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Abstract

The background of Stevenson’s story is viewed as a stylized model of participation in a financial
pyramid. You are invited to take part in a dubious activity. If you refuse, you neither gain nor lose
anything. If you accept, you will gain if you are able to find somebody who will take your place on
exactly the same conditions, but suffer a loss otherwise. The catch is that there is a finite number
of discrete steps at which the substitution can be done, so the agent who joins in at the last step
inevitably loses. Clearly, rational agents will not agree to participate at any step. However, an
arbitrarily small probability of a “bailout,” in which case that last agent will get the same gain as
every other participant, plus an appropriately asymmetric structure of private information, change
everything, so the proposal will be accepted in a (subgame perfect) equilibrium, provided there
are sufficiently many steps ahead.

JEL Classification Numbers: D 82; C 72. MSC2010 Classifications: 91B44; 91A18; 91A26.
Key words: financial pyramid; partitional information structure; game of incomplete informa-

tion; game of perfect information.

1 Introduction

Asset booms and crashes are a persistent feature of economic life (Chancellor, 1999). Naturally,
economists have spent considerable time and effort trying to reconcile such phenomena with the
tenets of general economic equilibrium (e.g., Tirole, 1982; Boldrin and Levine, 2001; Abreu and
Brunnermeier 2003; Kocherlakota, 2008; Leoni, 2009; Barlevy, 2014; Miao, 2014).

This paper is only remotely connected with that strand of literature. First, we have in mind
artificial booms and crashes that result from deliberate actions by market manipulators. In real life,
it need not be clear to economic agents whether they face a “natural” boom or an “artificial” one
(Schiller, 2000), but here we assume that it is clear.
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Second, we only consider the decision making of “rank and file” participants, not the activity of
those manipulators themselves, nor conditions favorable or otherwise to them. To be more precise,
we analyze the rationality of this attitude: “I know this house of cards will crumble eventually, but
I’ll be out of it by then.” To be even more precise, we try to substantiate the intuitively plausible
notion that the more distant in time the expected collapse is perceived to be, the more justified
is that attitude. As a stylized model of the financial pyramid itself, we employ the background of
Stevenson’s (1891) story.

Section 2 contains a general description of our model. The exact technical details are given, and
our main theorem formulated, in Section 3. The proofs are in Section 4. A discussion of various
related questions in Section 5 concludes the paper.

2 Informal Model

For those readers unfamiliar with Stevenson’s story, there is no spoiler in the following. Only the
general background is invoked explicitly.

A magic bottle (or rather an imp inside the bottle) fulfills any desire of its owner; however, that
owner is sure to go to hell upon death. The only way to get rid of the bottle is to sell it to somebody
else, for “coined money” and at a loss for oneself. Naturally, the imp will not grant eternal life, nor
allow any modification of the terms on which the bottle may be transferred.

When the bottle appears in the story for the first time, its owner at that moment suggests the
following strategy to a prospective buyer:

All you have to do is to use the power of the imp in moderation, and then sell it to
someone else, as I do to you, and finish your life in comfort.

The problem with this strategy becomes obvious when the price of the bottle approaches zero.
However, while it is high enough, willing participants are not hard to find in the story. (Stevenson’s
story has already been discussed in philosophical literature (Sharvy, 1983; Sorensen, 1986) as a
paradox. The difference of the language makes direct comparisons with this paper difficult.)

We replace “every wish” and eternal perdition, which are hard to formalize anyway, with gains
and losses, thus obtaining a stylized model of participation in a financial pyramid. Instead of irregular
downward movement of the price of the bottle, we assume that costless transfers of the bottle can be
executed at discrete time moments and the number of possible future transfers is commonly known
beforehand.

The question: Is it possible to justify the view that the more steps are ahead, the easier it is to
accept the bottle, in the framework of common knowledge of rationality of all agents involved?

The interaction between the agents is modeled as a finite extensive game. Each move belongs
to one of two categories: either a proposal by the current owner to somebody else, or a decision of
an agent proposed to whether to take the bottle. The first proposal to take the bottle comes from
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outside, from the Devil. The total number of steps, T , is fixed beforehand. An agent who never held
the bottle gains nothing and loses nothing. An agent who took the bottle at some stage gains G if
he is able to find a replacement, or suffers loss L otherwise. A detailed technical description is given
in the next section.

Our basic question may be formulated, now, in this way: May the existence of an equilibrium
where the bottle actually changes hands depend on the number of steps available?

Straightforward argument backwards shows that such an equilibrium cannot exist for any T . One
does not even have to restrict attention to, say, subgame perfect equilibria. For our purposes, this
negative answer is disappointing to say the least.

The situation will change drastically if we assume that a “bailout” (or an “amnesty”) may happen
with a (small) probability p > 0, in which case the agent left with the bottle at the end obtains the
same gain as those who escaped in time.

Although all agents are basically the same, there may be asymmetry in their information. We
use the simplest model of knowledge, a partitional information structure (Aumann, 1976; Bacharach,
1985): there is a set of the “states of the world,” a probability distribution on the set, and mappings
determining signals about the actual state the agents receive. This model is common knowledge
among the agents, only the signals received are private. Thus, every state of the world determines
whether the “bailout” will happen, and what each agent knows about that, as well as about the
knowledge of other agents.

We assume that all proposals and decisions to accept or reject are publicly observed. In a sense,
we thus have a game of perfect, but incomplete, information.

The gains and losses are measured in a von Neumann–Morgenstern utility rather than money.
An important characteristic of our game is π := L/(L+G): For an agent to agree to take the bottle
at an equilibrium, he must evaluate the probability of safe escape as, at least, π. Generally, that
probability depends on the preceding moves in the game and on the agent’s private information. It
is not commonly known. Thus, our situation is not related to the no-trade theorem of Milgrom and
Stokey (1982) (see also Neeman, 1996).

3 Formal Model

A BI game is characterized by the following data:⟨
N,T,Ω,Σ, P,ΩAmn, ⟨σi⟩i∈N , G, L

⟩
,

where N is a finite set (of players); T is an integer (number of steps), Ω is an arbitrary set (of “states
of the world”); Σ is a σ-algebra of subsets of Ω (“events”), including ∅ and Ω itself; P is a probability
measure on Σ; ΩAmn ∈ Σ consists of the states of the world at which the “bailout” happens; each
σi is a mapping σi : Ω → Si (private signals); G and L are strictly positive real numbers. If Si is
finite, we assume that each σ−1

i (si) ⊆ Ω belongs to Σ; otherwise a σ-algebra of subsets of Si should
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be defined and the mapping σi should be measurable. The complete description of how such a game
is played takes some time.

A history is a finite string of the kind ⟨i1, θ1, i2, θ2, . . . , im⟩ or ⟨i1, θ1, i2, θ2, . . . , im, θm⟩, where
1 ≤ m ≤ T , ik ∈ N and θk ∈ {Yes, No} for all relevant k. Each ik denotes the player addressed with
a proposal to take the bottle at stage k; θk denotes his decision. There is a natural partial order
on the set H of all possible histories, h′ ≥ h meaning that h coincides with an initial segment of h′.
Given h ∈ H, we denote H→(h) the set of immediate successors of h: H→(h) := {h′ ∈ H | h′ > h &
@h′′ ∈ H [h′ > h′′ > h]}. When the empty string, “zero history,” h0 := ⟨⟩ is added to H, the latter
becomes a tree.

H is naturally partitioned into H ! and H?. The first subset consists of h ∈ H ending with
θk ∈ {Yes, No}, so a new proposal is in order (unless m = T ); the second, of h ∈ H ending with
ik ∈ N , so an answer is expected. Note that H→(h) ⊂ H? whenever h ∈ H !, while H→(h) ⊂ H !

whenever h ∈ H?.

Remark. Our definition allows the current owner to propose to himself, in which case the answer,
Yes or No, does not matter. Although there is no reason for a player to waste time in such a manner,
there is no necessity to prohibit such decisions in the rules of the game either. Actually, the possibility
to retain the bottle allows a simpler description of equilibrium strategies in Section 4.2. Similarly,
the rules allow a player who has already held the bottle and passed it to another player to take it
again later, even though the second taking can only result in a loss.

We denote H̄ the set of complete histories, i.e., h̄ ∈ H ! such that m = T . Given a player i ∈ N ,
the set H̄ is partitioned into three subsets: H̄ i

0, H̄
i
+ and H̄ i

−, according as player i never held the
bottle, held it and then passed it to somebody else, or is left with the bottle at the end. Technically,
h̄ ∈ H̄ i

0 if each occurrence of i in h̄ is followed by No (in particular, if h̄ does not include i at all);
h̄ ∈ H̄ i

+ if h̄ contains a fragment ⟨i,Yes⟩ and the last such fragment is followed by ⟨j,Yes⟩ with j ̸= i;
h̄ ∈ H̄ i

− if h̄ contains a fragment ⟨i,Yes⟩ and Yes does not occur in h̄ after the last such fragment.

Given a player i ∈ N , a complete history h̄ ∈ H̄, and ω ∈ Ω, we define “local” NM utilities
ui(h̄, ω) in the following way:

ui(h̄, ω) :=


0, h̄ ∈ H̄ i

0;

G, h̄ ∈ H̄ i
+;

G, h̄ ∈ H̄ i
− & ω ∈ ΩAmn;

−L, h̄ ∈ H̄ i
− & ω /∈ ΩAmn.

(1)

To the set of players, we add a “quasi-player,” the Devil, who is denoted 0 (assuming 0 /∈ N). We
denote N̄ := N ∪{0}. The Devil’s objective – to get the players to take the bottle – can be expressed
with this local utility function (independent of ω ∈ Ω):

u0(h̄) :=

{
0, ∀i ∈ N [h̄ ∈ H̄ i

0];

G, otherwise.
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The setH\H̄ can also be partitioned into subsetsHi, i ∈ N̄ , according as who is to make a decision
after that history; the straightforward technical definition is omitted. A strategy xi of player i ∈ N
is a mapping Hi × Si → H such that xi(h, σi(·)) : Ω → H is Σ-measurable, and xi(h, si) ∈ H→(h)
for each h ∈ Hi and all si ∈ Si. The Devil’s strategy is ⟨i1, i2, . . . , iT ⟩: at the first step, the bottle is
offered to player i1; if refused, at the second step it is offered to i2, etc. If the bottle is accepted at
some stage, the Devil takes no part in the further play.

Once a total strategy profile xN̄ ∈ XN̄ :=
∏

i∈N̄ Xi and a history h ∈ H are given, a complete
history xN̄ (h, ω) ∈ H̄ is defined by an obvious recursion for every ω ∈ Ω – what happens if each
player uses strategy xi starting from h and the state of the world is ω. Given xN̄ ∈ XN̄ , i ∈ N ,
h ∈ H, and κ ∈ {0,−,+}, we define pκi (xN̄ | h) := P ({ω ∈ Ω | xN̄ (h, ω) ∈ H̄ i

κ(xN̄ )}) and p∗i (xN̄ |
h) := P ({ω ∈ ΩAmn | xN̄ (h, ω) ∈ H̄ i

−(xN̄ )}).
Now the NM utility function Ui : XN̄ → R of each player i ∈ N is the expected value of ui(h̄, ω):

Ui(xN̄ ) := EP

[
ui(xN̄ (h0, ω), ω)

]
=

[
p+i (xN̄ ) + p∗i (xN̄ )

]
·G−

[
p−i (xN̄ )− p∗i (xN̄ )

]
· L. (2)

The Devil’s utility function U0 : XN̄ → R is written in this way:

U0(xN̄ ) := EP [u0(xN̄ (h0, ω))] =
(
1− P ({ω ∈ Ω | xN̄ (h0, ω) ∈

∩
i∈N

H̄ i
0})

)
·G. (3)

Naturally, a total strategy profile x0
N̄

∈ XN̄ is a Nash equilibrium if

Ui(x
0
N̄ ) ≥ Ui(xi, x

0
N̄\{i}) (4)

for all i ∈ N̄ and xi ∈ Xi.

The notion of a Nash equilibrium in extensive games is often viewed as too lax: if a combination
(h, si) has probability 0, then condition (4) does not prohibit any choice of xi(h, si). Typically, the at-
tention is concentrated on perfect Bayesian equilibria, where the decisions in impossible situations are
optimal with respect to a consistent system of beliefs. Here, we can impose even stricter restrictions,
demanding optimality with respect to a family of explicitly defined beliefs.

The exact formulation requires quite a lot of notations, so we start with a general outline. First
of all, our definition of perfectness only applies when each Si is finite and P (σ−1

i (si)) > 0 for each
si ∈ Si (the last assumption does not restrict generality). Second, no player ever doubts the signal si
received: if an observed history h is incompatible with xN̄ and si, then the inference is that somebody
has deviated from the prescribed strategy xj . We consider three variants of belief update in such
situations. In the first version, the player assumes that a mistake could have been made by any player
at any previous position, so all the choices made before are ignored, and prior beliefs are conditioned
only on the signal si. In the second version, the player finds a preceding history h∗ which is closest
to h among those consistent with si, and conditions prior beliefs on h∗ and si. In the third version,
the player finds a preceding history h∗ which is closest to h0 among those histories from which h
is reached with a strictly positive probability (conditioned on si), and then makes a usual Bayesian
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update of prior beliefs viewing h∗ as the initial position. Clearly, h0 ≥ h∗ > h∗ ≥ h whenever (h, si)
has zero prior probability, while h∗ = h and h∗ = h0 whenever (h, si) has a strictly positive prior
probability. Our notion of perfectness requires that the choice at an impossible combination (h, si)
should be optimal for all the three variants of updating.

Given xN̄ ∈ XN̄ and h, h′ ∈ H, we introduce the notation Ψ(xN̄ , h, h′) := {ω ∈ Ω | h′ ≤ xN̄ (ω, h)}
and ρ(h′ | (xN̄ , h)) := P (Ψ(xN̄ , h, h′)). When h′ ≤ h, Ψ(xN̄ , h, h′) = Ω; otherwise, Ψ(xN̄ , h, h′) = ∅
unless h′ > h. We only use the notation in the latter case; then, ρ(h′ | (xN̄ , h)) is the probability of
h′ in the event that the players start at h using strategies xN̄ . We also denote H(xN̄ ) := {h ∈ H |
ρ(h | (xN̄ , h0)) > 0}, the set of histories that have strictly positive prior probability under xN̄ . If
h ∈ H(xN̄ ), then the conditional distribution P (· | (xN̄ , h)) on Σ is well-defined, viz., for every A ∈ Σ,

P (A | (xN̄ , h)) := P (A ∩Ψ(xN̄ , h0, h))/ρ(h | (xN̄ , h0)).

Whenever xN̄ ∈ XN̄ , h ∈ H(xN̄ ), and h′ ∈ H→(h), there hold h′ ∈ H(xN̄ ) ⇐⇒ ρ(h′ | (xN̄ , h)) > 0
and

P (A | (xN̄ , h)) =
∑

h′∈H→(h)∩H(xN̄ )

ρ(h′ | (xN̄ , h))P (A | (xN̄ , h′)) (5)

for every A ∈ Σ. It is important to note that Ψ(xN̄ , h0, h) depends exclusively on the restriction of
xN̄ to h′ < h; hence the same holds for P (· | (xN̄ , h)).

Let i ∈ N , Si be finite, and P (σ−1
i (si)) > 0 for each si ∈ Si. Given xN̄ ∈ XN̄ , we denote

Hi(xN̄ ) := {(h, si) ∈ H × Si | P (Ψ(xN̄ , h0, h) ∩ σ−1
i (si)) > 0}; for each (h, si) ∈ Hi(xN̄ ), we define a

conditional probability distribution on Σ:

Pi(A | (xN̄ , h, si)) := P (A ∩Ψ(xN̄ , h0, h) ∩ σ−1
i (si))/P (Ψ(xN̄ , h0, h) ∩ σ−1

i (si))

for every A ∈ Σ.

Given a history h ∈ H and a probability distribution P̃ on Σ, a subgame Γ(h, P̃ ) is a strategic
game with the same players and strategies xi (i ∈ N) restricted to {h′ ∈ Hi | h′ ≥ h} × Si. Similarly
to (2), the NM utility function Ũi : X̃N̄ → R of each player i ∈ N in the subgame is the expected value
of the local utility ui(h̄, ω) defined by (1), Ũi(x̃N̄ ) := EP̃ [ui(x̃N̄ (h, ω), ω)]. If the Devil has already
got rid of the bottle at h, he does not participate in the subgame; otherwise, his strategy is a list of
ik ∈ N of the appropriate length. His utility is also defined as the expected value of the local utility
u0(h̄, ω), under P̃ rather than P .

Proposition 3.1. Let x0
N̄

be a Nash equilibrium. If h ∈ H(x0
N̄
), then, for each i ∈ N̄ , x0i satisfies

(4) in the subgame Γ(h0, P (· | (xN̄ , h))); whereas the restriction of x0i to h′ ≥ h satisfies (4) in the
subgame Γ(h, P (· | (xN̄ , h))). If Si (for an i ∈ N) is finite and (h, si) ∈ Hi(x

0
N̄
), then x0i satisfies (4)

in the subgame Γ(h0, Pi(· | (xN̄ , h, si))); whereas the restriction of x0i to h′ ≥ h satisfies (4) in the
subgame Γ(h, Pi(· | (xN̄ , h, si))).

A straightforward proof is omitted.
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The following definitions are only given for BI games where all sets Si are finite and P (σ−1
i (si)) > 0

for each si ∈ Si. Given xN̄ ∈ XN̄ , h ∈ H, i ∈ N , and si ∈ Si, we set h∗ := max{h′ ∈ H | h′ ≤ h &
P (Ψ(xN̄ , h0, h′) ∩ σ−1

i (si)) > 0} and h∗ := min{h′ ∈ H | P (Ψ(xN̄ , h′, h) ∩ σ−1
i (si)) > 0}. Then we

define two auxiliary probability distributions:

P ∗
i (A | (xN̄ , h, si)) := P (A ∩Ψ(xN̄ , h0, h∗) ∩ σ−1

i (si))/P (Ψ(xN̄ , h0, h∗) ∩ σ−1
i (si));

P i
∗(A | (xN̄ , h, si)) := P (A ∩Ψ(xN̄ , h∗, h) ∩ σ−1

i (si))/P (Ψ(xN̄ , h∗, h) ∩ σ−1
i (si))

for every A ∈ Σ. It is worth noting that P ∗
i (· | (xN̄ , h, si)) = P i

∗(· | (xN̄ , h, si)) = Pi(· | (xN̄ , h, si))
whenever (h, si) ∈ Hi(xN̄ ). We set Λ := {(λ0, λ∗, λ∗) ∈ [0, 1]3 | λ0 + λ∗ + λ∗ = 1}. Given λ =
(λ0, λ∗, λ∗) ∈ Λ, we denote P λ

i (· | (xN̄ , h, si)) = λ0P (·) + λ∗P ∗
i (· | (xN̄ , h, si)) + λ∗P

i
∗(· | (xN̄ , h, si)).

Now we call x0
N̄

∈ XN̄ a perfect equilibrium if, for each h ∈ H, i ∈ N and si ∈ Si, and every

λ ∈ Λ, the restriction of x0i to h′ ≥ h satisfies (4) in the subgame Γ(h, P λ
i (· | (xN̄ , h, si))).

Applying this condition to h = h0, and each i ∈ N and si ∈ Si, we see that every perfect
equilibrium is a Nash equilibrium indeed.

Remark. The optimality with respect to P λ
i for every λ ∈ Λ is obviously equivalent to the optimality

with respect to each of P , P ∗
i , and P i

∗. The probabilities P
i
∗(· | (xN̄ , h, si)) describe a consistent system

of beliefs; therefore, every perfect equilibrium is a perfect Bayesian equilibrium.

Theorem. Given T , p, and π, these statements are equivalent:

p ≥ πT ; (6a)

there is a BI game in which the number of steps is T , L/(L+G) = π, P (ΩAmn) ≤ p,

each Si is finite, and which possesses a perfect equilibrium such that

the Devil’s proposal is accepted at the first stage in every state of the world; (6b)

there is a BI game in which the number of steps is T , L/(L+G) = π,

P (ΩAmn) ≤ p, and which possesses a Nash equilibrium such that

the Devil’s proposal is accepted at some stage in almost every state of the world. (6c)

The implication (6b) ⇒ (6c) is obvious. The implications (6c) ⇒ (6a) and (6a) ⇒ (6b) are proved
in Section 4.1 and Section 4.2, respectively.

In a sense, this theorem answers our question: however small p > 0 is, an equilibrium where the
bottle actually changes hands may exist if T is large enough. If T is too small, such an equilibrium
becomes just impossible.

It must be stressed that only the existence of a suitable model is asserted in the theorem. There
is no attempt to describe what may happen in an arbitrary BI game. For instance, if the agents’
information is symmetric, then an equilibrium where the bottle changes hands at (almost) every state
of the world is only possible if P (ΩAmn) ≥ π.
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4 Proof

4.1 Necessity

We fix a BI game and a Nash equilibrium xN̄ such that the Devil’s proposal is accepted at some stage
in almost every state of the world. For every history h ∈ H, we denote Ω∗(h) the set of ω ∈ Ω such
that the bottle changes hands (at least once) after h under xN̄ . Our assumption about xN̄ means that
P (Ω∗(h0)) = 1. Roughly speaking, P (Ω∗(h) ∪ ΩAmn | (xN̄ , h)) for h ∈ H(xN̄ ) is the prior probability
that the owner of the bottle at h will get away with it eventually; note, however, that those ω ∈ Ω
where that owner takes the bottle again later are included in Ω∗(h) regardless of the final outcome.

For every history h ∈ H, we define l(h) as the maximal number of changes of the ownership of
the bottle that can happen after h. To be more precise, l(h) := T −m if h = ⟨i1, θ1, . . . , im, θm⟩ ∈ H !,
whereas l(h) := T −m+ 1 if h = ⟨i1, θ1, . . . , im⟩ ∈ H?.

Lemma 4.1. For every history h ∈ H(xN̄ ), there holds

P (ΩAmn | (xN̄ , h)) ≥ P (Ω∗(h) ∪ ΩAmn | (xN̄ , h)) · πl(h). (7)

Proof. We go by (backward) induction along the game tree.

Step 4.1.1. The inequality (7) holds when h ∈ H̄.

Proof. If h ∈ H̄, then l(h) = 0 and Ω∗(h) = ∅; hence (7) holds as an equality.

Although all penultimate histories belong to H?, it is more convenient to start with h ∈ H !.

Step 4.1.2. Let h ∈ H ! ∩ H(xN̄ ), and let inequality (7) hold for all h′ ∈ H→(h) ∩ H(xN̄ ). Then (7)
holds for h too.

Proof. First, we notice that H→(h) consists of strings ⟨h, i⟩ for i ∈ N , l(h′) = l(h) for every h′ ∈
H→(h), and Ω∗(h) is partitioned into Ω∗(h′) for h′ ∈ H→(h). Applying (5) first to A = ΩAmn and
then to A = Ω∗(h) ∪ ΩAmn, and invoking the induction hypothesis, we obtain

P (ΩAmn | (xN̄ , h)) =
∑

h′∈H→(h)∩H(xN̄ )

ρ(h′ | (xN̄ , h)) · P (ΩAmn | (xN̄ , h′)) ≥

∑
h′∈H→(h)∩H(xN̄ )

ρ(h′ | (xN̄ , h)) ·P (Ω∗(h′)∪ΩAmn | (xN̄ , h′)) ·πl(h) = P (Ω∗(h)∪ΩAmn | (xN̄ , h)) ·πl(h),

which is the inequality (7).

Step 4.1.3. Let h ∈ H? ∩H(xN̄ ), and let inequality (7) hold for all h′ ∈ H→(h) ∩H(xN̄ ). Then (7)
holds for h too.
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Proof. First, we notice that H→(h) consists of strings ⟨h,Yes⟩ and ⟨h,No⟩, and that l(h′) = l(h)− 1
for both h′ ∈ H→(h). If the last proposal in h is addressed to the current owner, i.e., that owner
decided to keep the bottle for the time being, then, similarly to the proof of Step 4.1.2, Ω∗(h) is
partitioned into Ω∗(h′) for h′ ∈ H→(h) and hence (7) follows from the induction hypothesis in the
same way.

Otherwise, i.e., when the current owner j asks another player i to take the bottle, Ω∗(h) =
Ψ(⟨h,Yes⟩ | (xN̄ , h)) ∪Ω∗(⟨h,No⟩). If ρ(⟨h,Yes⟩ | (xN̄ , h)) = 0, then we argue in essentially the same
way as in the previous paragraph.

Assuming ρ(⟨h,Yes⟩ | (xN̄ , h)) > 0, we start with this auxiliary optimization problem, where q
and π are constants from the closed interval [0, 1] and sY, sN, pY, pN, qY, qN are controlled variables,
also from [0, 1]:

sYpY + sNpN ⇒ min (8)

subject to:

sY + sNqN = q; (9a)

qY ≥ π; (9b)

pY ≥ qYπ
l(h)−1; (9c)

pN ≥ qNπ
l(h)−1; (9d)

sY + sN = 1. (9e)

This is a rather cumbersome, non-linear problem; however, it is not so difficult to unravel. First,
we produce a feasible choice: sY = q, sN = 1− q, pY = πl(h), qY = π, and pN = qN = 0. The value of
the left-hand side in (8) is then sYpY = qπl(h). Let us show that this is, actually, the minimum.

Since all variables are non-negative, there would be no point in strict inequalities in (9b), (9c)
and (9d). Therefore, we can assume pY = πl(h) and pN = qNπ

l(h)−1. Re-arranging (9a), we obtain
sNqN = q − sY; hence sNpN = (q − sY)π

l(h)−1. Substituting this into (8), we re-write the function to
be minimized as sY(π − 1)πl(h)−1 + qπl(h)−1. In other words, it decreases in sY when all restrictions
are taken into account. Since sY ≤ q by (9a), we must have sY = q, i.e., the above choice is, indeed,
optimal.

Now we return to the assumptions of Step 4.1.3, denoting q := P (Ω∗(h) ∪ΩAmn | (xN̄ , h)), sY :=
ρ(⟨h,Yes⟩ | (xN̄ , h)), sN := ρ(⟨h,No⟩ | (xN̄ , h)), pY := P (ΩAmn | (xN̄ , ⟨h,Yes⟩)), pN := P (ΩAmn |
(xN̄ , ⟨h,No⟩)), qY := P (Ω∗(⟨h,Yes⟩) ∪ ΩAmn | (xN̄ , ⟨h,Yes⟩)), and qN := P (Ω∗(⟨h,No⟩) ∪ ΩAmn |
(xN̄ , ⟨h,No⟩)). If sN = 0, then P (· | (xN̄ , ⟨h,No⟩)) is not well-defined; we set pN := qN := 0 in this
case. It is easy to see now that all conditions (9) are satisfied.

Only (9b) may deserve attention. Let us denote S∗
i := {si ∈ Si | P (Ω∗(⟨h,Yes⟩) ∪ ΩAmn |

(xN̄ , ⟨h,Yes⟩ & σi = si)) < π}. Supposing, to the contrary, that qY < π, we immediately obtain
P (σ−1

i (S∗
i ) | (xN̄ , h)) > 0. Since Ω∗(⟨h,Yes⟩) ∪ ΩAmn ⊇ {ω ∈ Ψ(xN̄ , ⟨h,Yes⟩) | ui(xN̄ (ω), ω) = G},

redefining xi(h
′, si) := No for all si ∈ S∗

i and h′ ≥ h, player i would increase his utility, which
contradicts the assumption that xN̄ is a Nash equilibrium.
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Since the left-hand side of (8) is P (ΩAmn | (xN̄ , h)), we obtain (7).

These three steps imply (7) for all h ∈ H. Lemma 4.1 is proven.

Finally, (7) for h = h0 combined with the assumption P (Ω∗(h0)) = 1 gives us (6a). Thus, the
necessity part of the theorem is proven.

4.2 Sufficiency

Let G,L ∈ R++, p ∈ [0, 1] and T ∈ N be such that p ≥ πT . We have to produce a BI game with these
parameters and a perfect equilibrium in the game such that the Devil’s proposal is accepted at once
in every state of the world.

We set N := {1, . . . , T}, Ω := N ∪ {0}, P (0) := πT , and P (i) := (1 − π) · πT−i for every i ∈ N ;
ΩAmn := {0}, so P (ΩAmn) ≤ p; for every i ∈ N , Si := {Yes,No}, σi(ω) := Yes if ω ≤ i and
σi(ω) := No otherwise.

To define the equilibrium strategies, we need auxiliary notation. Given h ∈ H \ H̄, we define
N(h) as the set of i ∈ N who held the bottle before, or holds at, h, and N→(h) := {i ∈ N |
{1, . . . , i} ∩N(h) = ∅}. Note that N \N(h) ̸= ∅ since the total number of steps is T = #N , whereas
N→(h) may well be empty.

Now, the Devil’s strategy is x00 := ⟨T, T − 1, . . . , 1⟩. Given i ∈ N , h ∈ Hi, and si ∈ Si, if h ∈ H?,
then

x0i (h, si) :=


⟨h,No⟩, si = No;

⟨h,No⟩, i /∈ N→(h);

⟨h,No⟩, l(h) < i;

⟨h,Yes⟩, otherwise;

(10)

if h ∈ H !, then

x0i (h, si) :=

{
⟨h,min{maxN→(h), l(h)}⟩, N→(h) ̸= ∅;
⟨h, i⟩, otherwise.

(11)

Suppose all players follow the strategies defined in (10) and (11). Since player T receives no
private signal (technically, σT (ω) = Yes for all ω ∈ Ω), he accepts the Devil’s proposal at the first
step. If ω = 0, i.e., there is the bailout, the bottle goes through all players and ends with player 1;
everybody gets the gain G. If ω = k > 0, then there is no bailout, while the bottle reaches player k
and gets rejected by each player i < k, who knows that no bailout is forthcoming. The player k gets
−L; each player i > k gets G; each player i < k gets 0. Thus, each player’s expected utility is 0.

It is convenient to start checking the equilibrium conditions with (11). Let player i hold the bottle
at h. It is clear from (10) that player j would take the bottle from player i only if j ≤ l(h), j ∈ N→(h)
(hence j < i), and sj = Yes. Thus, if N→(h) = ∅ or si = No (hence sj = No for all j < i), then player
i is stuck with the bottle and his actions do not matter. Otherwise, the probability that sj = Yes
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strictly increases in j, so the maximum in the first line of (11) defines the best choice for player i
indeed. (The last statement is equally valid for P , P ∗

i , or P
i
∗.)

Let us turn to (10). If si = No, then there will be no bailout, and each player j < i knows there
will be no bailout and would not take the bottle from player i. If i ∈ N(h), then player i cannot gain
anything by taking the bottle again. If i− 1 /∈ N→(h) or i > l(h), then player i− 1 would never take
the bottle, while the probability that any other player would take it is strictly less than π (again,
regardless of whether the probability is assessed under P , P ∗

i , or P
i
∗). In each of those cases, the only

decision for player i compatible with (4) is to reject. Finally, if the last line of (10) is applicable, then
the probability of si−1 = Yes for i > 1, or of the bailout for i = 1, is just π, so the decision to take
the bottle is compatible with the equilibrium condition (4) for player i.

The sufficiency part of the theorem is proven.

5 Concluding remarks

5.1. An alternative interpretation of the “amnesty” may be the appearance of a poorly informed, or
reckless, outsider who does not take into account the possibility of a loss. (Spoiler alert.) Readers
familiar with the story will note that what happens there is not inconsistent with this interpretation.
The game model should be modified in this case, as the “sucker” may emerge at any moment, not
necessarily at the end. On the other hand, if we are interested in the maximal effect a given probability
of the “amnesty” may produce (as in the theorem above), then the “sucker” must come at the end.

5.2. Since the Devil receives no private signal, P describes his beliefs. In the game defined in
Section 4.2, P also describes beliefs of player T .

5.3. There is a drawback to the equilibrium defined in Section 4.2: strategies “always reject” also
form a perfect equilibrium in the model and each player gets the same expected utility. If (6a) holds
as an equality, then, apparently, nothing could be done about that. Otherwise, we can slightly modify
the probabilities in the same model so that “always reject” is no longer a perfect equilibrium, and
the equilibrium x0N gives each player a strictly positive expected utility. To be more precise, we may
pick θ > 1 such that p ≥ (θπ)T , and set P (0) := (θπ)T and P (i) := (1− θπ) · (θπ)T−i for every i ∈ N ;
now the conditional expected utility of player i ∈ N is 0 if si = No and (θ − 1)L > 0 if si = Yes.

5.4. There is some vague similarity with the bubble game of Moinas and Pouget (2013), as well as the
absent-minded centipede of Dulleck and Oechssler (1997), but it is rather superficial. In our model
there is no doubt among the agents about the nature of the underlying process; it is only small hope
that a savior will come at the last moment that may keep it going.

5.5. There was no word on mixed strategies so far. Actually, they are already covered by our basic
model: player i can employ a mixed strategy if his signal σi includes component(s) independent of
everything else. Thus, our theorem shows that the use of mixed strategies could not extend the set
of (p, π, T ) for which an equilibrium is possible; when an equilibrium is possible, mixed strategies are
not needed.
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