Robin's inequality and the Riemann hypothesis

By Marek WóJtowicz
Instytut Matematyki, Uniwersytet Kazimierza Wielkiego, Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland

(Communicated by Shigefumi Mori, m.J.A., April 12, 2007)

Abstract

Let $f(n)=\sigma(n) / e^{\gamma} n \log \log n, n=3,4, \ldots$, where σ denotes the sum of divisors function. In 1984 Robin proved that the inequality $f(n)<1$, for all $n \geq 5041$, is equivalent to the Riemann hypothesis. Here we show that the values of f are close to 0 on a set of asymptotic density 1. Similarly, an inequality by Rosser and Schoenfeld of 1962, dealing with the Euler totient function φ, is essential only on "thin" subsets of \mathbf{N}.

Key words: Riemann hypothesis, Robin's inequality, asymptotic density.

1. Introduction. Throughout this paper $\sigma(n)$ and $\varphi(n)$ denote the sum of divisors and the Euler function of n (a positive integer), γ denotes Euler's constant, and \mathbf{N} stands for the set of positive integers. The present note deals with values of the function

$$
f(n)=\frac{\sigma(n)}{e^{\gamma} n \log \log n}, n \geq 3
$$

In 1984 Robin proved that the Riemann hypothesis (RH) is true if and only if the inequality

$$
\begin{equation*}
f(n)<1 \tag{R}
\end{equation*}
$$

holds for all integers $n \geq 5041$ [11, Théorème 1], and that, independently on RH ,

$$
\begin{equation*}
f(n)<1+\frac{0.6482 \ldots}{e^{\gamma}(\log \log n)^{2}} \tag{1}
\end{equation*}
$$

for all $n \geq 3$, with equality only for $n=12$ [11, Théorème 2]. It is also known that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} f(n)=1 \tag{2}
\end{equation*}
$$

(see [5, Theorem 323, Sect. 18.3 and 22.9]), and it is obvious that

$$
\liminf _{n \rightarrow \infty} f(n)=0
$$

(e.g., whenever n runs over prime numbers).

In the context of the two latter equalities it is natural to set the question: whether the values of f are close to 1 (equivalently, if $\sigma(n) \sim e^{\gamma} n \log \log n$) on some subset \mathbf{M} of \mathbf{N} of positive density? The main goal of this note is to show this question has a negative answer: roughly speaking, almost all values of f are concentrated around 0 , what seems to

[^0]be somewhat unexpected in the context of Robin's criterion (R) and equality (2).

Theorem 1. There is a subset \mathbf{W} of \mathbf{N} of asymptotic density 1 such that

$$
\begin{equation*}
\lim _{\substack{n \rightarrow \infty \\ n \in \mathbf{W}}} f(n)=0 \tag{3}
\end{equation*}
$$

Consequently, for every $D \in(0,1]$ there is a subset \mathbf{W}_{D} of \mathbf{N} of asymptotic density 1 with

$$
f(n)<D \quad \text { for all } n \in \mathbf{W}_{D}
$$

In particular, Theorem 1 implies that inequalities (R) and (1) are essential only on "thin" subsets of \mathbf{N}. The theorem completes also the following result by Robin about the behavior of f on some intervals of positive integers (see [11, Proposition 1]): There is an infinite sequence of very rarely distributed positive integers $C_{1}<C_{2}<\ldots$ (the so called colossally abundant numbers) such that the maximum of f on every interval $\left\{C_{j} \leq n \leq C_{j+1}\right\}, j=1,2, \ldots$, is attained at C_{j} or C_{j+1} (hence every sequence $\left(n_{k}\right)$ giving the equality in (2) can be replaced by a subsequence $\left(C_{j_{s}}\right)$). Notice that the table of all colossally abundant numbers up to 10^{18}, published in 1944 by Alaoglu and Erdös [1, pp. 468-469], contains only 22 elements (more recent results in this direction are published in $[2,3,6,10]$).

From Theorem 1 we immediately obtain

Corollary 1. Every subset \mathbf{M} of \mathbf{N} of the asymptotic density $d(\mathbf{M})>0$ contains a subset \mathbf{M}_{0} with $d\left(\mathbf{M}_{0}\right)=d(\mathbf{M})$ such that

$$
\lim _{\substack{n \rightarrow \infty \\ n \in \mathrm{M}_{0}}} f(n)=0
$$

The proofs are given in the next section. We recall that the (asymptotic) density $d(A)$ of a subset A of \mathbf{N} is defined as the limit

$$
\lim _{x \rightarrow \infty} \frac{\#\{n \in A: n \leq x\}}{x}
$$

if it exists. It is well known that if two subsets A, B of \mathbf{N} possess densities, then $d(A \cup B)=d(A)+d(B)-$ $d(A \cap B)$ whenever $d(A \cup B)$ or $d(A \cap B)$ exists, and that the sets of even (or, odd) and squarefree integers have desities $1 / 2$ and $6 / \pi^{2}$, respectively (see e.g., [14]).

2. The proofs.

Proof of Theorem 1. We shall prove a slightly stronger result than the main claim. Our proof is a combination of two deep results obtained in 1997 by Ford, and in 2002 by Luca and Pomerance:
(F) There is a constant $c_{0} \in[2,39.4]$ such that

$$
\frac{\sigma(\varphi(n))}{n} \geq \frac{1}{c_{0}}
$$

for all $n \in \mathbf{N}$ (see [4, Theorem 2]; it is conjectured in [8] that $c_{0}=2$);
(L-P) For every $\varepsilon>0$ there is a subset \mathbf{W}_{ε} of \mathbf{N} of asymptotic density 1 such that

$$
\frac{\sigma(\varphi(n))}{\varphi(n)}<(1+\varepsilon) e^{\gamma} \log \log \log n
$$

for all $n \in \mathbf{W}_{\varepsilon}$ (see [7; Proof of Theorem 1, inequalities (20) and (36)]).

Let us fix $\varepsilon=1$ and put $\mathbf{W}=\mathbf{W}_{1}$. Then, by (F) and (L-P), we have
(4) $\frac{n}{\varphi(n)}=\frac{n}{\sigma(\varphi(n))} \cdot \frac{\sigma(\varphi(n))}{\varphi(n)} \leq 2 c_{0} e^{\gamma} \log \log \log n$ for all $n \in \mathbf{W}$. Now notice that $\sigma(n) / n<n / \varphi(n)$ for all n 's (because, if $n=\prod_{j=1}^{s} p_{j}^{\alpha_{j}}$ is the prime factorization of n into prime factors $p_{1}<\ldots<$ p_{s} then $\varphi(n)=\prod_{j=1}^{s} p_{j}^{\alpha_{j}-1}\left(p_{j}-1\right)$ and $\sigma(n)=$ $\prod_{j=1}^{s}\left(p_{j}^{\alpha_{j}+1}-1\right)\left(p_{j}-1\right)^{-1}($ see $[13$, pp. 164 and 230$])$; now easy calculations give $\frac{\sigma(n) \varphi(n)}{n^{2}}=\prod_{j=1}^{s}(1-$ $\left.p_{j}^{-\alpha_{j}-1}\right)<1$). Then from (4) we obtain

$$
\begin{equation*}
f(n)<\frac{n}{e^{\gamma} \varphi(n) \log \log n} \leq 2 c_{0} \frac{\log \log \log n}{\log \log n} \tag{5}
\end{equation*}
$$

for all $n \in \mathbf{W}$, and the proof is complete.
Proof of Corollary 1. Let \mathbf{W} be as in Theorem 1. Then the set $\mathbf{M}_{0}:=\mathbf{M} \cap \mathbf{W}$ possesses the
desired property because $d(\mathbf{W} \cup \mathbf{M})$ exists (it equals 1), whence

$$
d(\mathbf{M})-d\left(\mathbf{M}_{0}\right)=d(\mathbf{W} \cup \mathbf{M})-d(\mathbf{W})=1-1=0
$$

The proof is complete.
Remark. Inequality in (4) is evidently stronger than the result stated in Theorem 1: it supplements the following inequality obtained in 1962 by Rosser and Schoenfeld [12, Theorem 15]:

$$
\begin{equation*}
\frac{n}{\varphi(n)} \leq e^{\gamma} \cdot \log \log n \cdot\left(1+\frac{2.5}{e^{\gamma}(\log \log n)^{2}}\right) \tag{6}
\end{equation*}
$$

for every $n \geq 3$ but $n=2 \cdot 3 \cdot \ldots \cdot 23$, where the constant 2.5 in (6) is replaced by 2.50637 .

Inequality (4) complements also the result by Nicolas of 1983 [9, Théorème 1], related to (6), that the inequality

$$
\frac{n}{\varphi(n)}>e^{\gamma} \log \log n
$$

holds for infinite number of n 's: inequalities of this kind, where the right side is multiplicated by a constant $c \in(0,1]$, cannot hold on sets of positive densities.

References

[1] L. Alaoglu and P. Erdös, On highly composite and similar numbers, Trans. Amer. Math. Soc. 56 (1944), 448-469.
[2] K. Briggs, Abundant numbers and the Riemann hypothesis, Experiment. Math. 15 (2006), no. 2, 251-256.
[3] J. H. Bruinier, Primzahlen, Teilersummen und die Riemannsche Vermutung, Math. Semesterber. 48 (2001), no. 1, 79-92.
[4] K. Ford, An explicit sieve bound and small values of $\sigma(\phi(m))$, Period. Math. Hungar. 43 (2001), no. 1-2, 15-29.
[5] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Fifth edition, Oxford Univ. Press, New York, 1979.
[6] J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Amer. Math. Monthly 109 (2002), no. 6, 534-543.
[7] F. Luca and C. Pomerance, On some problems of Ma̧kowski-Schinzel and Erdős concerning the arithmetical functions ϕ and σ, Colloq. Math. 92 (2002), no. 1, 111-130.
[8] A. Mạkowski and A. Schinzel, On the functions $\varphi(n)$ and $\sigma(n)$, Colloq. Math. 13 (1964), 9599.
[9] J.-L. Nicolas, Petites valeurs de la fonction d'Euler, J. Number Theory 17 (1983), no. 3, 375-388.
[10] T. Noe, Sequence A073751, published in: The OnLine Encyclopedia of Integer Sequences, 2002. (Electronic).
[11] G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann, J. Math. Pures Appl. (9) 63 (1984), no. 2, 187213.
[12] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illi-
nois J. Math. 6 (1962), 64-94.
[13] W. Sierpiński, Elementary theory of numbers, Translated from Polish by A. Hulanicki. Monografie Matematyczne, Państwowe Wydawnictwo Naukowe, Warsaw, 1964.
[14] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Translated from the second French edition (1995) by C. B. Thomas, Cambridge Univ. Press, Cambridge, 1995.

[^0]: 2000 Mathematics Subject Classiffcation. 11M06, 11N37

