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ROBIN BOUNDARY VALUE PROBLEMS
ON ARBITRARY DOMAINS

DANIEL DANERS

Abstract. We develop a theory of generalised solutions for elliptic boundary
value problems subject to Robin boundary conditions on arbitrary domains,
which resembles in many ways that of the Dirichlet problem. In particular,
we establish Lp-Lq-estimates which turn out to be the best possible in that
framework. We also discuss consequences to the spectrum of Robin boundary
value problems. Finally, we apply the theory to parabolic equations.

1. Introduction

It is well known that the equation −∆u = f subject to homogeneous Dirichlet
or Neumann boundary conditions can be considered on arbitrary bounded domains
Ω in RN . The idea is to introduce a weak formulation and to choose the “right”
Hilbert space incorporating the boundary conditions in a generalised sense. One
feature of this approach is that if data and domain are smooth enough we are
back to classical solutions satisfying the boundary conditions pointwise. Looking
at boundary conditions of Robin type such as

∂

∂ν
u+ βu = 0(1.1)

(ν being the outer unit normal to the boundary ∂Ω of Ω, and β a constant) it is well
known that Dirichlet and Neumann boundary conditions correspond to two extreme
cases, namely β =∞ and β = 0, respectively. However, although introduced quite
some time ago by Maz’ja [19, 20, Section 4.11.6], it is not very well known that
there is a weak formulation on arbitrary domains if β ∈ (0,∞). The difficulty is to
give sense to the boundary integral appearing in the Dirichlet form

a(u, v) =
∫

Ω

∇u∇v dx+
∫
∂Ω

βuv dσ

for u, v ∈ W 1
2 (Ω) as traces of u, v on ∂Ω are not well defined for a general domain,

and if they are, it is not clear whether they are square integrable over ∂Ω.
We shall use Maz’ja’s approach and develop an Lp-theory for Robin boundary

value problems on arbitrary domains and general (nonselfadjoint) second order el-
liptic operators in divergence form with real bounded and measurable coefficients.
It is known that the Neumann problem does not have any smoothing properties for a
general domain as this is equivalent to embedding theorems for Sobolev spaces (see
[6, Corollary 3.4]), and that the Dirichlet problem always has (e.g. [5, Lemma 1]).
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It turns out that the smoothing properties we prove in this paper lie “half way”
between the two, and that they are the best possible in that framework (see The-
orem 5.11 below). In [7] it is shown that the Lp-Lq-estimates we obtain cannot
be improved even if we restrict ourselves to arbitrarily smooth domains if we do
not want the constants involved to depend on the geometry of the underlying do-
main. This follows from domain perturbation results which are proved in the above
mentioned paper. The whole theory developed in this paper is in fact motivated
by applications to domain perturbation of linear and nonlinear elliptic equations
subject to Robin boundary conditions. It provides a priori estimates for solutions
not depending on the domain geometry, which allows us to deal with very singu-
lar perturbations of the domain such as cutting holes or adding small pieces. The
results also allows us to establish a positive lower bound for the first eigenvalue of
∆ϕ = λϕ subject to boundary conditions of the form (1.1) with β > 0, uniformly
with respect to all domains of the same volume. It would be interesting to know
whether a Faber-Krahn type inequality holds or not.

We further show that the theory carries over to the corresponding parabolic
problem, and that the parabolic problem fits into the framework of semigroup
theory and abstract parabolic equations on Lp-spaces for 1 ≤ p < ∞. We also
get estimates for the semigroup kernel (heat kernel). It turns out that the usual
methods to prove kernel estimates such as described in [30] and [10] either apply
directly or can be adapted to our situation very easily.

The outline of the paper is as follows. In Section 2 we give the precise as-
sumptions, introduce notation and state some of our main results. Section 3 deals
with the L2-theory of weak solutions on arbitrary domains as introduced by Maz’ja
[19, 20]. We discuss some problems arising with this approach and give examples.
In Section 4 we provide global bounds for weak solutions of Robin boundary value
problems using a version of the well known Moser iteration technique. It is an
extension of the results in [6]. These results are the basis to establish an Lp-theory
for Robin boundary value problems on arbitrary domains which we develop in Sec-
tion 5. The final section is concerned with the corresponding parabolic problem.
More on the parabolic problem can be found in [8]. The paper concludes with an
appendix discussing the operator induced by a bilinear form. In particular, in Ap-
pendix A, we discuss maximal restrictions of that operator to Banach spaces, and
duality. Then, in Appendix B we establish a priori estimates of solutions of the cor-
responding abstract elliptic problem employing a version of the well known Moser
iteration techique. In Appendix C we consider maximal restrictions to Lp-spaces,
and some implications of the a priori estimates. Some of the results are folklore,
but as we do not know of an explicit reference, we include the precise statements
and give complete proofs.

2. Assumptions and main results

In this section we give the precise assumptions, fix notation and state some of
our main results. For more detailed statements, proofs and further comments we
refer to later sections. In particular, we refer to Section 5 for the Lp-theory of
elliptic problems, and to Section 6 for parabolic problems.

We shall be concerned with the elliptic boundary value problem
Au = f in Ω,
Bu = 0 on ∂Ω

(2.1)
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on arbitrary bounded domains Ω ⊂ RN . (By a domain we mean an open and
connected set.) We always assume that N ≥ 2. For N = 1 every bounded domain
is smooth and there is nothing to prove. The differential operators A and B are
supposed to be of the form

Au := −
N∑
i=1

∂i

( N∑
j=1

aij(x)∂ju+ ai(x)u
)

+
N∑
i=1

bi(x)∂iu+ c0(x)u(2.2)

and

Bu :=
N∑
i=1

( N∑
j=1

aij(x)∂ju+ ai(x)u
)
νi + b0(x)u ,(2.3)

where ∂i := ∂
∂xi

and ν := (ν1, . . . , νN ) denotes the outer unit normal on the bound-
ary ∂Ω of Ω. The coefficients aij , ai, bi and c0 are real bounded and measurable
functions on Ω, and b0 real bounded and measurable on ∂Ω with respect to the
(N − 1)-dimensional Hausdorff measure. Further, we set a := (a1, . . . , aN) and
b := (b1, . . . , bN). We also assume that A is uniformly strongly elliptic; that is,
there exists α0 > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ α0|ξ|2(2.4)

for all x ∈ Ω and ξ = (ξ1, . . . , ξN ) ∈ RN . Finally, we assume that

inf
x∈∂Ω

b0(x) ≥ β0(2.5)

for some β0 > 0 (take the essential infimum with respect to the (N−1)-dimensional
Hausdorff measure if b0 is only measurable).

We denote by Lp(X) the Lebesgue spaces on a measurable subspace of X ⊂ RN
and by ‖·‖p,X its norm. If no confusion seems likely, we just write Lp and ‖·‖p,
respectively. Further, we write Lp,loc(X) for the space of all functions u such that
u|K ∈ Lp(K) for all compact subsets K of X . If p ∈ [1,∞], we denote its dual
exponent by p′; that is,

1
p

+
1
p′

= 1.

Moreover, W k
p (Ω) is the Sobolev space, which consists of all functions u ∈ Lp(Ω)

such that all the distributional derivatives up to the order k lie in Lp(Ω). Further,
D(Ω) is the space of smooth functions with compact support in Ω, and W̊ 1

2 (Ω)
its closure in W 1

2 (Ω). Finally, C(Ω) and Ck(Ω) are the spaces of continuous and
k-times differentiable functions, respectively. If E,F are Banach spaces, we write

E ↪→ F if E ⊂ F and the natural injection is continuous, and E
d
↪→ F if in

addition E is dense in F . We write E′ for the topological dual of E. The domain
of definition of a linear operator A on E we denote by D(A). If A : D(A) → F
is a densely defined linear operator, we denote its dual operator by A′. Further,
L(E,F ) is the Banach space of all bounded linear operators from E to F equipped
with the usual operator norm, and L(E) := L(E,E). Finally, ‖·‖p,q denotes the
norm in L(Lp, Lq).

For the moment let Ω be a bounded Lipschitz domain in the sense that ∂Ω is
locally the graph of a Lipschitz function. Then a function u ∈ W 1

2 (Ω) is usually
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4210 DANIEL DANERS

called a weak solution of (2.1) if

a(u, v) = 〈f, v〉(2.6)

for all v ∈ W 1
2 (Ω), where a(· , ·) is the (generalised) Dirichlet form corresponding

to (A,B) defined by

(2.7) a(u, v)

:=
∫

Ω

( N∑
i=1

( N∑
j=1

aij∂ju+ aiu
)
∂iv +

( N∑
i=1

bi∂iu+ c0u
)
v
)
dx+

∫
∂Ω

b0uv dσ

for all u, v ∈ W 1
2 (Ω). Here, σ is the (N − 1)-dimensional Hausdorff measure re-

stricted to ∂Ω which coincides with the usual surface measure if ∂Ω is smooth
(e.g. [12, Theorem 3.2.3]). Further,

〈f, v〉 :=
∫

Ω

fv dx .(2.8)

It is well known that if data and domain are smooth any sufficiently smooth weak
solution of (2.1) satisfies (2.1) pointwise. Since W 1

2 (Ω)-functions do not have well
defined traces on ∂Ω for an arbitrary domain, and if so, it is not clear whether the
boundary integral appearing in (2.7) is finite, we cannot use the space W 1

2 (Ω) when
dealing with weak solutions of (2.1) on arbitrary domains. The precise definition of
a weak solution will be given in Section 3. As in the case of the Dirichlet problem,
it turns out that (2.6) makes only sense for f ∈ Lp(Ω) if p is larger than some
p0 > 1. In order to define solutions for inhomogeneities in “lower” Lp-spaces we
“extrapolate” the problem by means of duality. This allows us to define generalised
solutions of (2.1) for all f ∈ Lp(Ω) and p ∈ [1,∞] (see Definition 5.1). The first of
our main results concerns the global Lp-regularity of generalised solutions.

Theorem 2.1. Let Ω ⊂ RN be an arbitrary bounded domain and suppose that
(A,B) are as above. Then, any (generalised) solution of (2.1) with f ∈ Lp(Ω)
belongs to Lm(p)(Ω). Here, 1 ≤ p ≤ ∞, and m(p) := Np(N − p)−1 if p ∈ (1, N),
m(p) =∞ if p > N and m(p) < N(N − 1)−1 arbitrary if p = 1.

Second, we establish the Fredholm alternative for solutions of (2.1) on general
bounded domains.

Theorem 2.2. The solutions of (2.1) satisfy the Fredholm alternative in Lp (1 ≤
p ≤ ∞); that is, either (2.1) has a unique solution for all f ∈ Lp(Ω), or there are
infinitely many solutions for some f ∈ Lp(Ω) and none for others.

Finally, we get control over the norm of the resolvent in terms of the coefficients
of (A,B) and the measure |Ω| of the domain Ω. This result is new even in the case
of smooth domains, since the known estimates all depend on the geometry of the
domain.

Theorem 2.3. Define the quantities

γ := max{α−1
0 , β−1

0 } and δ := α−1
0

(
‖a‖∞ + ‖b‖∞

)2 + ‖c−0 ‖∞,(2.9)

where c−0 is the negative part of c0. Then there exists a constant C > 0 depending
only on N, p and upper bounds for γ, δ and |Ω| such that any (generalised) solution
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of
Au+ λu = f in Ω,

Bu = 0 on ∂Ω
(2.10)

with λ ≥ δ satisfies the a priori estimate

‖u‖m(p) ≤ C‖f‖p(2.11)

for all f ∈ Lp(Ω), where m(p) is as in Theorem 2.1. If ai = 0 for i = 1, . . . , N ,
c0 ≥ 0 and p > N , the above estimate holds for δ = 0.

We also show that the eigenvalue problem
−Aϕ = λϕ in Ω,
Bϕ = 0 on ∂Ω

(2.12)

has discrete spectrum, and that the first eigenvalue is algebraically simple with
positive eigenfunction. Here, ϕ is in the Hilbert space used to define weak solutions
on general domains introduced later. As a consequence of the above results we show
that under some additional assumption, the spectrum has a positive lower bound
uniformly with respect to all domains of a given volume.

Corollary 2.4. Suppose that c0 ≥ 0 and that ai = 0 or bi = 0 for all i = 1, . . . , N .
Then, there exists λ∗ > 0 depending only on N and upper bounds for γ, δ and |Ω|
such that Reλ ≥ λ∗ for all eigenvalues λ of (2.12).

After rewriting the above results in an abstract form, they will be proved in
Section 5.

Remark 2.5. (a) If A = −∆ and b0 is a constant, the existence of a positive lower
bound λ∗ for the first eigenvalue of (2.12) was first observed in Payne and Wein-
berger [23] for a class of smooth two- and three-dimensional domains Ω lying be-
tween two parallel planes. For a related result, see Beale [3, Lemma 4]. The result
was rediscovered in [6] using similar ideas, and an extension to arbitrary bounded
Lipschitz domains in any dimension was given. Again, for a class of smooth do-
mains, it is shown in [23] that λ∗ can be chosen to be the first eigenvalue of the
Robin problem on a ball circumscribing the given domain. This result was reproved
in Lax and Phillips [16] for all smooth bounded domains using the strong maximum
principle. In [23], it is also shown by a counterexample that, unlike in the case of the
Dirichlet problem, the first eigenvalue is not a monotone functional of the domain.
It is still an open problem whether a Faber-Krahn type inequality holds; that is,
whether λ∗ can be chosen to be the first eigenvalue of (2.12) on a ball with volume
|Ω|. For partial results on that problem see Bossel [4] or Sperb [27, 28]. In all these
references it is assumed that the domains satisfy certain geometric conditions such
as convexity or restrictions on the curvature of the boundary.

(b) It turns out that the above theorem, its corollary, as well as Theorem 2.6
below remain true if we have Dirichlet boundary conditions on a closed subset of
∂Ω (see Remark 4.4(b) below).

We finally consider the parabolic problem
∂tu(x, t) +Au(x, t) = f(x, t) in Ω× (0,∞),

Bu(x, t) = 0 on ∂Ω× (0,∞),

u(·, 0) = u0(·) in Ω ,

(2.13)
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where ∂t := ∂/∂t, and we show that the following results hold.

Theorem 2.6. Suppose that the same assumptions as in Theorem 2.1 hold and let
1 < p ≤ q <∞ with

N
(1
p
− 1
q

)
< 1.(2.14)

Then, for all u0 ∈ Lq and f ∈ L∞
(
(0,∞), Lp

)
, equation (2.13) has a unique

generalised solution u ∈ C
(
[0, T ], Lq

)
.

A proof of the above theorem as well as the precise definition of a generalised
solution will be given in Section 6. The idea is to reformulate (2.13) as an abstract
parabolic equation in Lp-spaces, where standard semigroup theory applies. Clearly,
one can then use the same framework to prove existence and uniqueness of solutions
of semilinear initial value problems.

3. The L2-theory

We start this section by recalling Maz’ja’s approach to (2.1) on general bounded
domains. To do so we define Ṽ to be the abstract completion of the space

V0 := V0(Ω) := {u ∈ W 1
2 (Ω) ∩ C(Ω) ∩ C∞(Ω): ‖u‖V <∞} ,

endowed with the norm ‖·‖V given by

‖u‖V :=
(
‖∇u‖22 + ‖u|∂Ω‖22,∂Ω

) 1
2 .

Here, ‖·‖2,∂Ω is the norm in L2(∂Ω) := L2(∂Ω, σ), and σ is the restriction of the
(N − 1)-dimensional Hausdorff measure to ∂Ω. (In Maz’ja’s notation this is the
space W 1

2,2(Ω, ∂Ω).) The key to the whole theory is the following inequality due
to Maz’ja ([18], see [20, Corollary 4.11.1/2]). It asserts that for all u ∈ V0 the
inequality

‖u‖ 2N
N−1
≤ c(N, |Ω|)‖u‖V(3.1)

holds, where c(N, |Ω|) > 0 is a constant depending only on N and an upper bound
for |Ω|. This inequality tells us that the natural embedding

j0 : V0 → L 2N
N−1

(Ω)

is continuous with norm dominated by c(N, |Ω|). Hence j0 has a unique extension
j ∈ L(Ṽ , L 2N

N−1
). Using inequality (3.1) it is easy to check that the form a(· , ·)

defined by (2.7) is continuous on V0 × V0. Therefore, it has a unique continuous
extension to Ṽ × Ṽ , which we denote again by a(· , ·). Moreover, using (3.1) and a
standard argument it is easy to see that there exist constants λ0 ∈ R and α > 0
such that

a(u, u) + λ0‖u‖22 ≥ α‖u‖2V(3.2)

for all u ∈ V0 and hence for u ∈ Ṽ by continuity and density (see (4.5) with q = 2
for explicit values for λ0, α). Since obviously D(Ω) is a subspace of Ṽ the image
of j is dense in L 2N

N−1
. Therefore, the dual map j′ ∈ L(L 2N

N+1
, Ṽ ′) is an injection,

which means that each element of L 2N
N+1

can be identified in a unique way with an

element of Ṽ ′. Thus, the following definition makes sense.
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Definition 3.1. Let f ∈ Lp(Ω) with 2N(N + 1)−1 ≤ p ≤ ∞. Then, u ∈ Ṽ is said
to be a weak solution of (2.1) if and only if

a(u, v) = 〈f, j(v)〉 (= 〈j′(f), v〉V )(3.3)

holds for all v ∈ Ṽ (or a dense subset thereof), where 〈· , ·〉V is the duality pairing
between Ṽ and Ṽ ′, and 〈· , ·〉 is defined by (2.8). In abuse of notation we often write
〈f, v〉 rather than 〈f, j(v)〉.

Remark 3.2. (a) If Ω is a Lipschitz domain, then, due to (3.1), the trace inequality
‖u‖2,∂Ω ≤ c‖u‖W 1

2 (Ω) (see e.g. [22]), and the fact that C∞(Ω) is dense in W 1
2 (Ω)

(see e.g. [1]) imply that Ṽ = W 1
2 (Ω) up to an equivalent norm. Hence, if Ω is

Lipschitz, the definition of a weak solution is the same as in the classical theory.
(b) Since D(Ω) ⊂ Ṽ , it follows that a weak solution of (2.1) is a weak solution

of the equation Au = f in Ω in the usual sense; that is, a0(u, v) = 〈f, v〉 for all
v ∈ D(Ω) where a0(u, v) is defined by (2.7) but without the boundary integral.
Hence, all results on local properties of weak solutions of elliptic equations such as,
for instance, those given in [13, Chapter 8] apply.

(c) If (A,B) is selfadjoint and c0 ≥ 0, we can choose λ0 = 0 in (3.2) and hence,
by the Lax Milgram Theorem, (2.1) has a unique weak solution. This is Maz’ja’s
result in [19, 20].

(d) There is a difficulty with the space Ṽ , which is not mentioned in [19, 20]. By
definition of the embedding j ∈ L(Ṽ , L 2N

N−1
) it is not clear whether it is an injection

or not. Injectivity of j is equivalent to the fact that for any sequence (un)n∈N in
V0 converging to u in Ṽ such that un → 0 in L 2N

N−1
implies that u = 0 in Ṽ . Using

(3.1) it is clear that un → 0 in W 1
2 (Ω) as n tends to infinity. However, the question

which seems to be difficult to answer is whether this implies that un|∂Ω → 0 in
L2(∂Ω) for a general bounded domain Ω. The above arguments also show that
u ∈ ker j if and only if there exists a sequence (un)n∈N in V0 such that

lim
n→∞

un = 0 in W 1
2 (Ω) and lim

n→∞
un|∂Ω = w in L2(∂Ω).(3.4)

We do not know of an example of a domain such that j is not an injection, and we
suspect that it always is. However, we do not have a proof. For further comments
concerning this question we refer to Remark 3.5. There is a way to get rid of this
difficulty by replacing Ṽ by a closed subspace of Ṽ . To see this, observe that by
(3.3) any weak solution of (2.1) is orthogonal to the kernel, ker j, of j with respect
to the form a(· , ·) and, moreover, u is a weak solution of (2.1) if and only if (3.3)
holds for v in

Va := {w ∈ Ṽ : a(w, v) = 0 for all v ∈ ker j} .

If it happens that j is not injective, we could replace Ṽ by Va which a priori depends
on the operators (A,B). By (3.4) and the definition of a(· , ·) the function w is in
Va if and only if it is in Ṽ , and ∫

∂Ω

b0wv dσ = 0(3.5)

for all v ∈ ker j. In particular, this shows that Va is independent of the coefficients
of A. It turns out that Va is also independent of B. The precise statement is
contained in the following proposition.
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Proposition 3.3. For all (A,B) satisfying (2.2)–(2.5) we have

V := Va = (ker j)⊥,

where (ker j)⊥ is the orthogonal complement of ker j in Ṽ (the complement with
respect to the inner product in Ṽ ). Furthermore, ker j is isometrically isomorphic
to L2(S), where S is a measurable subset of ∂Ω, and

V = (ker j)⊥ = {w ∈ Ṽ : w = 0 on S} .(3.6)

Finally, the function u is a weak solution of (2.1) if and only if u ∈ Ṽ and (3.3)
holds for all v ∈ V .

The proof makes use of a technical lemma which we prove at the end of this
section.

Lemma 3.4. If v ∈ ker j, then gv ∈ ker j for all g ∈ L∞(∂Ω).

Note that by definition of ker j we have that v = 0 in Ω, and thus it makes sense
to multiply v by a function just defined on ∂Ω.

Proof of Proposition 3.3. To prove the first assertion let w ∈ Ṽ . We have to show
that (3.5) holds for all v ∈ ker j if and only if∫

∂Ω

wv dσ = 0

for all v ∈ ker j. But this is easily seen from the above lemma and (2.5) since
b−1
0 v and b0v are in the kernel of j. Let S be the union of all essential supports of
v ∈ ker j. Then, it follows from the above lemma that all simple functions on S are
in ker j, and hence, ker j = L2(S). As a consequence of this, we obtain (3.6). The
last assertion is clear from the remarks before Proposition 3.3.

Next we have some more remarks and examples concerning the space Ṽ .

Remark 3.5. (a) Due to (3.1) it turns out that Ṽ is topologically isomorphic to
the closure of {(u, u|∂Ω) : u ∈ V0} in W 1

2 (Ω) × L2(∂Ω). All elements of Ṽ have
well defined traces on ∂Ω given by limn→∞ un|∂Ω, where un is a sequence in V0

converging to u in Ṽ . To keep notation as simple as possible we do not distinguish
between u and its trace on ∂Ω in our notation. However, note that due to the same
problem we had with the existence of a kernel for the embedding j we do not know
how much the trace can “disconnect” from the function in Ω.

(b) The space

V1 := {u ∈ C(Ω) ∩W 1
2 (Ω): ‖u‖V <∞}

is dense in Ṽ . Indeed, a careful analysis of the proof that W 1
2 (Ω)∩C∞(Ω) is dense

in W 1
2 (Ω) such as given in [13, Theorem 7.9] reveals that, if u ∈ C(Ω)∩W 1

2 (Ω), the
approximating function lies in C(Ω)∩C∞(Ω)∩W 1

2 (Ω), and has the same boundary
values as u. Therefore, V1 is dense in V0 and hence in Ṽ .

(c) The space Ṽ is a lattice, that is, if u ∈ Ṽ then the absolute value |u| also
lies in Ṽ . Moreover, ‖ |u| ‖V = ‖u‖V . To see this, note that by [13, Lemma 7.6]
the space W 1

2 (Ω) is a lattice, and that ‖ |u| ‖W 1
2 (Ω) = ‖u‖W 1

2 (Ω). Also, C(Ω) and
L2(∂Ω) are lattices, and ‖ |u| ‖2,∂Ω = ‖u‖2,∂Ω. Hence, |u| ∈ V1 for all u ∈ V1, where
V1 is the space defined in (b). Since the map defined by u 7→ |u| is continuous on
V1 it follows that Ṽ is a lattice with the claimed properties.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ROBIN PROBLEMS 4215

(d) Suppose that Ω is a domain with a boundary whose (N − 1)-dimensional
Hausdorff measure is locally infinite; that is, for all x ∈ ∂Ω and ε > 0 we have that

σ
(
Bε(x) ∩ ∂Ω

)
=∞ .(3.7)

Then, V = Ṽ = W̊ 1
2 (Ω) up to an equivalent norm. In this case our boundary

value problem coincides with the Dirichlet problem. If (3.7) only holds on part of
the boundary, Dirichlet boundary conditions are satisfied on that part. Examples
of such domains are domains with fractional boundaries such as, for instance, the
interior of the well known “snowflake curve” (e.g. [11]). To prove our claim we
first show that V0 ⊂ W̊ 1

2 (Ω). To do so let u ∈ V ∩ C(Ω) be arbitrary. Since u is
continuous on Ω, it follows from (3.7) that u|∂Ω = 0. By splitting u in positive
and negative parts (which by (c) also belong to V ∩C(Ω)) we can assume without
loss of generality that u ≥ 0. By the uniform continuity of u on Ω it is clear that
uε := max{u− ε, 0} ∈ W̊ 1

2 (Ω) for all ε > 0. It is then easily seen that uε tends to u
in V as ε goes to zero. Finally, note that ‖∇u‖2 is an equivalent norm on W̊ 1

2 (Ω),
and thus uε also converges in W̊ 1

2 (Ω). Hence, it follows that V = W̊ 1
2 (Ω).

(e) The above remark together with Proposition 3.3 show that wherever the
boundary is bad, either in the sense that its measure is locally infinite or that it
allows j to have a kernel, the weak solutions of (2.1) satisfy Dirichlet boundary
conditions in some sense. In the case of a nontrivial kernel we are not sure whether
we really have Dirichlet boundary conditions in the weak sense because we do not
know whether we can approximate the solutions by elements of V0 being zero in a
neighbourhood of that part of the boundary.

(f) Suppose that K ⊂ ∂Ω is a compact set of capacity zero and that ∂Ω \K is
locally Lipschitz in the sense that it is locally the graph of a Lipschitz function. In
that case every u ∈ Ṽ has locally a trace γ0u, and for all x ∈ ∂Ω \K there exists a
ball Bε(x) in RN and a constant c(ε, x) such that(∫

∂Ω∩Bε(x)

|u(y)|2 dσ
) 1

2 ≤ c(ε, x)‖u‖W 1
2 (Ω)(3.8)

for all u ∈ V0 (see e.g. [22]). This implies that γ0u is in L2,loc(∂Ω \K). Then, it
turns out that

Ṽ = V = {u ∈W 1
2 (Ω): γ0u ∈ L2(∂Ω \K)} .(3.9)

This characterisation shows that, in general, the space Ṽ is much smaller than
W 1

2 (Ω) even if the measure of ∂Ω is finite and the domain is smooth except for one
point. As an example, consider a domain with an outward pointing cusp. Using
(3.1) it is clear that Ṽ ↪→ W 1

2 (Ω). If we had equality, the open mapping theorem
would imply that the two spaces coincide up to an equivalent norm. This is not
possible since Ṽ ↪→ L 2N

N−1
but W 1

2 (Ω) 6⊂ Lp for all p > 2 if the domain has an
exponential cusp (see [1, Theorem 5.32]).

To prove (3.9) it is sufficient to prove that

V1 := {u ∈W 1
2 (Ω) ∩ C∞(Ω): u = 0 in a neighbourhood of K}

is dense in W 1
2 (Ω) as well as in V0. It is well known that it is dense in W 1

2 (Ω).
Since K has zero capacity, there exists a sequence ϕk ∈ D(RN ) with 0 ≤ ϕk ≤ 1,
ϕk = 1 in a neighbourhood of K such that ‖ϕk‖W 1

2 (Ω) converges to zero as k tends
to infinity. Let u ∈ V0 be arbitrary and set uk := (1 − ϕk)u. Then obviously
uk ∈ V1 and ∇uk → ∇u in L2 as k tends to infinity. Since K has zero capacity, we
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have that σ(K) = 0 (e.g. [31, Theorem 2.6.16]) and thus ϕk converges to zero σ-
almost everywhere on ∂Ω. Since |ϕku| ≤ |u| on ∂Ω, it follows from the Dominated
Convergence Theorem that uk converges to u in L2(∂Ω). This shows that V1 is
dense in V0 and hence in V . This proves our claim.

(g) A sufficient condition making sure that j is injective is that W 1
2 (Ω) allows, at

least locally, a trace operator. More precisely, assume that for σ-almost all x ∈ ∂Ω
(3.8) holds. Then, un|∂Ω converges to zero in L2(∂Ω ∩ Bε(x)) if un converges to
zero in W 1

2 (Ω). From this we conclude that u = 0 σ-almost everywhere on ∂Ω,
whence u = 0 ∈ Ṽ and our claim follows.

We conclude this section by proving Lemma 3.4

Proof of Lemma 3.4. In a first step we assume that g ∈ C∞(Ω). If v ∈ ker j take
vn ∈ V0 such that vn → v in Ṽ . Clearly gvn ∈ V0 and by a simple calculation

‖gvn‖W 1
2 (Ω) ≤ (‖g‖∞ + ‖∇g‖∞)‖vn‖W 1

2 (Ω) .

Thus, since ‖vn‖W 1
2 (Ω) → 0 by (3.4), we conclude that ‖gvn‖W 1

2 (Ω) → 0. Moreover,

‖g(vn − v)‖2,∂Ω ≤ ‖g‖∞‖vn − v‖2,∂Ω → 0

since n goes to infinity. By (3.4) this implies that gv ∈ ker j.
In a second step we assume that g ∈ C(Ω). Then, by Tietze’s Theorem there

exists a continuous extension of g to RN which we denote again by g. This contin-
uous function can then be approximated by smooth functions gk uniformly on Ω.
By the first step gkv ∈ ker j for all k ∈ N. Moreover, since

‖gkv − g`v‖2V =
∫
∂Ω

|gk − g`|2v2 dσ(3.10)

for all k, ` ∈ N, it turns out that gkv is a Cauchy sequence in Ṽ converging to gv.
Since ker j is closed gv ∈ ker j.

We next try to approximate g ∈ L∞(∂Ω) by continuous functions in a suitable
way. To do so first note that the restriction of the (N − 1)-dimensional Hausdorff
measure σ to ∂Ω is an inner regular Borel measure. Fix v ∈ ker j and set for
k ∈ Ṅ := N \ {0},

Ak := {x ∈ ∂Ω: |v(x)| ≥ k−1} and A0 := {x ∈ ∂Ω: |v(x)| 6= 0}.
Then, the union of the Ak is A0. Since v ∈ L2(∂Ω), it follows that |Ak| := σ(Ak) <
∞ for all k ∈ Ṅ. By Lusin’s Theorem (see [12, Theorem 2.3]) we find for every
k ∈ Ṅ a compact set Ck such that

|Ak \ Ck| < k−1(3.11)

and g|Ck is continuous. By Tietze’s Theorem there exists a sequence of functions
gk ∈ C(∂Ω) such that

‖gk‖∞ ≤ ‖g‖∞(3.12)

and gk = g on Ck. Without loss of generality, we can choose Ck in such a way
that Ck+1 ⊃ Ck for all k ∈ Ṅ. We prove now that gk → g σ-almost everywhere
on A0. Suppose this is not the case. Then, there exists a measurable set B ⊂ A0

with |B| > 0 such that gk 6→ g on B. Since the union of Ak is A0, there exists
k0 ∈ N and δ > 0 such that |B ∩ Ak| ≥ δ for all k ≥ k0. On the other hand,
|B ∩Ak| = |B ∩Ak \Ck|+ |B ∩Ck| > δ for k ≥ k0, whence |B ∩Ck| > δ− k−1 > 0
by (3.11) for k large enough. Since g = gk on Ck, this is a contradiction. This
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shows that gkv → gv almost everywhere on ∂Ω. By step two, gkv ∈ ker j for all
k ∈ Ṅ. Moreover, by (3.12) the estimate |gk − g`|2v2 ≤ 2‖g‖∞v2 holds. Hence, it
follows from (3.10) and the Dominated Convergence Theorem that gkv is a Cauchy
sequence in Ṽ with limit gv. Since ker j is closed, this concludes the proof of the
lemma.

4. Global estimates for weak solutions

In this section we prove global estimates for weak (sub-, super-) solutions of
equation (2.1). As usual u ∈ V is called a (weak) subsolution of (2.1) if

a(u, v) ≤ 〈f, v〉(4.1)

for all nonnegative v ∈ V , where V is as defined in Proposition 3.3. If the reverse
inequality holds, u is called a (weak) supersolution. Further, we denote by u+ and
u− the positive and negative parts of u, respectively; that is, u± := max{±u, 0}.
Equivalently, we can replace V by Ṽ in our definition, which is more convenient for
practical purposes.

Theorem 4.1. Suppose (A,B) satisfy (2.2)–(2.5). Then, if p ∈ [2, N), there exists
a constant c > 0 depending only on N, p and an upper bound for |Ω| such that for
any weak solution of (2.1)

‖u‖ Np
N−p

+ ‖u‖ (N−1)p
N−p ,∂Ω

≤ cγ
(
‖f‖p + γµδ1+µ‖u‖2

)
,(4.2)

where γ, δ are as in (2.9) and µ := N(p− 2)/2p. If p > N , there exists a constant
c > 0 depending on the same quantities as above such that

‖u‖∞ ≤ cγ
(
‖f‖p + γµδ1+µ‖u‖2

)
.(4.3)

Moreover,

‖u‖∞,∂Ω ≤ ‖u‖∞.(4.4)

Finally, if u is a sub- or supersolution, the above assertions hold for u replaced by
u+ or u−, respectively.

Assertion (4.4) is not completely obvious since we do not know how much the
trace of a function u ∈ V on ∂Ω can “disconnect” from the function in Ω as
mentioned in Remark 3.5(a).

Proof of Theorem 4.1. Note that it is sufficient to give a proof for subsolutions. For
supersolutions the assertion follows since −u is a subsolution and for solutions by
combining the two inequalities. For every m, t ≥ 1 we define the function

Gt,m(ξ) :=


0 if ξ ≤ 0,
ξt if ξ ∈ (0,m),
mt−1ξ if ξ ≥ m.

Clearly Gt,m is piecewise smooth and has a bounded derivative. Hence, Gt,m ◦ u ∈
W 1

2 (Ω) for all u ∈W 1
2 (Ω) by [13, Theorem 7.8]. It is also not hard to show that the

substitution operator induced by Gt,m is continuous on W 1
2 (Ω) and on L2(∂Ω) (see

also [17]). Hence, it is continuous on V0 and therefore on V . To simplify notation
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we set v := Gq−1,m(u) and w := Gq/2,m(u) for some fixed m ≥ 1 and q ≥ 2. Then,
taking into account [13, Theorem 7.8] we get that

∂jw∂iw =
q2

4(q − 1)
∂ju∂iv, w∂iw =

q

2
v∂iu =

q

2(q − 1)
u∂iv and w2 = uv

if u(x) ≤ m, and

∂jw∂iw = ∂ju∂iv, w∂iw = v∂iu = u∂iv and w2 = uv

if u(x) ≥ m. Using this as well as (2.4) we get that

α0‖∇w‖22 ≤
q2

4(q − 1)
a0(u, v) +

q

2
(
‖a‖∞ + ‖b‖∞

)
‖w‖2‖∇w‖2 +

q

2
‖c−0 ‖∞‖w‖22 ,

where a0(· , ·) is defined as (2.7) but without the boundary integral. Using the
elementary inequality 2ξη ≤ ε−1ξ2 + εη2 for all ξ, η ≥ 0 and ε > 0, and choosing
ε > 0 appropriately we obtain

α0‖∇w‖2 ≤
q2

2(q − 1)
a0(u, v) +

q2

2
δ‖w‖2 ≤ q

(
a0(u, v) + δ(q − 1)‖w‖22

)
.

Obviously, we have that

β0‖w‖2,∂Ω ≤ q
∫
∂Ω

b0w
2 dσ = q

∫
∂Ω

b0uv dσ.

Combining the two estimates we get that

‖w‖2V ≤ γq
(
a(u, v) + δ(q − 1)‖w‖22

)
.(4.5)

Using that u is a subsolution of (2.1), Hölder’s inequality as well as (3.1), we arrive
at

‖w‖22d
d−2
≤ c̄γ−1‖w‖2V ≤ c̄q2

(
‖f‖p‖v‖p′ + δ‖w‖22

)
,(4.6)

where we have set d := 2N and c̄ := γc(N, |Ω|)2. Here, c(N, |Ω|) is the constant
from (3.1). Furthermore, if p ≥ 2, then r := 4p(3p−2)−1 ≤ 2, and by a well known
interpolation inequality (e.g. [13, p. 146]) we obtain

‖w‖22 ≤ ‖w‖
2(1−θ)
2d
d−2

‖w‖2θr

with θ satisfying 2−1 = θr−1 + (1 − θ)(d − 2)(2d)−1. Applying Young’s inequality
(e.g. [13, p. 147]) and (3.1), this implies that for all ε > 0

‖w‖22 ≤ εc(N, |Ω|)2‖w‖2V + ε−µ‖w‖2r
with µ := d(p − 2)(4p)−1. Furthermore, by Hölder’s inequality and the fact that
w2/q ≤ u+ we have

‖w‖2r = ‖w
2
q+ 2

q (q−1)‖ r
2
≤ ‖w

2
q ‖2‖w

2
q (q−1)‖p′ ≤ ‖u+‖2‖w

2
q ‖q−1
p′(q−1).

Combining all this and setting ε := (2c̄δq2)−1 we conclude from (4.6) that

‖w
2
q ‖qdq

d−2
≤ c̄γ−1‖w‖2V ≤ c̄q2(1+µ)

(
‖f‖p + c̄µδ1+µ‖u+‖2

)
‖w

2
q ‖q−1
p′(q−1) .(4.7)

To estimate ‖v‖p′ we also used that v ≤ w2(q−1)/q . Inequality (4.7) is the basis for
all the estimates. If p ∈ [2, d/2), we set q := p(d−2)(d−2p)−1 and divide inequality
(4.7) by ‖w2/q‖q−1

dp
d−2p

. Note that the sequence of functions w2/q = [Gq/2,m(u)]2/q is
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increasing as m increases. It converges to u+ as m goes to infinity. Hence the
monotone convergence theorem implies that

‖u+‖ dp
d−2p

≤ Cc̄
(
‖f‖p + c̄µδ1+µ‖u+‖2

)
,(4.8)

where C depends on d and p only. To show that the L∞-estimate (4.3) holds for
p > N = d/2, we set q0 := 2 and qn+1 := 1 + ηqn for all n ∈ N, where

η :=
d(p− 1)
p(d− 2)

.(4.9)

Moreover, set ū := u+M−1 with M := c̄
(
‖f‖p + c̄µδ1+µ‖u‖2

)
if M 6= 0. By letting

m to infinity in (4.7) we obtain

‖ū‖qn+1
dqn+1
d−2

≤ q2(1+µ)
n+1 ‖ū‖ηqndqn

d−2
,

from which we get by induction that

‖ū‖ dqn+1
d−2

≤
n+1∏
k=1

q
2(1+µ) η

n−k+1
qn+1

k ‖ū‖
2 η
n+1
qn+1
2d
d−2

.(4.10)

Observe now that η ≤ qn+1/qn ≤ 2η, and therefore ηn ≤ qn ≤ (2η)n. Furthermore,
by induction, qn+1 = ηn+1 +

∑n+1
k=0 η

k. Hence, it follows from the above that

‖ū‖ dqn+1
d−2

≤ (2η)2(1+µ)
∑n+1
k=1 kη

−k
‖ū‖2(1+

∑n+1
k=0 η

−k)−1

2d
d−2

.

Since η > 1 for the range of p under consideration, we can let n to infinity to get

‖ū‖∞ ≤ C‖ū‖θ2d
d−2

,(4.11)

where

θ := 1− 1
2η − 1

∈ (0, 1) and C := (2η)2(1+µ)
∑∞
k=1 kη

−k
<∞.

depend on d and p only. Since |Ω| <∞, this implies that

‖ū‖∞ ≤
(
C|Ω|θ( 1

2−
1
d )
)1−θ(4.12)

and thus (4.3) follows. It remains to prove the estimate on the boundary. By
definition of ‖·‖V and setting q := p(N − 1)(N − p)−1 it follows from (4.7) that

‖ū‖qp(N−1)
N−p ,∂Ω

≤ ‖ū‖q−1
Np
N−p

.

Combining this with (4.8) we conclude that (4.2) holds. To prove (4.4) note that
as a consequence of (4.7) we have that

‖ū‖q,∂Ω ≤
(
q

1
q
)2(1+µ)‖ū‖1−

1
q

∞

for all q ≥ 2 and our assertion follows by letting q to infinity as the constants in
front of ‖ū‖∞ tend to one. This proves Theorem 4.1.

Corollary 4.2. Under the assumptions of the above theorem there exists a constant
C > 0 only depending on N, p and upper bounds for δ, |Ω| and γ such that any weak
solution of problem (2.10) with λ ≥ δ satisfies the a priori estimate

‖u‖ Np
N−p

+ ‖u‖ (N−1)p
N−p ,∂Ω

≤ C‖f‖p(4.13)
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if p ∈ [2, N), and

‖u‖∞ ≤ C‖f‖p(4.14)

if p > N .

Proof. Note first that any weak solution of (2.10) satisfies the a priori estimates
(4.2) and (4.3) with the same constants c and γ. Also, by replacing A by A + λ
for λ ≥ 0 the constant δ can be chosen to be the same. Therefore, it remains to
estimate ‖u‖2. To achieve this, note that by (4.5) with q = 2, and (3.1) for any
weak solution of (2.10)

‖u‖22d
d−2
≤ 2c̄

(
a(u, u) + δ‖u‖22

)
= 2c̄

(
〈f, u〉 − (λ − δ)‖u‖22

)
≤ 2c̄‖f‖2‖u‖2,

where for the last inequality we used the Cauchy Schwarz inequality and the as-
sumption that λ ≥ δ. Hence, by using the embeddings for Lp-spaces we get that

‖u‖2 ≤ 2c̄|Ω| 1
2N ‖f‖2 ≤ 2c̄|Ω|

N+1
2N −

1
p ‖f‖p

whenever p ≥ 2. This proves our claim.

Under an additional structure condition we get an L∞-estimate for solutions of
(2.1) of the form (4.14). However, we are not able to deduce the corresponding
estimate (4.13) for p ∈ [2, N) without losing control over the constant C. The same
problems occur in the case of the Dirichlet problem treated in [13, Theorem 8.16].

Theorem 4.3. Let (A,B) satisfy (2.2)–(2.5) with c0 ≥ 0. Suppose that, in addi-
tion, the structure condition∫

Ω

N∑
i=1

ai∂iϕ+ c0ϕdx ≥ 0(4.15)

is satisfied for all nonnegative ϕ ∈W 1
1 (Ω). Then, if p > N , there exists a constant

C > 0 depending only on N, p and upper bounds for |Ω|, γ and δ such that for any
weak solution u of (2.1) the estimate (4.14) holds. If u is a sub- or a supersolution,
the inequality remains true if we replace u by u+ and u−, respectively.

Proof. As in Theorem 4.1 it is sufficient to prove our claim for subsolutions. The
proof of (4.14) is based on a modification of a test function argument due to
Trudinger [29] (see [13, proof of Theorem 8.16]). For Robin boundary conditions
we need to take extra care of the boundary integral. To estimate it we need the
elementary inequality (

log
r

r − s
)2

≤ s2

r(r − s)(4.16)

which holds for r > 0 and s ∈ [0, r). To prove it we set t := s/r. Then, (4.16) is
equivalent to (log(1− t))2 ≤ t2(1 − t)−1 for t ∈ [0, 1). For t = 0 the latter inequality
is obviously true. For t ∈ (0, 1) it is equivalent to g(t) := t−2(1−t)

(
log(1−t)

)2 ≤ 1.
Using de l’Hôpital’s rule we find that limt→0 g(t) = 1. Since g is nonnegative, it is
therefore sufficient to show that

g′(t) = −t−2
(
2− t−1(t− 2) log(1− t)

)
log(1− t) < 0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ROBIN PROBLEMS 4221

for all t ∈ (0, 1), which is the case if and only if t−1(t− 2) log(1− t) > 2. Using the
Taylor expansion of log(1− t) we obtain

t−1(t− 2) log(1− t) = 2 +
∞∑
k=2

( 2
k + 1

− 1
k

)
tk > 2

for all t ∈ (0, 1) completing the proof of (4.16). Set

v :=
u+

m+ k − u+
and w := log

m+ k

m+ k − u+
,

where m := ‖u+‖∞ and k := ‖f‖p. We already know from Theorem 4.1 that
u ∈ L∞ so the above definitions make sense. Setting r := m + k and s = u+ we
conclude from (4.16) that∫

∂Ω

w2 dσ ≤ 1
m+ k

∫
∂Ω

(u+)2

m+ k − u+
dσ =

1
m+ k

∫
∂Ω

uv dσ .

Then, by an elementary calculation and (4.15) we get that

‖w‖2V ≤
γ

m+ k

(∫
Ω

aij∂ju∂iv dx+
∫
∂Ω

b0uv dσ
)

≤ γ

m+ k

(
a(u, v) +

∫
Ω

N∑
i=1

(ai − bi)u+∂iw dx−
∫

Ω

N∑
i=1

ai∂i(uv) + c0uv dx
)

≤ γ
∫

Ω

|f |k−1 dx+ γ

∫
Ω

N∑
i=1

|ai − bi||∇w| dx

≤ γc+ γ2‖a− b‖22 +
1
2
‖w‖2V ,

where c just depends on |Ω|. Here we used the product rule for functions in V , which
holds since V is a subspace of W 1

2 (Ω). This together with (3.1) yields ‖w‖2 ≤ C,
where C just depends on N and upper bounds for δ, γ and |Ω|. Now set

v :=
ϕ

m+ k − u+

for all nonnegative ϕ ∈ V0 with uv ≥ 0. Further, note that

log
r

r − s ≤
s

r − s
for all r > 0 and s ∈ [0, r). Indeed, this follows from the fact that log(1 + t) ≤ t
for t ≥ 0 by setting t := s(r − s)−1. Setting r := m + k and s = u+ the above
inequality shows that wϕ ≤ uv. Using this to estimate the boundary integral it
follows by an elementary calculation that

a1(w,ϕ) :=
∫

Ω

( N∑
i,j=1

aij∂jw∂iϕ+
N∑
i=1

(bi − ai)ϕ∂iw
)
dx+

∫
∂Ω

b0wϕ

≤ a(u, v)−
∫

Ω

ϕ

N∑
i,j=1

aij∂jw∂iw dx −
∫

Ω

N∑
i=1

ai∂i(uv) + c0uv dx

≤ 〈f, v〉 ≤ 〈|f |k−1, ϕ〉
for all nonnegative ϕ ∈ V satisfying uϕ ≥ 0. Here we also used (2.4) and (4.15).
Since uϕ ≥ 0 if and only if wϕ ≥ 0, this shows that a1(w,ϕ) ≤ 〈|f |k−1, ϕ〉 for all
nonnegative ϕ ∈ V0 such that wϕ ≥ 0. Next note that in the proof of Theorem 4.1
we just needed that (4.1) holds for all 0 ≤ v ∈ V such that uv ≥ 0. Hence, as
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a1(· , ·) corresponds to an operator of the form (2.2), we may apply Theorem 4.1
to estimate ‖w‖∞ in terms of ‖k−1f‖p = 1 and ‖w‖2. Using the bound on ‖w‖2,
proved above, we finally obtain (4.14) by taking exponentials.

We conclude this section with a few remarks. Note that these remarks also apply
to the parabolic situation which we treat in Section 6.

Remark 4.4. (a) For smooth domains it is known that the solution u of (2.1) is in
W 1
p (Ω) and its trace γ0u in W 1−1/p

p (∂Ω) if f ∈ Lp. Hence, by embedding theorems
for Sobolev spaces u ∈ L Np

N−p
(Ω) and γ0u ∈ L p(N−1)

N−p
(∂Ω). Inequality (4.2) tells

us that (u, γ0u) ∈ L Np
N−p

(Ω)× L p(N−1)
N−p

(∂Ω) for any bounded domain Ω even if the
solution is not in the above Sobolev space. Note that even not in the case of a
polygonal domain and smooth f we can expect the solution of the Robin problem
to lie in W 1

p (Ω) for all p > 2. For a counterexample, see [14, Theorem 4.4.3.7],
where the Sj,m turn out to be not in W 1

p (Ω) for p large enough.
(b) The above results remain true if we have Dirichlet boundary conditions on a

closed subset Γ0 of ∂Ω. In this case we replace the space V0 introduced in Section 3
by

V0,Γ0 := {u ∈ V0 : suppu ∈ Ω \ Γ0}.

Then, (3.1) still holds for all u ∈ V0,Γ0 and hence, for all u in the completion VΓ0

of V0,Γ0 with respect to the norm ‖·‖V . Since the proofs of the above theorems are
based on (3.1), everything remains true.

(c) If we restrict the class of domains we can get better estimates than those in
Theorem 4.1. For instance, if we take domains in the class Kα,1, α < 1, introduced
by Maz’ja (see [20, Section 3.6.1]), which are determined by the same constant
E , it turns out that V ↪→ L 2d

d−2
for d := 2(1 − α)−1 (replace u by u2 in [20,

Theorem 3.6.3]). In the above proofs we just have to replace d = 2N by the new
value of d and in the assertion N by d/2. The classes of domains mentioned above
allow us to deal with nonsmooth domains having cusps of restricted sharpness. The
sharpness of the cusp determines the class Kα,1 ([20, Section 3.6]). Above we only
considered the class K1− 1

N
,1 where all bounded domains belong to with the same

constant E which is given by the isoperimetric constant (see [20, Example 3.6.2/1]).
(d) By using (3.1) we obviously can weaken the assumptions on the coefficients

ai, bi and c0. It is sufficient to assume that ai, bi ∈ L r
2

and c0 ∈ Lr for some r > N
(r may vary from one coefficient to another). We just have to modify the definition
of δ in an appropriate way.

5. The Lp-theory

By means of the results in the previous section and some facts on forms, we
establish an Lp-theory for Robin boundary value problems. In particular, we prove
Theorems 2.1, 2.2 and 2.3 stated in Section 2.

Suppose that V is as in Proposition 3.3, and that a(· , ·) is the form defined by
(2.7). We already proved in Section 2 that a(· , ·) extends to a bounded bilinear
form on V , and that it satisfies (3.2) for some α > 0 and λ0 ∈ R. Further, we
put H := L2(Ω). By means of the Riesz isomorphism we identify H with its dual

space. Then, V
d
↪→ H

d
↪→ V ′. In this identification we use the duality pairing 〈· , ·〉
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on V induced by the L2-inner product given by (2.8). The form a(· , ·) induces an
operator A ∈ L(V, V ′) satisfying

a(u, v) = 〈Au, v〉(5.1)

for all u, v ∈ V . Indeed, as V is reflexive, the linear operator from V ′ to V ′ defined
by v 7→ 〈v, ·〉 is a topological isomorphism. Since a(u, ·) ∈ V ′, it follows that there
exists w ∈ V ′ such that a(u, v) = 〈w, v〉 for all v ∈ V . We then define Au := w. It
is easy to see that A : V → V ′ is a linear operator. By definition of the dual norm
on V ′ and the boundedness of the form a(· , ·) we have

‖Au‖V ′ = sup
‖v‖V =1
v∈V

|〈Au, v〉| = sup
‖v‖V =1
v∈V

|a(u, v)| ≤ c‖u‖v

for all u ∈ V which shows that A ∈ L(V, V ′). In this framework we can write (2.1)
in the abstract form

Au = f(5.2)

for all f ∈ V ′. By a solution of (5.2) we mean a function u ∈ V satisfying (5.2).
We saw in Section 3 that f ∈ Lp(Ω) can be identified with some f ∈ V ′ if p ≥
2N(N+1)−1. For such f it is easily verified that u is a weak solution of (2.1) if and
only if it is a solution of (5.2). For p ≥ 2N(N + 1)−1 we define the Lp-realization
Ap of A by

Apu = Au for all u ∈ D(Ap) := {u ∈ V ∩ Lp : Au ∈ Lp}.(5.3)

This makes sense since for the range of p under consideration Lp ↪→ V ′. It is easy
to see that Ap is a closed operator on Lp. Since D(Ω) ⊂ V , clearly V ∩Lp is dense
in Lp(Ω) for all p ∈ [1,∞). Using this, it turns out that D(Ap) is dense in V and
thus Ap is densely defined if p < ∞. For a proof we refer to Lemma A.2 in the
appendix. Next we define the adjoint form a](· , ·) by

a](u, v) := a(v, u)(5.4)

for all u, v ∈ V . This form corresponds to the formal adjoint boundary value
problem (A],B]) to (A,B) given by

A]u := −
N∑
i=1

∂i

( N∑
j=1

aji(x)∂ju+ bi(x)u
)

+
N∑
i=1

ai(x)∂iu+ c0(x)u

and

B]u :=
N∑
i=1

( N∑
j=1

aji(x)∂ju+ bi(x)u
)
νi + b0(x)u.

Note that (A],B]) has the same structure as (A,B). Therefore, the operator A]

induced by a](· , ·) on V ′ and its Lp-realization A]p have the same properties as A
and Ap, respectively. By the above facts it makes sense to define

Ap := (A]p′)
′(5.5)

for p ∈ (1, 2]. It turns out that Aq is the maximal restriction of Ap to Lq, and that
Aq is the closure of Ap in Lq, whenever 1 < p < q < ∞. Note that the operators
Ap were defined already for p ∈ [2N(N + 1)−1, 2]. Hence for this range of p the
two definitions are consistent. Moreover, Ap is closable in L1, and its closure A1 is
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independent of p > 1. Similar assertions are true for A]p. Finally, (5.5) holds for all
p ∈ [1,∞). The proofs are contained in Appendix C.

Definition 5.1. Let p ∈ [1,∞]. We say that u is a solution of

Apu = f(5.6)

if f ∈ Lp(Ω) and u ∈ D(Ap). A solution of the above equation we called a gener-
alised solution of (2.1).

Clearly, if p ≥ 2N(N + 1)−1, a generalised solution of (2.1) is a weak solution.
The following theorem contains the assertions of Theorem 2.1 in an abstract form.

Theorem 5.2. For all p ∈ [1,∞] we have that D(Ap) ⊂ Lm(p)(Ω) and for all
λ ∈ %(−Ap)

(λ+Ap)−1 ∈ L(Lp, Lm(p)),(5.7)

where m(p) is as in Theorem 2.1. In particular, any generalised solution of (2.1)
with f ∈ Lp is in Lm(p).

Proof. If p ≥ 2, a generalised solution is a weak solution of (2.1). Hence, Theo-
rem 4.1 applies, and it follows that u ∈ Lm(p)(Ω). In particular, this implies that
D(Ap) ⊂ Lm(p) and (5.7) follows from the closed graph theorem. Since similar
statements are true for the adjoint problem, we get from (5.5) that D(Ap) ⊂ Lm(p)

also for p ∈ [1, 2]. This proves (5.7).

Theorem 5.3. For all p ∈ (1,∞) the operators Ap have compact resolvent.

Proof. Suppose that λ ∈ %(−Ap) and that Ap has compact resolvent. Using (5.7)
and a compactness property of the Riesz Thorin interpolation (see [15]) it follows
that Aq has compact resolvent on Lq for all q ∈ [p,m(p)). For p = 2 compactness of
the resolvent follows from the fact that V is compactly embedded into L2(Ω) (see
[20, Corollary 4.11.1/3]) and thus by a bootstrapping argument this follows for all
p ∈ [2,∞). A similar argument shows the assertion for p ∈ (1, 2].

Corollary 5.4. For the solutions of (5.6) the Fredholm alternative holds.

Proof. If λ ∈ %(Ap), then u is a solution of (5.6) if and only if it is a solution of

u− λ(λ +Ap)−1u = (λ+Ap)−1f.(5.8)

Further, since Ap has compact resolvent, id−λ(λ+Ap)−1 is a compact perturbation
of the identity and hence is Fredholm of index zero. Therefore, the Fredholm
alternative holds for solutions of (5.8) and thus the same is true for (5.6).

Corollary 5.5. The spectrum of Ap is independent of p ∈ [1,∞] and consists
of eigenvalues of finite algebraic multiplicity. Moreover, all eigenfunctions lie in
L∞(Ω).

Proof. The p-independence of the spectrum follows from Theorem 5.2 and The-
orem C.3(c) in Appendix C. That the spectrum consists of eigenvalues of finite
algebraic multiplicity, and that the eigenfunctions are in L∞ follows from Theo-
rem 5.3 and 5.2.

We next establish a more general abstract version of Theorem 2.3.
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Theorem 5.6. Suppose that δ and m(p) are as in Theorem 2.1. Then, for all
p ∈ [1,∞] we have [δ,∞) ⊂ %(−Ap), and there exists a constant C > 0 depending
only on the quantities listed in Theorem 2.3 such that

‖(λ+ Ap)−1‖p,m(p) ≤ C(5.9)

for all λ ≥ δ. Suppose, in addition, that the structure condition (4.15) is satisfied.
Then, [0,∞) ⊂ %(−Ap) and (5.9) holds for all λ ≥ 0 and p > N with a constant C
depending on the same quantities.

Proof. It follows from (4.5) by setting q = 2 that (3.2) is true for λ0 ≥ δ if we choose
α suitably. By the Lax Milgram Theorem it follows that for all λ ≥ δ the equation
Au + λu = f has a unique weak solution for every f ∈ Lp(Ω) ↪→ V ′, p ≥ 2 and
thus [δ,∞) ⊂ %(−A). Moreover, by Corollary 4.2 it follows that (5.9) holds. Since
the adjoint problem has the same properties, and the norm of the dual operator is
the same as for the original one, the inequality (5.9) is true for p ∈ [1, 2] as well.
Suppose now that the structure condition (4.15) is satisfied. Then, it follows from
Theorem 4.3 that for λ ≥ 0 the solution of Au+ λu = f , if it exists, is unique. By
the Fredholm alternative proved in Corollary 5.4 there exists a unique solution of
(5.6) for all f ∈ Lp(Ω) with p ≥ N . The a priori estimate follows from Theorem 4.3.
In particular, we conclude that [0,∞) ⊂ %(−Ap) for p > N .

Remark 5.7. If the structure condition (4.15) is satisfied, one could get an estimate
of the form (5.9) with λ = 0 for all p ∈ [1,∞] by using the fact that 0 ∈ %(−Ap).
However, by this argument we do not get control over the constant C. A similar
problem arises in the case of Dirichlet boundary conditions (see [13, p. 191]).

The following corollary is a generalised version of Corollary 2.4 concerning the
spectral bound s(−Ap) := inf{Reλ : λ ∈ σ(−Ap)} of −Ap. Since by Corollary 5.5
the spectrum is independent of p ∈ [1,∞], it does not matter for which p we prove
the result.

Corollary 5.8. Suppose that either the coefficients ai or bi satisfy the structure
condition (4.15). Then there exists λ∗ > 0 depending only on N and upper bounds
for γ, δ and |Ω| such that s(−Ap) ≥ λ∗ for all p ∈ [1,∞].

Proof. Suppose that ai satisfies the structure condition. Then by Theorem 5.6
‖A−1

p ‖L(Lp) is bounded by a constant, depending only on the quantities listed in
the corollary if p > N . Further, observe that the spectral radius of A−1

p is given
by 1/ s(−Ap) whence, 1/ s(−Ap) ≤ ‖A−1

p ‖L(Lp). Taking the infimum over all p we
get the existence of λ∗ > 0 with the required properties. Since the spectrum is
independent of p, the claim holds for all p ∈ [1,∞]. If bi satisfies the structure
condition, we consider the formal adjoint operator which brings us back to the
previously considered case. Since the spectrum of the original and the adjoint
operators are the same, the claim follows.

Proposition 5.9. The resolvent (λ+Ap)−1 is positive and irreducible for all λ ≥ δ
and p ∈ [1,∞].

Proof. Positivity of weak solutions of (λ + A)u = f for f ≥ 0 in Lp(Ω), p ≥
2N(N + 1)−1, follows by a simple test function argument (take the negative part
of the solution u := (λ + A)−1f as a test function and conclude that it is zero).
By a density argument it turns out that (λ + Ap)−1 is positive for all p ∈ [0,∞].
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Suppose now that g ≥ 0 but f 6= 0. To show irreducibility it is sufficient to
prove that there exists k ∈ N such that U := (λ + Ap)−kf is strictly positive
almost everywhere in Ω, which means that u is a quasi interior point of the positive
cone (see [26, Section III.8]). Using the smoothing properties of the resolvent
established in Theorem 5.2 we find n ∈ N such that (λ+Ap)−n(L1) ⊂ L∞. Clearly,
v := (λ + Ap)−nf ≥ 0 and v 6= 0. As v ∈ L∞ ∩W 1

2 (Ω) is a strict supersolution of
(λ+A)w = 0 in Ω in the usual sense the Harnack inequality (cf. [13, Theorem 8.18])
implies that (λ + Ap)−1v > 0 almost everywhere. Setting k = n + 1 our claim
follows.

We next discuss some consequences of the above results on the spectrum of Ap.

Corollary 5.10. The spectral bound of −Ap is an algebraically simple eigenvalue.
It is the only eigenvalue having a positive eigenfunction.

Proof. Since (λ + A)−1 is compact, positive and irreducible for λ large enough by
the above proposition and Theorem 5.3, the first assertion on the spectral bound
is a consequence of the abstract theory in [26, Section V.5].

The following proposition shows that (5.7) is optimal.

Theorem 5.11. There exists a bounded domain Ω with smooth boundary except
for one point, and (5.7) fails if we replace m(p) by any larger exponent.

Proof. First note that there exists a domain Ω such that the embedding of V into
L 2N
N−1

is not compact. Such a domain is depicted in Figure 1 (see [20, pp. 259–260]).
This domain can easily be modified in such a way that its boundary is of class C∞

except for one point. Suppose that (5.7) is true if we replace m(p) by q > m(p).
Since Ap has compact resolvent, it follows from a compactness property of the Riesz
Thorin interpolation (see [15]) that (5.7) is compact. If p > 2N(N+1)−1, we choose
1 < r < 2N(N + 1)−1. Then, by (5.7) we have (λ + Ar)−1 ∈ L(Lr, Lm(r)) and
hence by using the compactness property of the Riesz Thorin interpolation, again
we conclude that (λ+ A)−1 ∈ L(L 2N

N+1
, L 2N

N−1
) is compact. Setting E := L 2N

N−1
it

follows from Proposition A.4 that V is compactly embedded into L 2N
N−1

. Recall that
Ω was chosen in such a way that this embedding is not compact. Since this is a
contradiction, the proof of the theorem is complete.

Remark 5.12. Using domain perturbation methods and the above theorem it is
shown in [7, Theorem 5.1] that the estimate (5.9) cannot even be improved for

Figure 1.
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smooth domains without making the upper bound C in (5.9) dependent on the
geometry rather than the measure of the domain Ω.

6. Parabolic problems

In this section we shall briefly discuss some consequences on parabolic problems
of the form (2.13). We start off with the homogeneous abstract Cauchy problem

u̇+Apu = 0 in (0,∞),

u(0) = u0 ,
(6.1)

where u̇ := du/dt. By well known abstract results −A2 generates a strongly
continuous analytic semigroup T2(t) := e−tA2 on L2(Ω) (see e.g. [9, Proposi-
tion XVII.6/3]) and hence, (6.1) has a unique solution for all u0 ∈ L2 which is given
by u(t) = T2(t)u0. We will show that T2(·) acts on all Lp-spaces. To do so note that
by a well known smoothing property of analytic semigroups T2(t)(L2) ⊂ D(Ak2) for
all k ∈ N and t > 0. It follows from Theorem 5.2 and a bootstrapping argument
that D(Ak2) ⊂ L∞ for k large enough and therefore,

T2(t) ∈ L(L2, L∞)(6.2)

for all t > 0. In particular, this shows that T2 acts on Lp for all p ∈ [2,∞] and thus
Tp(t) := T2(t)|Lp is a semigroup on Lp for that range of p. Obviously, we can do
the same with the semigroup T ]2 generated by the formal adjoint −A]2. Moreover,
since A′2 = A]2, we have that T ′2 = T ]2 (see e.g. [24, Corollary 1.10.6]). Hence, it
makes sense to set

Tp(t) :=
(
T ]p′(t)

)′(6.3)

for all p ∈ (1, 2]. Due to the above remarks we have for all u, v ∈ L2 and t > 0,

|〈T2(t)u, v〉| = |〈u, T ]2(t)v〉| ≤ ‖u‖1‖v‖2‖T ]2(t)‖2,∞ ,

whence, ‖T2(t)u‖2 ≤ ‖T ]2(t)‖2,∞‖u‖1. For this reason, T2(t) has a unique continu-
ous extension to L1 which we denote by T1(t). A simple density argument shows
that T1(·) is a semigroup on L1. Often the definition of “analytic semigroup” in-
cludes strong continuity at zero. In this paper, by an analytic semigroup on the
Banach space E we just mean a semigroup for which T (·) : (0,∞) → E is an an-
alytic function. Hence, by the smoothing properties of Tp(·) we see that for each
ε > 0 the map t 7→ Tp(t) = Tp(ε/2)T2(t−ε)Tp(ε/2) is analytic from (ε,∞) to Lp(Ω)
for p ∈ [1,∞], and thus Tp(·) is an analytic semigroup on Lp for all p ∈ [1,∞]. In
the following problem we collect some more properties of these semigroups.

Theorem 6.1. For 1 ≤ p ≤ ∞ the semigroup Tp(·) is compact positive irreducible
and analytic on Lp. For 1 < p < ∞ it is strongly continuous at zero, and its
generator is −Ap. Moreover, for 2 ≤ p ≤ q ≤ ∞, p < ∞ and γ, δ as in (2.9), we
have that

‖Tp(t)‖p,q ≤ c(1 + δt)N( 1
p−

1
q )t−N( 1

p−
1
q )e(p−1)δt,(6.4)

where c just depends on N and upper bounds for γ and |Ω|.

Proof. We already know that T2 is a strongly continuous analytic semigroup. Ir-
reducibility of T2(t) for t > 0 follows since the resolvent of its generator −A2

has the same property by Proposition 5.9 (see [21, Section C-III.3]). For p 6=
2 the compactness and irreducibility follow from the above by writing Tp(t) =
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T2(t/3)T2(t/3)Tp(t/3) and taking into account the smoothing properties of T2. We
next show that Tp is exponentially bounded on Lp. For all q ≥ 2 set uq :=
signu|u|q−1. Applying (4.5) to u and −u, using the definition of A and letting
m to infinity we get that

‖u‖qqN
N−1
≤ qc̄〈Au+ (q − 1)δu, uq〉(6.5)

holds whenever u ∈ V and the right-hand side is finite. Set u(t) = e−(p−1)δtTp(t)u0

for u0 ∈ Lp and observe that u ∈ C∞((0,∞), Lp) for all p by (6.2). Differentiating
‖u(t)‖pp and using (6.5) we get the differential inequality d

dt‖u(t)‖pp ≤ −‖u(t)‖pp from
which we conclude that for all p ∈ [2,∞) and t ≥ 0

‖Tp(t)‖p,p ≤ e(p−1)δt.(6.6)

Strong continuity of Tp(·) at t = 0 for p ∈ [2,∞) follows by (6.6) by interpolation
since T2(·) is strongly continuous.

We know that −A2 is the generator of T2. To show that −Ap generates Tp for
p ∈ (2,∞) we prove that D(Ap) is a core for the generator of Tp; that is, D(Ap)
is invariant under Tp, it is dense in Lp and it is contained in the domain of the
definition of the generator. Since Ap is closed, it follows that −Ap is the generator
of Tp (e.g. [21, Proposition I.1.9]). Since D(Ap) ⊂ D(A2), we get for all u ∈ D(Ap),

d

dt
Tp(t)u =

d

dt
T2(t)u = −A2T2(t)u = −T2(t)Apu.

By the smoothing property (6.2) it follows therefore that D(Ap) is invariant under
Tp. By letting t to zero and taking into account the strong continuity of Tp it also
follows that u ∈ D(Ap) is in the domain of the definition of the generator of Tp.
Finally, since −Ap is densely defined, it is the generator of Tp. For p ∈ (1, 2) this
follows from (5.5) by duality using the adjoint semigroup (see [24, Theorem 1.10.6]).

It remains to prove (6.4). We first consider the case q = ∞. For p = 2 the
result is a consequence of (6.5) and [30, Theorem II.3.5]. For p ∈ (2,∞) we have to
modify the proof given there. The proof is based on (6.6) and an iteration process.
This iteration process is started with p = 2. However, we could as well start with
any given p ∈ (2,∞) and use the same arguments. More precisely, in their proof
we have to put pν := pkν for all ν ∈ N, where k := N(N − 1)−1 (note that n = 2N
in our case). It is left to the reader to check the details. This proves (6.4) for
q =∞. For finite q we use (6.6), the estimate we just proved, and the Riesz Thorin
Interpolation Theorem.

Corollary 6.2. Suppose that 1 ≤ p ≤ q ≤ ∞ with p 6= q, q = 1 or p = ∞. Then
for every t0 > 0, there exists a constant C(p, t0) depending only on N, p, t0 and
upper bounds for γ, δ and |Ω| such that

‖Tp(t)‖p,q ≤ C(p, t0)t−N( 1
p−

1
q ).(6.7)

Proof. For p, q ∈ [2,∞] this follows immediately from (6.4). For p, q ∈ (1, 2] it
follows by duality. Finally, if p < 2 < q, the assertion follows by writing ‖Tp(t)‖p,q ≤
‖Tp(t/2)‖p,2‖T2(t/2)‖2,q and using the previous estimates.

Remark 6.3. The estimate (6.4) is optimal. By representing the resolvent of A
by means of the Laplace transform a weaker singularity in t would imply better
smoothing properties of the resolvent. This is not possible for general bounded
domains as Theorem 5.11 shows.
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Using the above results it is easy to deal with the abstract parabolic equation
u̇+Apu = f in (0,∞),

u(0) = u0 .
(6.8)

As usual we call

u(t) := Tp(t)u0 +
∫ t

0

Tp(t− s)f(s) ds(6.9)

a mild solution of (6.8) (e.g. [24]). If u is a mild solution of (6.8), we say that
u is a generalised solution of (2.13). We have the following abstract version of
Theorem 2.6.

Theorem 6.4. Let f ∈ L∞((0, T ), Lq) and u0 ∈ Lp, where 1 < p ≤ q <∞ satisfy
(2.14). Then, (6.8) has a unique mild solution u in C([0, t], Lq).

Proof. Using (6.7) and (2.14) it is clear that (6.9) exists. This proves the assertion.

Remark 6.5. It is easy to see that a solution u of (6.8) is a weak solution of the
parabolic problem ∂tu + Au = f in Ω × (0,∞) in the usual sense. Hence, all the
“interior regularity” results for parabolic equations apply to our situation as well.

Remark 6.6. By (6.4) with p = 2 and duality we get that for some constant c > 0

‖T1(t)‖1,∞ ≤ c(1 + δt)N t−Neδt,(6.10)

Therefore, T1 has has a representation of the form

T1(t)u(x) =
∫

Ω

kt(x, y)u(y) dy

where kt(· , ·) ∈ L∞(Ω)⊗ L1(Ω) is called the heat kernel (e.g. [25, Appendix C.1]).
It is also well known that the estimate (6.10) leads to the estimate

|kt(x, y)| ≤ c(1 + δt)N t−Neδt .

Moreover, kt(x, y) → δ(x − y) weakly as t → 0 (e.g. [25, Appendix C.1]). By the
positivity of the semigroup we have that k(x, y, t) > 0 for all x, y ∈ Ω and t > 0.

Remark 6.7. For operators with c0 ≥ 0 and ai = bi = 0 for all i = 1, . . . , N the
results are simpler. In that case δ = 0 and we have that for all 1 ≤ p ≤ q,

‖Tp(t)‖p,q ≤ Ct−N( 1
p−

1
q )

with a constant only depending on N and upper bounds for γ and |Ω|. For 2 ≤ p ≤
q ≤ ∞ this is even true if we only assume that ai = 0. Indeed, if we analyse the
calculations in the proof of Theorem 4.1 leading to (6.5), we see that if ai = 0 for
all i = 1, . . . , N , then (6.5) holds without the factor (p − 1) in front of δ. Hence,
for p ≥ 2 we have ‖Tp(t)‖p,p ≤ eδt rather than (6.6). Hence, for 2 ≤ p ≤ q we have
(6.4) with the factor eδt rather than e(p−1)δt.

The following remark deals with the selfadjoint problem; that is, aij = aji and
ai = bi = 0 for all i, j = 1, . . . , N .

Remark 6.8. (a) For selfadjoint operators with c0 ≤ 0 we can prove that the heat
kernel has an upper Gaussian bound of the form

0 ≤ kt(x, t) ≤ Ct−Ne−
|x−y|2
Ct ,(6.11)
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where C depends on the same quantities as c in (6.10). The difference to the usual
one is that N is replaced by 2N . The proof is a modification of the one for the
Dirichlet or Neumann problem such as given in [10] for the Dirichlet or Neumann
problem. More precisely, The proof is a simple modification of the proof for the
Dirichlet problem. First of all, note that by (6.10) (with δ = 0) and the abstract
Lemma 2.2.3 in [10] a logarithmic Sobolev inequality with β(ε) = c − (N/2) log ε
and a constant c depending only on the quantities listed in the theorem holds for
all 0 ≤ u ∈ V ∩ L∞ ∩ L1. Note also that V0 ∩ V is a form core for a(· , ·). Now we
can repeat the calculations in [10, Section 3.3], with minor modifications including
the boundary term of the form a(· , ·).

(b) By using the Laplace transform we get from (6.11) the estimate

0 ≤ g(x, y) ≤ CNΓ(N − 1)
|x− y|2(N−1)

for the kernel g(· , ·) of A−1, where C is the same as in (6.11) and Γ(·) the Gamma
function. The right-hand side of the above inequality is not integrable on a ball,
but still the best possible bound since all the other bounds were optimal. This is no
contradiction because this just means that this kind of singularity may only occur
near a bad point of the boundary, and that a better interior estimate holds.

Appendix A. Maximal restrictions and duality

Assume that V,H are Hilbert spaces with V
d
↪→ H . Identifying H with its dual

we have that V
d
↪→ H

d
↪→ V ′. We further suppose that 〈· , ·〉 is the duality pairing

on V induced by the inner product (·|·) of H ; that is, 〈u, v〉 = (u|v) holds for all
u ∈ H ⊂ V ′ and v ∈ V . The duality pairing 〈· , ·〉 is well defined since V is dense
in H . Finally, we assume that a(· , ·) : V × V → R is a continuous sesquilinear
form and that there exist α > 0 and λ0 ∈ R such that (3.2) holds. As shown
at the beginning of Section 5 the form a(· , ·) induces an operator A ∈ L(V, V ′)
satisfying (5.1) for all u, v ∈ V . Due to (3.2) and the Lax-Milgram Theorem λ+A

has a bounded inverse for all λ ≥ λ0. Since V
d
↪→ V ′, we may consider A as a

densely defined operator on V ′ with a domain of definition V . It follows from the
boundedness of a(· , ·) and (3.2) that the graph norm ‖u‖D(A) = ‖Au‖V ′ + ‖u‖V ′
is equivalent to the norm on V . Since A ∈ L(V, V ′), it follows that A is a closed
operator on V ′ with domain D(A) = V .

Definition A.1. If F is a Banach space with F ↪→ V ′, the F -realization AF of A
defined by

AFu := Au for all u ∈ D(AF ) := {v ∈ V ∩ F : Av ∈ F}
is a closed operator on F .

The operator AF is also called the maximal restriction of A to F , or the part of
A in F .

Lemma A.2. Let F
d
↪→ V ′ and (λ + A)−1(F ) ⊂ F for some λ ∈ %(−A). Then

D(AF ) is dense in V .

Proof. First note that under the present assumptions %(A) ⊂ %(AF ) so, in par-
ticular, λ0 ∈ %(−AF ). It is sufficient to show that the orthogonal complement of
D(AF ) with respect to the bilinear form a(· , ·)+λ0(· | ·)H is zero. To see this, note
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that 0 = a(u, v) +λ0(u|v)H = 〈(λ0 +AF )u, v〉 for all u ∈ D(AF ) implies that v = 0
since the range of λ0 +AF is F which is dense in V ′.

The following proposition, which turns out to be useful later, is a consequence
of a result due to Arendt [2].

Proposition A.3. Let us suppose that F ↪→ V ′, that (λ + A)−1(F ) ⊂ F and
(λ + A)−k(V ′) ⊂ F for some λ ∈ %(−A) and k ∈ N. Then, %(A) = %(AF ) and
(λ+AF )−1 = (λ +A)−1|F for all λ ∈ %(−A).

Proposition A.4. Suppose that E is a Banach space with V
d
↪→ E. Then, the

embedding V ↪→ E is compact if and only if (λ0 +AE′)−1 ∈ L(E′, E) is compact.

Proof. That the condition is necessary is clear. To prove the reverse we can assume
that λ0 = 0 in (3.2) by replacing A by λ0 + A. Doing so, we get that for all
u ∈ E′ ↪→ V ′,

α‖A−1u‖2V ≤ a(A−1u,A−1u) = 〈u,A−1u〉 ≤ ‖u‖E′‖A−1u‖E .(A.1)

Suppose that B ⊂ E′ is bounded and that wn is a sequence in A−1(B); that is,
wn = A−1un for some un ∈ B. Since A−1 is compact as an operator from E′ to
E by hypotheses, it follows that wn has a convergent subsequence in E. Applying
(A.1) to u = uk − u` we get that

‖wk − w`‖2V ≤ α−1‖uk − u`‖E′‖wk − w`‖E
for all k, ` ∈ N. Since B is bounded in E′, this shows that this subsequence
also converges in V . Consequently, A−1(B) is relatively compact in V , whence
A−1 ∈ L(E′, V ) is compact. Therefore, the embedding E′ ↪→ V ′ given by AA−1 is
compact which is equivalent to V ↪→ E being compact. This concludes the proof
of the proposition.

Next we define extensions of A to Banach spaces which are not necessarily sub-
spaces of V ′. To do this let us consider the dual form a](· , ·) : V ×V → R given by
(5.4) for all u, v ∈ V . Denote by A] the closed operator induced by a](· , ·) on V ′

and let F be a Banach space such that F ′
d
↪→ V ′ and (λ+A])−1(F ′) ⊂ F ′. Assume,

in addition, that D(A]F ′) is dense in F ′. Then, we can define

AF := (A]F ′)
′,(A.2)

where the domain of the definition of AF is given by

D(AF ) =
{
u ∈ F : v 7→ 〈A]F ′v, u〉 is continuous on D(A]F ′ ) ⊂ F ′

}
.

Then the following proposition holds.

Proposition A.5. Suppose F and AF are defined as above. Moreover, let E be

a Banach space such that E ↪→ F , E
d
↪→ V ′ and (λ + A)−1(E) ⊂ E for some

λ ∈ %(−A). Then, (AF )E = AE , that is, the E-realization of AF coincides with
AE. In particular, AF is an extension of AE .

Proof. Let us assume without loss of generality that 0 ∈ %(A) ∩ %(A]) by replacing
A and A] by λ0 +A and λ0 +A], respectively. By our assumptions it is clear that
0 ∈ %(AE) ∩ %(A]F ′). Let u ∈ D(AE). Then, for all v ∈ D(A]F ′)

|〈A]F ′v, u〉| = |a](v, u)| = |a(u, v)| = |〈Au, v〉| ≤ ‖Au‖F‖v‖F ′ ≤ c‖AEu‖E‖v‖F ′ ,
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where we used that E ↪→ F . Hence, u ∈ D(AF ). The above calculation also shows
that 〈AFu, v〉 = 〈AEu, v〉 for all v ∈ D(A]F ′), and therefore by density of D(A]F ′) in
F ′ we conclude that AFu = AEu for all u ∈ D(AE); that is, AF is an extension of
AE . Next assume that u ∈ D((AF )E); that is, u ∈ D(AF )∩E such that AFu ∈ E.
Since 0 ∈ %(AE) and AFu ∈ E ↪→ V ′, there exists w ∈ D(AE) ⊂ V such that
AFu = AEw ∈ E. Hence, by the definition of AF ,

〈A]F ′v, u〉 = 〈AFu, v〉 = 〈AEw, v〉 = a(w, v) = a](v, w) = 〈A]F ′v, w〉

for all v ∈ D(A]F ′). Since the range of A]F ′ is F ′ (recall that 0 ∈ %(A]F ′)), it follows
that u = w ∈ V ∩ E and AFu = AEu ∈ E which completes the proof of the
proposition.

Remark A.6. (a) Taking E = F = V ′ in the above proposition we get that (A])′ =
A which is of course well known. In particular, we have that %(A) = %(A]).

(b) Let F be as in the above proposition, and suppose that (λ+A])−k(V ′) ⊂ F ′
for some λ ∈ %(−A]) and k ∈ N. Then, by definition (A.2) and Proposition A.3 we
get that %(AF ) = %(A]F ′) = %(A]) = %(A).

Appendix B. A priori estimates

Suppose that (X,m) is a finite measure space and let Lp = Lp(X,m). We
consider the special case that H = L2, where the inner product is, as usual, given
by
∫
X
uv dm. Further, assume that if u ∈ V , then also |u| ∈ V . Finally, let a(· , ·)

be a form and let A ∈ L(V, V ′) be the induced operator as discussed in Appendix A.
We suppose that there exist constants d > 2, c̄, δ ≥ 0 and nondecreasing functions
c1, c2 : [2,∞)→ [1,∞) of polynomial growth such that

‖u‖2qd
d−2
≤ c̄c1(q)〈Au + c2(q)δu, uq〉(B.1)

for all u ∈ D(A) and q ≥ 2 for which the right-hand side makes sense. Here,
uq := signu|u|q−1. We show that this inequality leads to a priori estimates for
solutions of the equation Au = f .

Theorem B.1. Suppose u is the solution of the equation Au = f with f ∈ Lp and
that (B.1) holds. Set m(p) := dp(d−2p)−1 if p ∈ (1, d/2) and m(p) =∞ if p > d/2.
Then, if p ∈ [2, d/2) ∪ (d/2,∞],

‖u‖m(p) ≤ Cc̄
(
‖f‖p + c̄µδ1+µ‖u‖2

)
,(B.2)

where C > 0 only depends on d and p and an upper bound for m(X), and µ =
d(p− 2)/4p.

Proof. The proof of the above theorem is almost identical to part of the proof of
Theorem 4.1. In this case we set v := signu|u|q−1 and w := |u| q2 . Then, if f is a
solution of (5.2) we get the estimates (4.6) and (4.7) for ‖w‖22d

d−2
with q2 replaced

by c3(q) := max{c1(q), c2(q)}. If p > d/2 we proceed exactly as in the proof of
Theorem 4.1. In case p ∈ [2, d/2) we have to be more careful as we do not know a
priori that u ∈ Lp′(q−1) and hence we cannot just set q := q̄ := p(d−2)(d−2p)−1 and
divide inequality (4.7) by ‖u‖q̄−1

dp
d−2p

to get the result. The main problem therefore is

to show that u has a finite L dp
d−2p

-norm. To do so we define qn and η as in (4.9).
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As for that range of p under consideration qn < q̄ and η < 1 we have that

lim
n→∞

qn = lim
n→∞

ηn +
n∑
k=0

ηk = (1− η)−1 = q̄.

Using these facts we deduce from (4.10) that

‖u‖ dqn+1
d−2

≤ c3(q̄)
1+µ

2

∑n+1
k=1 η

k

‖u‖2(1+
∑n+1
k=0 η

−k)−1

2d
d−2

for all n ∈ N. Letting n to infinity we obtain

‖u‖ dp
d−2p

= ‖u‖ dq̄
d−2
≤ c3(q̄)

1+µ
2 q̄‖u‖θ2d

d−2
(B.3)

with θ := (2η− 2)(2θ− 1)−1. This completes the proof in the case p ∈ [2, d/2).

Remark B.2. With a slight modification the above theorem remains true if we omit
the assumption that m(X) <∞. In that case we have to assume that f ∈ L2 ∩Lp,
and we get that for p ∈ [2, d/2) ∪ (d/2,∞],

‖u‖m(p) ≤ Cc̄1+µ
(
‖f‖p + δ1+µ‖u‖2

)
+ C‖u‖2 ,(B.4)

where C > 0 just depends on d and p. To see this, note first that the only place
we used that the volume is finite is to pass from (4.11) and (B.3) to (B.2). So
we only have to prove (B.4). To do so note that (4.11) and (B.3) imply that
‖u‖m(p) ≤M1−θ‖u‖θ2d

d−2
with M defined as in the proof of Theorem 4.1. By Young’s

inequality (e.g. [13, p. 145]) we get that ‖u‖m(p) ≤M + ‖u‖ 2d
d−2

. Finally, by a well
known interpolation inequality (e.g. [13, p. 146]) we have that

‖u‖ 2d
d−2
≤ 1

2
‖u‖m(p) + 2

1
2 ( d−2

2d −
1

m(p) )−1

‖u‖2

which completes the proof of (B.4). Note that (B.2) cannot be true on unbounded
domains. As a counterexample consider the equation −∆u = f in RN . In that case
δ = 0 and (B.2) would imply that (−∆)−1 is bounded from Lp to Lm(p), which is
not true.

Appendix C. Smoothing properties of the resolvent

Throughout, in what follows, we make the same assumptions as in Appendix B.
In addition, we suppose that

V ∩ Lp is dense in Lp(C.1)

for all p ∈ [2,∞). We further suppose that the operators A and A] induced by
the forms a(· , ·) and a](· , ·) satisfy (B.1) with the same constants. Observe that
by (B.1) with q = 2, (5.1) and the continuity of a(· , ·) on V × V we get that

‖u‖ 2d
d−2
≤ c1‖u‖V and therefore V

d
↪→ L 2d

d−2
. Hence, by duality and the embeddings

for Lp-spaces we conclude that

Lp
d
↪→ V ′(C.2)

for all p ∈ [2d(d+ 2)−1,∞].
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Lemma C.1. For all p ∈ [2,∞] we have that

(λ0 +A)−1 ∈ L(Lp, Lm(p)) ,(C.3)

where m(p) is as in Theorem B.1, and λ0 from (3.2). Moreover, there exists k ∈ N
only depending on d such that

(λ0 +A)−k(V ′) ⊂ L∞ .
The assertion is the same if we replace A by A].

Proof. Clearly λ0 ∈ %(−A) = %(−A]) and (λ0 +A)−1(V ′) ⊂ V ↪→ L2. Hence, there
exists a constant c > 0 such that ‖u‖2 ≤ c‖f‖p for p ≥ 2, where u := (λ0 +A)−1f .
Using (B.2) with A replaced by A + λ0 the first assertion follows. For the second
assertion we again use that (λ0 + A)−1(V ′) ⊂ V ↪→ L2 and iterate the first result
a finite number of times depending on d only.

For p ≥ 2 we denote by Ap and A]p the Lp-realization of A and A], respec-
tively. Recall that (Lp)′ = Lp′ with equal norms for all p ∈ [1,∞), where as

usual p−1 + (p′)−1 = 1. Thus, if p ∈ (1, 2], (Lp)′
d
↪→ V ′, and by the above lemma

(λ + A])−1(Lp′) ⊂ Lp′ . Hence, by assumption (C.1) and Lemma A.2 D(A]p′ ) is
dense in Lp′ . Therefore, for all p ∈ (1, 2) we can define Ap by (5.5) for p ∈ (1, 2].
As a consequence of Proposition A.5 Ap is an extension of Aq for all q > p. On the
other hand, Ap is the closure of Aq for such p, q. To see this it is sufficient to show
that D(A∞) is dense in D(Ap) for all p > 1. Indeed, since L∞ is dense in Lp, there
exists a sequence vn in L∞ approaching (λ0 +A)u ∈ Lp. Set un := (λ0 +A∞)−1vn.
Since (λ0 +A∞)−1|Lp = (λ0 +Ap)−1, this shows the assertion.

Note that D(A]∞) is not dense in L∞ in general, and that (L∞)′ 6= L1. For this
reason we cannot define A1 to be the dual of A]∞. Instead, we define A1 to be the
closure of Ap for some arbitrary p > 1. The next lemma shows that this is possible.

Lemma C.2. For p > 1 the operator Ap is closable in L1 and the closure is inde-
pendent of p. If we denote its closure by A1 we have that (A1)′ = A]∞.

Proof. Let p ∈ (1,∞) be arbitrary and suppose that un ∈ L1∩D(Ap) is a sequence
such that Apun → g in L1 and un → 0 in L1 as n tends to infinity. For w ∈
D(A]∞) ⊂ D(A]p′) we have by (5.5) that 〈Apun, w〉 = 〈un, A]p′w〉. Since A]p′w ∈ L∞,
it follows that the last term tends to zero, whereas the first tends to 〈g, w〉 as n tends
to infinity. We know from (C.2) and Lemma A.2 that D(A]∞) is dense in V and
therefore dense in Lq for q ≤ 2d(d−2)−1. Hence, we can approximate every function
v ∈ L∞ pointwise by a sequence wn ∈ D(A]∞) with ‖wn‖∞ uniformly bounded and
the Dominated Convergence Theorem yields 0 = 〈g, wn〉 → 〈g, w〉 = 0, which
implies that g = 0. This shows that Ap is closable. The closure is independent of
p because Ap is the closure of A∞ for all p > 1.

It remains to show that (A1)′ = A]∞. Let u ∈ D(A]∞), that is, u ∈ V ∩ L∞ and
A]u ∈ L∞, and suppose that v ∈ D(Ap) ⊂ D(A1) for some p ∈ (1,∞). Using (5.5)
we obtain

|〈u,A1v〉| = |〈u,Apv〉| = |〈A]p′u, v〉| ≤ ‖A]∞u‖∞‖v‖1 .

Since D(Ap) is dense in L1, this implies that u ∈ D((A1)′) and (A1)′u = A]∞u.
Suppose now that u ∈ D((A1)′). Therefore, for all v ∈ D(Ap) we have that

|〈u,Apv〉| = |〈u,A1v〉| ≤ c‖v‖1 ≤ c1‖v‖p
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for some constants c, c1 > 0 independent of v ∈ D(Ap). Hence, u ∈ D((Ap)′) =
D(A]p′). By (5.5) we conclude that (A1)′u = (Ap)′u = A]p′u = A]u. Since u ∈ L∞
and (A1)′u ∈ L∞, this implies that u ∈ D(A]∞). This concludes the proof of the
lemma.

Theorem C.3. Let Ap and A]p be defined as above for all p ∈ [1,∞]. Then, the
following assertions hold:

(a) For p ∈ [1,∞] the operator Ap is closed. It is densely defined if p < ∞.
Moreover, Ap is the closure of Aq, and Aq the Lq-realization of Ap whenever 1 ≤
p ≤ q ≤ ∞.

(b) A′p = A]p′ for all p ∈ [1,∞).
(c) The spectrum of Ap is independent of p ∈ [1,∞]. Moreover, if V ↪→ L2

compactly, then Ap has compact resolvent for all p ∈ (1,∞), and if Ap has compact
resolvent for some p ∈ (1,∞), this is true for all p, and V ↪→ L2 compactly.

(d) For p ∈ [1,∞] and λ ∈ %(−A) (C.3) holds, where m(p) is as in Theorem B.1
if p ∈ (1, d/2)∪(d/2,∞] and m(1) ∈ [1, d(d−2)−1) arbitrary if p = 1. Furthermore,

‖(λ+Ap)−1‖p,q = ‖(λ+A]q′ )
−1‖q′,p′(C.4)

whenever p, q ∈ [1,∞] and one of the norms is finite.

Proof. (a) is clear from Lemma C.2 and the preceeding discussion, and (b) follows
from definition (5.5) and Lemma C.2. Independence of the spectrum of Ap from
p ∈ (1,∞] is a consequence of the definition of Ap and Remark A.6(b). That
%(A1) is the same follows by duality from (b). Compactness of the resolvent in
the case p = 2 is clear as by assumption V ↪→ L2 compactly. Compactness of the
resolvent of Ap follows as in the proof of Theorem 5.3. If the resolvent is compact for
some p, it follows by interpolation that A2 has compact resolvent and therefore by
Proposition A.4 that V ↪→ L2 compactly and we are back to the situation considered
before. This proves (c). To prove (d) note that [(λ+Ap)−1]′ = (λ+A]p′)

−1 for all
p ∈ [1,∞). Since an operator and its dual have the same norm, this implies (C.4).
The remaining assertion follows from this together with (C.3).

Note added in proof. In Proposition 3.3 it is not clear whether the set S is measur-
able in general. As we do not make use of the existence of S this does not affect
the other results in the paper.

References

1. Robert A. Adams, Sobolev Spaces, Academic Press, New York, 1975. MR 56:9247
2. W. Arendt, Gaussian estimates and interpolation of the spectrum in Lp, Differential and

Integral Equations 7 (1994), 1153–1168. MR 95e:47066
3. J. Thomas Beale, Scattering frequencies of resonators, Comm. Pure Appl. Math. 26 (1973),

549–563. MR 50:5217
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