exact numbers from their 

rounded ones, is typically small. Hence, we propose to omit this 

part from(1), helping simplify the multiplication operation. 

Hence, to perform the multiplication process, the following 

expression is used: 

          A × B = Ar × B + Br × A − Ar × Br.                     (2)                                               

  Thus, one can perform the multiplication operation using three 

shift and two addition/subtraction operations. In this approach, 

the nearest values for A and B in the form of 2n should be 

determined. When the value of A (or B) is equal to the 3 × 2p−2 

(where p is an arbitrary positive integer larger than one), it has 

two nearest values in the form of  2n  with equal absolute 

differences that are 2p and 2p−1. While both values lead to the 

same effect on the accuracy of the proposed multiplier, 

selecting the larger one (except for the case of p = 2) leads to a 

smaller hardware implementation for determining the nearest 

rounded value, and hence, it is considered in this paper. It 

originates from the fact that the numbers in the form of 3 × 2p−2 

are considered as do not care in both rounding up and down 

simplifying the process, and smaller logic expressions may be 

achieved if they are used in the rounding up. 

  The only exception is for three, which in this case, two is 
considered as its nearest value in the proposed approximate 

multiplier. It should be noted that contrary to the previous work 

where the approximate result is smaller than the exact result, 

the final  result calculated by the ROBA multiplier may be 

either larger  or smaller than the exact result depending on the 

magnitudes of Ar and Br compared with those of A and B, 

respectively. Note that if one of the operands (say A) is smaller 

than its corresponding rounded larger than the exact result. This 

is due to the fact that, in this case, the multiplication result of 

(Ar − A) × (Br − B) will be negative. Since the difference 

between (1) and (2) is precisely this product, the approximate 

result becomes larger than the exact one. Similarly, if both A 

and B are larger or both are smaller than Ar and Br, then 

approximate result will be smaller than the exact result. 

  Finally, it should be noted the advantage of the proposed 

RoBA multiplier exists only for positive inputs because in the 

two’s complement representation, the rounded values of 

negative inputs are not in the form of 2n. Hence, we suggest 

that, before the multiplication operation starts, the absolute 

values of both inputs and the output sign of the multiplication 

result based on the inputs signs be determined and then the 

operation be performed for unsigned numbers and, at the last 

stage, the proper sign be applied to the unsigned result. The 

hardware implementation of the proposed approximate 

multiplier is explained next. 

 

 

 

 
IV. HARDWARE IMPLEMENTATION OF RoBA MULTIPLIER 

 

A. Signed RoBA Multiplier 

Based on (2), we provide the block diagram for the hardware 

implementation of the proposed multiplier in Fig. 1 where 

the inputs are represented in two’s complement format. First, 

the signs of the inputs are determined, and for each negative 

value, the absolute value is generated. Next, the rounding block 

extracts the nearest value for each absolute value in the formof 

2n. It should be noted that the bit width of the output of this 

block is n (the most significant bit of the absolute value 

of an n-bit number in the two’s complement format is zero). 

 

 
fig.Block diagram for the hardware implementation of the 

proposed signed multiplier. 

To find the nearest value of input A, we use the following 

equation to determine each output bit of the rounding block: 

Ar [n−1] = A[n−1] · A[n−2] · A[n−3]+ A[n−1] · A[n − 2] 

Ar [n−2] = (A[n−2] · A[n−3] · A[n−4] 

                           + A[n−2] · A[n − 3]) ·A[n − 1] 

. 

. 

. 

 

Ar [i] = (A[i] · A[i−1] · A[i−2]+ A[i] · A[i−1]) · 

∏ 𝐴[𝑖]⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑛−1

𝑖=𝑖+1

 

. 

. 

. 

 

Ar [3] = (A[3] · A[2] · A[1] + A[3] · A[2]) · 

∏𝐴[𝑖]⃗⃗ ⃗⃗ ⃗⃗  ⃗
𝑛−1

𝑖=4

 

 

Ar [2] = A[2] · A[1] ·∏ 𝐴[𝑖]𝑛−1
𝑖=3  

 

Ar [1] = A[1] ·∏ 𝐴[𝑖]𝑛−1
𝑖=2  

 

Ar [0] = A[0] ·∏ 𝐴[𝑖]𝑛−1
𝑖=1                                                     (3) 

In the proposed equation, Ar [i ] is one in two cases. In the 

first case, A[i ] is one and all the bits on its left side are zero 

while A[i − 1] is zero. In the second case, when A[i] and 

all its left-side bits are zero, A[i − 1] and A[i − 2] are both 

one. Having determined the rounding values, using three barrel 

shifter blocks, the products Ar × Br , Ar × B, and Br × A are 

calculated. Hence, the amount of shifting is determined based 

on log2 𝐴𝑟− 1 (or log2 𝐵𝑟− 1) in the case of A (or B) operand. 

Here, the input bit width of the shifter blocks is n, while their 

outputs are 2n. 

 A single 2n-bit Kogge-Stone adder is used to calculate the 

summation of Ar × B and Br × A. The output of this adder 
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and the result of Ar × Br are the inputs of the subtractor block 

whose output is the absolute value of the output of the proposed 

multiplier. Because Ar and Br are in the form of 2n,the inputs 

of the subtractor may take one of the three input patterns shown 

in Table I. The corresponding output pattern  

are also shown in Table I. 

The forms of the inputs and output inspired us to conceive 

a simple circuit based on the following expression: 

out = (P XOR Z) AND ({(P _ 1) XOR (P XOR Z)} or 

{(P AND Z) _ 1})                                                   (4) 

where P is Ar × B + Br × A and Z is Ar × Br. The corresponding 

circuit for implementing this expression is smaller and faster 

than the conventional subtraction circuit. 

 Finally, if the sign of the final multiplication result should be 

negative, the output of the subtractor will be negated in the sign 

set block. To negate values, which have the two’s complement 

representation, the corresponding circuit based on X¯ +1 should 

be used. To increase the speed of negation operation one may 

skip the incrementation process in the negating phase accepting 

it's  associated error. As will be seen later, the significance of 

the error decreases as the input widths increases. In this paper, 

if the negation is performed exactly (approximately), the 

implementation is called signed RoBA (S-RoBA)multiplier 

[approximate S-RoBA (AS-RoBA) multiplier]. 
 
B. Un-Signed RoBA Multiplier  

 

fig. Block diagram for the hardware implementation of the 

proposed un-signed multiplier 

 

       we provide the block diagram for the hardware 

implementation of the proposed multiplier in Fig.  where the 

inputs are given to rounding block. Next, the rounding block 

extracts the nearest value for each absolute value in the form of 

2^n. It should be noted that the bit width of the output of this 

block is n (the most significant bit of the absolute value of an n-

bit number in the two’s complement format is zero). 

       Having determined the rounding values, using three barrel 

shifter blocks, the products Ar × Br, Ar × B, and Br × A are 

calculated. Hence, the amount of shifting is determined based 

on logAr2 − 1 (or logBr2 − 1) in the case of A (or B) operand. 

Here, the input bit width of the shifter blocks is n, while their 

outputs are 2n. 

        A single 2n-bit Brent-kung adder is used to calculate the 

summation of Ar × B and Br × A. The output of this adder and 

the result of Ar × Br are the inputs of the subtractor block whose 

output is the absolute value of the output of the proposed 

multiplier. Because Ar and Br are in the form of 2n,the inputs 

of the subtractor may take one of the three input patterns shown 

in Table 3.1. 

 In the case where the inputs are always positive, to increase the 

speed and reduce the power consumption, the sign detector and 

sign set blocks are omitted from the architecture, providing us 

with the architecture called unsigned RoBA (U-RoBA) 

multiplier. In this case, the output width of the rounding block 

is n + 1 where this bit is determined based on Ar[n] = A[n − 1] 

· A[n − 2]. This is because in the case of unsigned 11x ... x 

(where x denotes do not care) with the bit width of n, its 

rounding value is 10…0 with the bit width of n + 1. Therefore, 

the input bit width of the shifters is n + 1. However, because the 

maximum amount of shifting is n − 1, 2n is considered for the 

output bit width of the shifters. 
 

V. RESULTS AND DISCUSSION 

 

A.   HDL Synthesis Report for Existing and Proposed RoBA 

Multipliers: 
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B. Timing Delays for Existing and Proposed RoBA 

Multipliers: 

 

 

 

C. Comparision Table: 

 

 From the above reports, We can conclude that in the 

proposed Approximate Un-Signed and Signed RoBA 

Multiplier the number of gates and the delay  has been reduced 

compared to accurate multiplier. 

 Hence,Design complexity is less. It is applicable to both 

signed and unsigned multiplications. The mean error is smaller, 

compared to other multipliers. Area has been reduced. The 

number of gates has been reduced compared to accurate 

multiplier. 

 

V1.CONCLUSION 

 We proposed a high-speed yet energy efficient approximate 

multiplier called RoBA multiplier. The proposed multiplier, 

which had high accuracy, was based on rounding of the inputs 

in the form of 2^n. In this way, the computational intensive part 

of the multiplication was omitted improving speed and energy 

consumption at the price of a small error. The proposed 

approach is applicable to both signed and unsigned 

multiplications. The efficiencies of the proposed multipliers 

were evaluated by comparing  them with those of approximate 

RoBA and accurate RoBA multipliers using different design 

parameters. The results revealed that,in most (all) cases, the 

RoBA multiplier architectures outperformed the corresponding 

approximate (exact) multipliers. The comparison revealed 

almost same image qualities as those of exact multiplication 

algorithms. 

 

 

REFERENCES 

[1] M. Alioto, “Ultra-low power VLSI circuit design 

demystified and explained: A tutorial,” IEEE Trans. Circuits 

Syst. I, Reg. Papers, vol. 59,no. 1, pp. 3–29, Jan. 2012. 

[2] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, 

“Low-power digital signal processing using approximate 

adders,” IEEE Trans. Comput.-Aided Design Integr. Circuits 

Syst., vol. 32, no. 1, pp. 124–137,Jan. 2013. 

[3] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, 

“Bio-inspired imprecise computational blocks for efficient 



 

 
6 

VLSI implementation of soft-computing applications,” IEEE 

Trans. Circuits Syst. I, Reg. Papers, 

vol. 57, no. 4, pp. 850–862, Apr. 2010. 

[4] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, 

“MACACO: Modeling and analysis of circuits for approximate 

computing,” in Proc. Int. Conf. Comput.-Aided Design, Nov. 

2011, pp. 667–673. 

[5] F. Farshchi, M. S. Abrishami, and S. M. Fakhraie, “New 

approximate multiplier for low power digital signal 

processing,” in Proc. 17th Int. Symp. Comput. Archit. Digit. 

Syst. (CADS), Oct. 2013, pp. 25–30. 

[6] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy 

for power with an under designed multiplier architecture,” in 

Proc. 24th Int. Conf. VLSI Design, Jan. 2011, pp. 346–351. 

[7] D. R. Kelly, B. J. Phillips, and S. Al-Sarawi, “Approximate 

signed binary integer multipliers for arithmetic data value 

speculation,” in Proc. Conf. Design Archit. Signal Image 

Process., 2009, pp. 97–104. 

[8] K. Y. Kyaw, W. L. Goh, and K. S. Yeo, “Low-power high-

speed multiplier for error-tolerant application,” in Proc. IEEE 

Int. Conf. Electron evices Solid-State Circuits (EDSSC), Dec. 

2010, pp. 1–4. 

[9] A. Momeni, J. Han, P. Montuschi, and F. Lombardi, 

“Design and analysis of approximate compressors for 

multiplication,” IEEE Trans. Comput., vol. 64, no. 4, pp. 984–
994, Apr. 2015. 

[10] K. Bhardwaj and P. S. Mane, “ACMA: Accuracy-

configurable multiplier 

architecture for error-resilient system-on-chip,” in Proc. 8th 

Int. 

Workshop Reconfigurable Commun.-Centric Syst.-Chip, 2013, 

pp. 1–6. 

[11] K. Bhardwaj, P. S. Mane, and J. Henkel, “Power- and 

area-efficient approximate wallace tree multiplier for error-

resilient systems,” in Proc. 15th Int. Symp. Quality Electron. 

Design (ISQED), 2014, pp. 263–269. 

[12] J. N. Mitchell, “Computer multiplication and division 

using binary logarithms,” IRE Trans. Electron. Comput., vol. 

EC-11, no. 4, pp. 512–517, Aug. 1962. 

[13] V. Mahalingam and N. Ranganathan, “Improving accuracy 

in Mitchell’s ogarithmic multiplication using operand 

decomposition,” IEEE Trans. Comput., vol. 55, no. 12, pp. 

1523–1535, Dec. 2006. 

[14] Nangate 45nm Open Cell Library, accessed on 2010. 

[Online]. Available: http://www.nangate.com/ 

[15] H. R. Myler and A. R. Weeks, The Pocket Handbook of 

Image Processing Algorithms in C. Englewood Cliffs, NJ, 

USA: Prentice-Hall, 2009. 

[16] S. Narayanamoorthy, H. A. Moghaddam, Z. Liu, T. Park, 

and N. S. Kim, 

“Energy-efficient approximate multiplication for digital signal 

processing 

and classification applications,” IEEE Trans. Very Large Scale 

Integr. (VLSI) Syst., vol. 23, no. 6, pp. 1180–1184, Jun. 2015. 

[17] S. Hashemi, R. I. Bahar, and S. Reda, “DRUM: A 

dynamic range 

unbiased multiplier for approximate applications,” in Proc. 

IEEE/ACM 

Int. Conf. Comput.-Aided Design (ICCAD), Austin, TX, USA, 

2015, 

pp. 418–425. 

[18] C.-H. Lin and I.-C. Lin, “High accuracy approximate 

multiplier with 

error correction,” in Proc. 31st Int. Conf. Comput. Design 
(ICCD), 2013, 

 

MANCHIRYALA MANOGNA is currently pursuing Post 

Graduation in Malla Reddy college of Engineering(MRCE), 

Maisammaguda, Hyderabad and completed completed her 

Under Graduation student of Kakatiya  Institute of 

Technology and Science for Women(KITSW) Implemented 

this paper as her project during her under graduation and 

continued works in the post graduation and submitted 

paper for the conference in the ICTIMES 2020 held at 

Malla Reddy college of Engineering.  . 

 


