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Abstract: Let f(n) = σ(n)/eγn log log n, n = 3, 4, . . . , where σ denotes the sum of divisors
function. In 1984 Robin proved that the inequality f(n) < 1, for all n ≥ 5041, is equivalent to
the Riemann hypothesis. Here we show that the values of f are close to 0 on a set of asymptotic
density 1. Similarly, an inequality by Rosser and Schoenfeld of 1962, dealing with the Euler totient
function ϕ, is essential only on ”thin” subsets of N.
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1. Introduction. Throughout this paper
σ(n) and ϕ(n) denote the sum of divisors and the
Euler function of n (a positive integer), γ denotes
Euler’s constant, and N stands for the set of posi-
tive integers. The present note deals with values of
the function

f(n) =
σ(n)

eγn log log n
, n ≥ 3.

In 1984 Robin proved that the Riemann hypothesis
(RH) is true if and only if the inequality

(R) f(n) < 1

holds for all integers n ≥ 5041 [11, Théorème 1], and
that, independently on RH,

(1) f(n) < 1 +
0.6482 . . .

eγ(log log n)2

for all n ≥ 3, with equality only for n = 12 [11,
Théorème 2]. It is also known that

(2) lim sup
n→∞

f(n) = 1

(see [5, Theorem 323, Sect. 18.3 and 22.9]), and it is
obvious that

lim inf
n→∞ f(n) = 0

(e.g., whenever n runs over prime numbers).

In the context of the two latter equalities it is
natural to set the question: whether the values of f

are close to 1 (equivalently, if σ(n) ∼ eγn log log n)
on some subset M of N of positive density? The
main goal of this note is to show this question has
a negative answer: roughly speaking, almost all val-
ues of f are concentrated around 0, what seems to

2000 Mathematics Subject Classiffcation. 11M06, 11N37

be somewhat unexpected in the context of Robin’s
criterion (R) and equality (2).

Theorem 1. There is a subset W of N of
asymptotic density 1 such that

(3) lim
n→∞
n∈W

f(n) = 0.

Consequently, for every D ∈ (0, 1] there is a subset
WD of N of asymptotic density 1 with

f(n) < D for all n ∈ WD.

In particular, Theorem 1 implies that inequalities
(R) and (1) are essential only on ”thin” subsets of
N. The theorem completes also the following result
by Robin about the behavior of f on some intervals
of positive integers (see [11, Proposition 1]): There
is an infinite sequence of very rarely distributed pos-
itive integers C1 < C2 < . . . (the so called colossally
abundant numbers) such that the maximum of f on
every interval {Cj ≤ n ≤ Cj+1}, j = 1, 2, . . . , is
attained at Cj or Cj+1 (hence every sequence (nk)
giving the equality in (2) can be replaced by a subse-
quence (Cjs )). Notice that the table of all colossally
abundant numbers up to 1018, published in 1944 by
Alaoglu and Erdös [1, pp. 468-469], contains only
22 elements (more recent results in this direction are
published in [2, 3, 6, 10]).

From Theorem 1 we immediately obtain

Corollary 1. Every subset M of N of the
asymptotic density d(M) > 0 contains a subset M0

with d(M0) = d(M) such that

lim
n→∞
n∈M0

f(n) = 0.



48 M. Wójtowicz [Vol. 83(A),

The proofs are given in the next section. We recall
that the (asymptotic) density d(A) of a subset A of
N is defined as the limit

lim
x→∞

#{n ∈ A : n ≤ x}
x

,

if it exists. It is well known that if two subsets A, B

of N possess densities, then d(A∪B) = d(A)+d(B)−
d(A∩B) whenever d(A∪B) or d(A∩B) exists, and
that the sets of even (or, odd) and squarefree in-
tegers have desities 1/2 and 6/π2, respectively (see
e.g., [14]).

2. The proofs.
Proof of Theorem 1. We shall prove a

slightly stronger result than the main claim. Our
proof is a combination of two deep results obtained
in 1997 by Ford, and in 2002 by Luca and Pomer-
ance:
(F) There is a constant c0 ∈ [2, 39.4] such that

σ(ϕ(n))
n

≥ 1
c0

for all n ∈ N (see [4, Theorem 2]; it is conjectured
in [8] that c0 = 2);
(L-P) For every ε > 0 there is a subset Wε of N of

asymptotic density 1 such that

σ(ϕ(n))
ϕ(n)

< (1 + ε)eγ log log log n

for all n ∈ Wε (see [7; Proof of Theorem 1, inequa-
lities (20) and (36)]).

Let us fix ε = 1 and put W = W1. Then, by
(F) and (L-P), we have

(4)
n

ϕ(n)
=

n

σ(ϕ(n))
· σ(ϕ(n))

ϕ(n)
≤ 2c0e

γ log log log n

for all n ∈ W. Now notice that σ(n)/n < n/ϕ(n)
for all n’s (because, if n =

∏s
j=1 p

αj

j is the prime
factorization of n into prime factors p1 < . . . <

ps then ϕ(n) =
∏s

j=1 p
αj−1
j (pj − 1) and σ(n) =∏s

j=1(p
αj+1
j −1)(pj−1)−1 (see [13, pp. 164 and 230]);

now easy calculations give σ(n)ϕ(n)
n2 =

∏s
j=1(1 −

p
−αj−1
j ) < 1 ). Then from (4) we obtain

(5) f(n) <
n

eγϕ(n) log log n
≤ 2c0

log log log n

log log n

for all n ∈ W, and the proof is complete.

Proof of Corollary 1. Let W be as in The-
orem 1. Then the set M0 := M ∩ W possesses the

desired property because d(W∪M) exists (it equals
1), whence

d(M) − d(M0) = d(W ∪M) − d(W) = 1 − 1 = 0.

The proof is complete.

Remark. Inequality in (4) is evidently
stronger than the result stated in Theorem 1: it
supplements the following inequality obtained in
1962 by Rosser and Schoenfeld [12, Theorem 15]:

(6)
n

ϕ(n)
≤ eγ · log log n ·

(
1 +

2.5
eγ(log log n)2

)

for every n ≥ 3 but n = 2 · 3 · . . . · 23, where the
constant 2.5 in (6) is replaced by 2.50637.

Inequality (4) complements also the result by
Nicolas of 1983 [9, Théorème 1], related to (6), that
the inequality

n

ϕ(n)
> eγ log log n

holds for infinite number of n’s: inequalities of this
kind, where the right side is multiplicated by a con-
stant c ∈ (0, 1], cannot hold on sets of positive den-
sities.
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