
Robit Regression: A Simple Robust Alternative

to Logistic and Probit Regression

Chuanhai Liu

Bell Laboratories, Lucent Technologies

E-mail: liu@research.bell-labs.com

March 7, 2006

Abstract

Logistic and probit regression models are commonly used in practice to analyze binary

response data, but the maximum likelihood estimators of these models are not robust to outliers.

This paper considers a robit regression model, which replaces the normal distribution in the

probit regression model with a t-distribution with a known or unknown number of degrees of

freedom. It is shown that (i) the maximum likelihood estimators of the robit model with a

known number of degrees of freedom are robust; (ii) the robit link with about seven degrees of

freedom provides an excellent approximation to the logistic link; and (iii) the robit link with

a large number of degrees of freedom approximates the probit link. The maximum likelihood

estimates can be obtained using efficient EM-type algorithms. EM-type algorithms also provide

information that can be used to identify outliers, to which the maximum likelihood estimates

of the logistic and probit regression coefficient would be sensitive. The EM algorithms for

robit regression are easily modified to obtain efficient Data Augmentation (DA) algorithms

for Bayesian inference with the robit regression model. The DA algorithms for robit regression

model are much simpler to implement than the existing Gibbs sampler for the logistic regression

model. A numerical example illustrates the methodology.

Key Words: Bayesian methods; the EM algorithm; the tobit model; Markov chain Monte Carlo;

the PX-EM algorithm.
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1 Introduction

The logistic and probit regression models are commonly used in practice to analyze binary response

data, but many authors (see, Pregibon (1982) and the references therein) have shown that their

maximum likelihood estimators are not robust. This paper considers a robit regression, which

replaces the normal distribution in probit regression with a t-distribution with known or unknown

degrees of freedom. The use of the t-distribution for robust estimation in the different context

where the response variables are typically modeled with the normal distribution has been addressed

by many authors (e.g., Rubin, 1983; Lange, Little, and Taylor 1989; Liu and Rubin, 1995). As

an alternative to logistic regression, this model has been previously suggested in the literature

by Mudholkar and George (1978) and Albert and Chib (1993). Mudholkar and George (1978)

discovered that a t-distribution with 9 degrees of freedom has the same kurtosis as the logistic

regression. Albert and Chib (1993) suggested the use of a t-distribution with 8 degrees of freedom

and provided the detailed implementation of the Gibbs sampler for Bayesian estimation.

It is shown that (i) the maximum likelihood estimators are robust if the number of degrees

of freedom is known; (ii) the robit regression model with about seven degrees of freedom provides

an excellent approximation to the logistic regression model; and (iii) the robit regression model

with a large number of degrees of freedom approximates the probit regression model. Thus, in

a certain sense, the robit regression model provides a rich class of models, including logistic and

probit regression models as special cases, for analysis of binary response data.

This paper also provides efficient EM-type algorithms (Dempster, Laird, and Rubin, 1977; Liu,

Rubin, and Wu, 1998) for finding the maximum likelihood estimates of the regression coefficients

in the robit model. These algorithms provide information that can be used to identify outliers with

too much influence on the maximum likelihood estimates of the regression coefficient under the

logistic and probit models. Efficient Data-Augmentation (DA) algorithm (Tanner and Wong, 1987;

Liu and Wu, 1999; Liu 1999) can be used to obtain estimates under a Bayesian robit model. The

DA algorithm for the robit regression model is much simpler to implement than the existing Gibbs

sampler (see, for example, Zeger and Karim (1991)) for the logistic regression model. Furthermore,

the efficient DA algorithm can be extended to handle multivariate binary responses, as discussed

briefly in end of the paper.

The rest of the paper is arranged as follows. Section 2 describes the robit model and its rela-

2



tionship with the probit and logistic models. Section 3 shows that the robust maximum likelihood

estimators of the regression coefficients are robust. Section 4 formulates a complete data model

for robit regression that can be used for maximum likelihood estimation using EM-type algorithms

and for identifying outliers under logistic and probit models. Section 5 provides detailed imple-

mentation of the EM, ECME, and PX-EM algorithm for maximum likelihood estimation of the

robit model. Section 6 describes the DA algorithms for fitting a Bayesian robit model. Section 7

illustrates the methodology with an example. Finally, Section 8 concludes with a few remarks.

2 The Robit Model

2.1 The logistic and probit models

Suppose that the observed data consist of n independent observations {(xi, yi) : i = 1, ..., n} with a

p-dimensional covariate vector xi and binary response yi that is either 0 or 1. The logistic regression

model is specified by

logit (pr(yi = 1|xi, β)) = ln
pr(yi = 1|xi, β)

1 − pr(yi = 1|xi, β)
= x′

iβ (i = 1, ..., n). (1)

The logistic regression model can also be derived by assuming that there are latent variables zi =

x′
iβ + ei, where ei logistic with distribution function

Flogistic(x) =
exp{x}

1 + exp{x}
(2)

and density

flogistic(x) =
exp{x}

(1 + exp{x})2
=

1

(exp{−x/2} + exp{x/2})2
=

1

2(1 + cosh(x))
(3)

and yi is one if zi > 0 and zero otherwise. Then, the logistic regression model (1) is obtained as

the marginal distribution of yi. The maximum likelihood estimates of β can be obtained using the

iterative re-weighted least-squares.

The probit model (e.g., Albert and Chib, 1993), for which

pr(yi = 1|xi, β) = 1 − pr(yi = 0|xi, β) = Φ(x′
iβ) (i = 1, ..., n),

is obtained by replacing the logistic distribution for the latent error terms ei with the standard

normal distribution, where φ(x) and Φ(x) are the density and distribution functions of the standard
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normal distribution, respectively. The maximum likelihood estimates of β in the probit model can

be obtained using the EM algorithm (Dempster, Laird, and Rubin, 1977) or the PX-EM algorithm

(Liu, Rubin, and Wu, 1998).

2.2 The robit model: a simple extension of the probit model

To have a robust model, following Lange, Little, and Taylor (1989), who replaced the normal distri-

bution in linear regression model with a t-distribution to obtain robust estimators of linear regres-

sion coefficients, replace the normal distribution in probit regression model with the t-distribution

with ν number of degrees of freedom. For computational simplicity, which itself is important in the

current state of the art in statistics as discussed by Liu (2000), Albert and Chib (1993) suggested

the use of a t-distribution with 8 degrees of freedom and provided the detailed implementation of

the Gibbs sampler for Bayesian estimation.

We call this model robit regression, and denote by robit(ν) the robit regression model with ν

degrees of freedom. More formally, the robit regression model for the data {(xi, yi) : i = 1, ..., n} is

pr(yi = 1|xi, β) = 1 − pr(yi = 0|xi, β) = Fν(x
′
iβ) (i = 1, ..., n),

where Fν(x) denotes the cdf of the t random variable with center zero, scale parameter one, and ν

degrees of freedom. Fν(x) has the density function

fν(x) ≡
Γ((ν + 1)/2)

(πν)1/2Γ(ν/2)(1 + x2/ν)(ν+1)/2
(x ∈ (−∞,∞)).

As ν → ∞, the robit(ν) model becomes the probit regression model.

2.3 The robit regression model with seven degrees of freedom: an approxima-

tion to the logistic model

Empirically, the robit link with about seven degrees of freedom approximates the logistic link,

as Figure 1 suggests (The scale parameter σ = 1.5484 in Figure 1 was chosen by numerically

minimizing maxxi{|Fν(xi/σ) − Flogistic(xi)| : xi = −10 + 0.002i, i = 1, ..., 1000} over σ. For

σ = 1.5484, the maximum distance is about 0.0006). The quantiles below the 0.01 and 0.99 quantiles

swing away from the reference line (dotted diagonal line), suggesting that the tail probabilities of

the robit regression model are heavier than those of the logistic distribution. It is this tail property
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that distinguishes the robit and logistic links in terms of robust estimation. To balance robustness

and approximation to the logistic model, one may like to use the t-distribution with even smaller

number of degrees of freedom, such as 6 and 5.

3 Robustness of Likelihood-based Inference Using Logistic, Pro-

bit, and Robit Regression Models

Consider the effects of a potential observation (x, y) on the estimates of pr(yi|xi, β) for all i, or on

the estimate of the regression coefficient vector β and consider the effective sample size s (s > 0)

of the potential observation. Without loss of generality, take y = 1. Let s (s > 0) be the effective

sample size. Denote by β̂+(x,y),s the ML estimate of β with (y, x) included, that is,

β̂+(x,y),s = arg max
β

{`+(x,y),s(β) ≡ `(β) + s ln(pr(y|x, β))},

where `(β) denotes the log-likelihood given the observed data. If the ML estimates β̂ and β̂+(x,y),s

are unique and finite, the potential influence of (x, y) is defined as

I(x, y) ≡ lim
s→+0

β̂+(x,y),s − β̂

s
. (4)

If the Hessian matrix H(β̂) = ∂2`(β̂)/(∂β∂β′) is negative definite, then

I(x, y) = −H−1(β̂)
∂ ln pr(y|x, β̂)

∂β
.

Given the observed-data, H(β̂) is fixed and can be viewed as a scaling matrix for the factor

∂ ln pr(y|x, β̂)/∂β. Given the observed-data, β̂ is also constant. To avoid the trivial cases, assume

that all the components of β̂ are non-zero so

β̂′∂ ln pr(y|x, β̂)

∂β

is a convenient scalar factor. For the logistic regression model, β̂′∂ ln pr(y|x, β̂)/∂β = x′β̂/(1+ex′β̂),

implying that the influence can be unbounded. For the probit regression model,

∂ ln pr(y|x, β̂)

∂β
=

φ(x′β̂)

Φ(x′β̂)
x′β̂.
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When x′β̂ → −∞, this factor is approximately −(x′β̂)2. This quadratic function in x indicates

that the influence of (y, x) is unbounded and is more extreme than the influence under the logistic

regression model.

For the robit regression model,

∂ ln pr(y|x, β̂)

∂β
=

fν(x
′β̂)

Fν(x′β̂)
x′β̂.

This factor is bounded, and thereby the I(x, y) is bounded because

lim
x′β̂→−∞

fν(x
′β̂)

Fν(x′β̂)
x′β̂ = lim

u→−∞

fν(u)

Fν(u)
u = 1 − lim

u→−∞

(ν + 1)u

ν + u2
u = −ν

and

lim
x′β̂→∞

fν(x
′β̂)

Fν(x′β̂)
x′β̂ = lim

µ→∞

fν(µ)

Fν(µ)
µ = 0.

4 Complete Data for Simple Maximum Likelihood Estimation

Let yi denote the univariate binary response of the i-th individual, and let xi denote the p-

dimensional vector of covariates for i = 1, ..., n. Let

τi|θ ∼ Gamma(ν/2, ν/2) and zi|(τi, θ) ∼ N(x′
iβ, 1/τi) (i = 1, ..., n),

where θ = (β, ν) with β being the p-dimensional vector of regression coefficients and ν being the

number of degrees of freedom. In the literature, τi is called weight, for example, in the context of

iterative re-weighted least-squares. Then the robit regression model is completed by specifying

yi =











1, if zi > 0;

0, if zi ≤ 0.
(5)

This complete-data model belongs to the exponential family. The sufficient statistics for θ are

Sτ =
n

∑

i=1

τi, Sτxx =
n

∑

i=1

τixix
′
i, Sτzz =

n
∑

i=1

τiz
2
i , Sτxz =

n
∑

i=1

τixizi, and Sln τ−τ =
n

∑

i=1

(ln τi − τi); (6)

and the complete-data maximum likelihood estimate of θ = (β, ν) is given by

β̂ = S−1
τxxSτxz and ν̂ = arg max

ν
[−n ln Γ(ν/2) + n(ν/2) ln(ν/2) + (ν/2)Sln τ−τ ] .
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Let µi = x′
iβ, denote by tν the t-deviate with location zero, scale parameter one, and the

number of degrees of freedom ν, and denote by ftν (.) the probability density of tν , i.e.,

ftν (z) = cν(1 + z2/ν)−(ν+1)/2

with the normalizing constant

cν = (πν)−1/2Γ((ν + 1)/2)Γ−1(ν/2).

Then

τ̂i ≡ E(τi|Yobs, θ) = E(E(τi|zi, Yobs, θ)) = E

(

1 + 1/ν

1 + (zi − µi)2/ν

∣

∣

∣

∣

Yobs, θ

)

=
ν + 1

ν

∫

{z:I(z≥−µi)=yi}
cν(1 + z2/ν)−(ν+3)/2dz

∫

{z:I(z≥−µi)=yi}
ftν (z)dz

=











pr(tν+2<−(1+2/ν)1/2µi)
pr(tν<−µi)

, if yi = 0;

pr(tν+2>−(1+2/ν)1/2µi)
pr(tν>−µi)

, if yi = 1

=
yi − (2yi − 1)pr(tν+2 < −(1 + 2/ν)1/2µi)

yi − (2yi − 1)pr(tν < −µi)
, (7)

E(τi(zi − µi)|Yobs, θ) =
ν + 1

ν
E

(

zi − µi

1 + (zi − µi)2/ν

∣

∣

∣

∣

Yobs, θ

)

=
ν + 1

ν

∫

{z:I(z≥−µi)=yi}
cνz(1 + z2/ν)−(ν+3)/2dz

∫

{z:I(z≥−µi)=yi}
ftν (z)dz

=
(2yi − 1)ftν (µi)

yi − (2yi − 1)pr(tν < −µi)

= τ̂i
(2yi − 1)ftν (µi)

yi − (2yi − 1)pr(tν+2 < −(1 + 2/ν)1/2µi)
,

E(τi(zi − µi)
2|Yobs, θ) =

ν + 1

ν
E

(

(zi − µi)
2

1 + (zi − µi)2/ν

∣

∣

∣

∣

∣

Yobs, θ

)

= (ν + 1)

∫

{z:I(z≥−µi)=yi}
cν(z

2/ν)(1 + z2/ν)−(ν+3)/2dz
∫

{z:I(z≥−µi)=yi}
ftν (z)dz

= ν + 1 − ντ̂i.

With

ẑi ≡ µi +
(2yi − 1)ftν (µi)

yi − (2yi − 1)pr(tν+2 < −(1 + 2/ν)1/2µi)
, (8)

it follows then

E(τizi|Yobs, θ) = E(τi(zi − µi)|Yobs, θ) + µiE(τi|Yobs, θ) = τ̂iẑi,
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and

E(τiz
2
i |Yobs, θ) = E(τi(zi − µi)

2|Yobs, θ) + 2µiE(τi(zi − µi)|Yobs, θ) + µ2
i E(τi|Yobs, θ)

= ν + 1 − ντ̂i + τ̂i

[

µ2
i + 2µi(ẑi − µi)

]

. (9)

When the conditional expectation of the sufficient statistics is calculated at the ML estimate

of θ,

β̂ =

(

n
∑

i=1

τ̂ixix
′
i

)−1 (

n
∑

i=1

τ̂ixiẑi

)

,

which is the ML estimate of β in the linear regression ẑi ∼ N(x′
iβ, τ̂i).

Letting ν → ∞ gives the complete-data probit regression model and the conditional expecta-

tions of the associated sufficient statistics:

lim
ν→∞

τ̂i = 1, lim
ν→∞

ẑi = µi +
(2yi − 1)φ(µi)

yi − (2yi − 1)Φ(−µi)
, and lim

ν→∞
E(z2

i |Yobs, θ) = 1 + µiẑi.

The last equality is obtained using the fact that ν + 1 − ντ̂i → 1 − µizi + µ2
i as ν → ∞.

5 Maximum Likelihood Estimation Using EM-type Algorithms

5.1 MLE of the regression coefficients β with known number of degrees of free-

dom ν using EM

With the complete-data {(xi, yi, zi, τi) : i = 1, ..., n} described in Section 4, the EM algorithm for

finding the MLE of β with known ν is as follows. At iteration t + 1 with input β(t),

E-step of EM: Compute τ̂i and ẑi for all i = 1, ..., n in (7) and (8) with θ = (β(t), ν), and then

the expected sufficient statistics Ŝτxx =
∑n

i=1 τ̂ixix
′
i and Ŝτxy =

∑n
i=1 τ̂ixiẑi.

M-step of EM: Update β: β(t+1) = Ŝ−1
τxxŜτxy.

5.2 MLE of θ = (β, ν) with unknown number of degrees of freedom ν using

ECME

To use the EM algorithm to find the MLE of θ = (β, ν) when the number of degrees of freedom ν

is unknown, compute

E((ln τi − τi)|Yobs, θ) = φ((ν + 1)/2) − ln((ν + 1)/2) + E

(

ln
ν + 1

ν + (zi − µi)2

∣

∣

∣

∣

Yobs, θ

)

− τ̂i (10)
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for all i = 1, ..., n, where φ(α) ≡ d ln (Γ(α)) /dα = Γ′(α)/Γ(α) is the digamma function. Because

there are no (obvious) numerical methods for computing the conditional expectation term in (10)

and ECME typically converges dramatically faster than EM, we use ECME with two constrained

maximization (CM) steps: one CM step maximizes the expected complete-data log-likelihood over

β with ν fixed at its current estimate; and the other CM step maximizes the constrained actual

likelihood over ν with β fixed at its current estimate, where the constrained likelihood function of

ν given β is

`(ν|β, Yobs) =
n

∑

i=1

ln (yi(1 − pr(tν < −µi)) + (1 − yi)pr(tν < −µi)) . (11)

The ECME algorithm for finding the MLE of θ = (β, ν) is as follows. At iteration t + 1 with

input θ(t) = (β(t), ν(t)),

E-step of ECME: The same as the E-step of EM: condition on the current parameter estimates,

θ(t) = (β(t), ν(t)).

CM-step 1 of ECME: The same as the M-step of EM.

CM-step 2 of ECME: Search for the ν(t+1) that maximizes `(ν|β(t+1), Yobs).

Then update ν using, for example, the half-interval method (Carnahan, Luther, and Wilks,

1969) to maximize `(ν|β, Yobs) in the likelihood function (11).

5.3 MLE of the robit model using PX-EM: a more efficient algorithm for com-

puting (β̂, ν̂)

Liu, Rubin, and Wu (1998) show that the PX-EM algorithm, which makes use of the extra infor-

mation captured in the imputed complete data, converges much faster than the EM algorithm for

finding the MLE of the t-distribution and the probit regression model. Here PX-EM is used to find

the MLE of the robit model, which involves both the t-distribution and the probit model. To make

use of the extra information captured in the complete data, following Liu, Rubin, and Wu (1998),

the complete-data model is extended as

(τi/α)|θ∗ ∼ Gamma(ν∗/2, ν∗/2), zi|(τi, θ
∗) ∼ N(xiβ

∗, σ2/τi),
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and

yi = I(zi ≥ 0)

for i = 1, ..., n, where θ∗ = (β∗, ν∗, α, σ) with α > 0 and σ > 0. The observed-data model is

preserved with the reduction function

β = (α/σ)β∗ and ν = ν∗. (12)

The complete-data sufficient statistics for the expanded parameters θ∗ are given in (6). The

complete-data MLE of θ∗ is given by

α̂ = n−1
n

∑

i=1

τi, σ̂2 = n−1(Sτzz − S′
τxzS

−1
τxxSτxz),

and β̂∗ and ν̂∗ are the same as β̂ and ν̂, respectively. Compared to the EM algorithm in Section

5.1 and the ECME algorithm in Section 5.2, the corresponding PX-EM and PX-ECME algorithms

require only simple extra computation, namely, the conditional expectations of Sτ and Sτzz. The

PX-EM algorithm for finding the regression coefficients β with known number of degrees of freedom

ν is then a simple extension of the EM algorithm and is given as follows. At iteration t + 1 with

input β(t),

E-step of PX-EM: The same as the E-step of EM, except for the extra calculation of the con-

ditional expectations Ŝτ =
∑n

i=1 τ̂i and Ŝτzz = n(ν + 1) − ν
∑n

i=1 τ̂i +
∑n

i=1 τ̂i(2µiẑi − µ2
i ).

M-step of PX-EM: Compute β̂∗ = Ŝ−1
τxxŜτxy, α̂ = n−1Ŝτ , and σ̂2 = n−1(Ŝτzz − Ŝ′

τxzŜ
−1
τxxŜτxz)

and then apply the reduction function to update β: β(t+1) = (α̂/σ̂)β̂∗

With unknown number of degrees of freedom ν, the ECME algorithm is then extended to the

following PX-ECME algorithm. At iteration t + 1 with input θ(t) = (β(t), ν(t)),

E-step of PX-ECME: The same as the E-step of PX-EM, just conditioning on the parameter

estimates, θ(t) = (β(t), ν(t)).

CM-step 1 of PX-ECME: The same as the M-step of PX-EM.

CM-step 2 of PX-ECME: The same as the CM-step 2 of ECME.
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6 Bayesian Estimation of the Robit Regression Model with Known

Number of Degrees of Freedom Using DA Algorithms

For Bayesian estimation of the robit regression model, this paper uses the multivariate t-distribution

pr(β) = tp(0, S−1
0 , ν0) (13)

as the prior distribution for the regression coefficients β, where S0 is a known (p× p) non-negative

definite scatter matrix and ν0 is the known degrees of freedom. When S0 is positive definite, the

posterior distribution of β is proper because the likelihood is bounded. When S0 = 0 the prior distri-

bution for β is flat and β may have an improper posterior in the sense that
∫

β pr(β)`(β|Yobs)dβ = ∞.

Chen and Shao (1999) discuss this issue.

The t-distribution (13) can be represented as the marginal distribution of β in the following

well-known hierarchical structure

τ0 ∼ Gamma(ν0/2, ν0/2) and β|τ0 ∼ Np(0, S−1
0 /τ0). (14)

Like the missing weights τi (i = 1, ..., n), in the sequel τ0 is treated as missing. Corresponding

to the complete data augmented for implementation of the EM algorithms, the complete data

for generating draws of β from its posterior distribution using the DA algorithm consist of Yobs,

z = (z1, ..., zn) and τ = (τ0, τ1, ..., τn).

6.1 Simulating the posterior of β using the DA algorithm

Similar to the implementation of the EM algorithm for finding the ML estimates of β, the imple-

mentation of the DA algorithm for simulating the posterior of β consists of an Imputation (I) step

and a Posterior simulation (P) step, which are given as follows.

I-step of DA: Conditioning on the observed data and the current draw of β, draw {(zi, τi) : i =

1, ..., n} by first taking a draw of zi from the truncated t(µi = x′
iβ, 1, ν), which is either left

(yi = 1) or right (yi = 0) truncated at 0, and then taking a draw of τi from

Gamma

(

ν + 1

2
,
ν + (zi − µi)

2

2

)

for all i = 1, ..., n, and a draw of τ0 from its distribution given in (14).
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P-step of DA: Conditioning on the current draws of {(zi, τi) : i = 1, ..., n}, draw β from the

p-variate normal distribution

Np

(

β̂, (τ0S0 + Sτxx)−1
)

,

where

β̂ = (τ0S0 + Sτxx)−1Sτxz, (15)

and Sτxx and Sτxz are defined in (6).

6.2 Simulating the posterior of β via efficient DA algorithms

Like the EM algorithm, the DA algorithm can converge very slowly. The DA algorithm can be

accelerated by using the ideas of the PX-EM algorithm. Two approaches, which are practically

equivalent, can be taken. One is the PX-DA algorithm (Liu and Wu, 1999; see also Meng and

van Dyk, 1999), which extends the PX-EM algorithm by making use of the group transformation

indexed by the expanded parameters used in the PX-EM algorithm. Technically, what is needed

is a prior on the group transformation. This prior specification can be avoided by using the

CA-DA algorithm (Liu, 1999), which adjusts the current draws of the parameters and missing

data by redrawing the sufficient statistics of the expanded parameters and the original parameters

conditioning on their complements. Typically, the complements take the form of residuals, or more

exactly, pivotal quantities. Here, we take the CA-DA approach.

First, adjust individual scores zi for their common scale parameter σ. The sufficient statistic

for σ, after integrating out the regression coefficients β, is

s2 =
n

∑

i=1

τi

(

zi − x′
iβ̂

)2
+ β̂′τ0S0β̂,

where β̂ = (τ0S0 + Sτxx)−1Sτxz. To draw (s2, β) with zi (i = 1, ..., n) fixed up to a proportionality

constant (i.e., the scale of zis), take the re-scaling transformation

z∗i = zi/s (i = 1, ..., n). (16)

with the constraint
n

∑

i=1

τi

(

z∗i − x′
iβ̂

∗
)2

+ (β̂∗)′τ0S0β̂
∗ = 1, (17)
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where β̂∗ = (τ0S0 + Sτxx)−1Sτxz∗ with Sτxz∗ obtained from Sτxz by substituting z∗i for zi. Since

the transformation (16) from (z∗, s) to z with the constraint (17) is one-to-one, a version of the

CA-DA algorithm can be obtained from DA by replacing the P-step of DA with a step that draws

(β, s2), conditioning on z∗. The Jacobean of the transformation from (z, β) onto (z∗, s, η = β) with

the constraints (17), as a function of (s, η), is proportional to sn−1. The conditional distribution of

(s, η) given z∗ is then

pr(s, η|τ, z∗, Yobs) = pr(s|τ, z∗, Yobs) · pr(η|s, τ, z∗, Yobs),

where pr(s2|τ, z∗, Yobs) = Gamma(n/2, 1/2) and pr(η|s, τ, z∗, Yobs) = N(sβ̂∗, (τ0S0+Sτxx)−1). This

leads to the following efficient DA algorithm, denoted by E-DA 1,

I-step of E-DA 1: This is the same as the I-step of DA.

P-step of E-DA 1: This is the same as the P-step of DA, except for rescaling β̂ by a factor of

χn/
[

∑n
i=1 τi(zi − x′

iβ̂)2 + β̂′τ0S0β̂
]1/2

, where χ2
n is a draw from the chi-square distribution

with n degrees of freedom.

For the probit regression model, i.e., ν = ∞ and thereby τi = 1 for all i = 1, ..., n, E-DA 1 is

equivalent to the PX-DA algorithm of Liu and Wu (1999), who considered a flat prior on β. The

P-step of E-DA 1 implicitly integrates out the scale of zis, which explains intuitively why E-DA 1

converges faster than DA.

Second, adjust the individual weights for their scale to obtain a DA sampling scheme that is

even faster than E-DA 1. Let

w =
n

∑

i=0

νiτi and ws2 =
n

∑

i=1

τi(zi − x′
iβ̂)2 + β̂′τ0S0β̂,

where νi = ν for all i = 1, ..., n. Take the transformation

τi = wτ∗
i (i = 0, ..., n; w > 0) and zi = sz∗i (i = 1, ..., n; w > 0)

with the constraints

n
∑

i=0

νiτ
∗
i = 1 and

n
∑

i=1

τ∗
i (z∗i − x′

iβ̂
∗)2 + β̂′τ0S0β̂ = 1, (18)
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where β̂∗ = (τ∗
0 S0 + Sτ∗xx)−1Sτ∗xz∗ = (τ0S0 + Sτxx)−1Sτxz∗ with Sτ∗xx and Sτ∗xz∗ obtained from

Sτxx and Sτxz, respectively, by replacing τi with τ∗
i and zi with z∗i . The Jacobean of the transfor-

mation from (τ, z, β) to (τ∗, z∗, w, s, η = β) with the constraints (18), as a function of (w, s, η) is

proportional to wnsn−1. Thus, conditioning on z∗, τ∗, and Yobs, (w, s, η = β) is distributed as

pr(w|z∗, τ∗, Yobs) · pr(s|w, z∗, τ∗, Yobs) · pr(β|w, s, z∗, τ∗, Yobs),

where pr(w|z∗, τ∗, Yobs) = Gamma((ν0 + nν)/2, 1/2), pr(s2|w, z∗, τ∗, Yobs) = Gamma(n/2, w/2),

and pr(β|w, s, z∗, τ∗, Yobs) = Np(sβ̂
∗, w−1(τ∗

0 S0 + Sτ∗xx)−1). This leads to the following efficient

DA algorithm, denoted by E-DA 2,

I-step of E-DA 2: This is the same as the I-step of DA.

P-step of E-DA 2: This is the same as the P-step of E-DA 1, except for rescaling the draw of β

by a factor of
(

∑n
i=0 νiτi/χ2

ν0+nν

)1/2
, where χ2

ν0+nν
is a draw from the chi-square distribution

with ν0 + nν degrees of freedom.

The P-step of E-DA 2 implicitly integrates out both the scale of zis and the scale of τis, which

explains why E-DA 2 is converges faster than both DA and E-DA 1.

7 A Numerical Example

The data are taken from Finney (1947) and consist of 39 binary responses denoting the presence

(y = 1) or absence (y = 0) of vaso-constriction of the skin of the subjects after inspiration of a

volume V of air at inspiration rate R. The data were obtained from repeated measurements on

three individual subjects, the numbers of observations per subject being 9, 8, and 22. Finney (1947)

found no evidence of inter-subject variability, treated the data as 39 independent observations, and

analyzed the data using the probit regression model with V and R in the logarithm scale as

covariates. This data set was also analyzed by Pregibon (1982), using robust procedures (called

resistant fitting methods) as alternatives to logistic regression.

The data are displayed in Figure 2. The fitted probability contours obtained from the MLE

indicate that there is little difference between the the fitted probit and logistic regression models.

From these contours, the robit(7) and logistic models are almost identical, suggesting again that

the robit(7) model is a nice alternative to the logistic model in the sense that the robit(7) regression
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model provides results can be understood as those from the logistic model and that the MLE of

robit(7) regression model is robust.

The EM algorithm was applied to choose the number of degrees of freedom. The algorithm

was stopped when the likelihood increment becomes numerically instable because of the accuracy

in evaluation of the probability functions of the tdistributions. The estimate of ν̂ is about 0.11 with

the likelihood value -10.62. The fitted robit models with various numbers of degrees of freedom are

represented by the probability contours in Figure 3. The use of a small number of the degrees of

freedom is intuitively suggested by the data, in which the observations with positive responses and

those with negative responses can be almost separated by a line on the plane of ln(V ) and ln(R)

except for the three observations with i = 4, 18, and 24. These three observations are identified

from the fitted individual weights. Pregibon (1982) also found that these three observations are

influential to the ML estimation of the logistic model. The fitted 0.1, 0.5, and 0.9 contours by

Pregibon are similar to those obtained from the robit model with about ν = 2 degrees of freedom.

The Bayesian results using the prior distribution with ν0 = 1 and S0 = 0.0001I, which is

practically flat for the skin vaso-constriction data, were obtained using the DA algorithms. Figure

4 displays the posterior probability

pr(y = 1|x) =

∫

β
pr(y = 1|x, β)f(β|Yobs)dβ

with various known numbers of degrees of freedom, where f(β|Yobs) is the posterior distribution

of β. These results are similar to those obtained from the ML fitting. From Finney (1947), it is

of interest to compare the difference βRATE − βVOL. Figure 5 shows the posterior distributions (in

solid line) of the difference βRATE − βVOL obtained from the robit model with ν = ∞, 7, 2, or 1.

The posterior probability pr(d > 0|Yobs) increases from 0.68 to 0.91 as ν decrease to 1. Figure 5

also shows the corresponding results obtained with the two most influential observations (i = 4 and

8) removed. These results suggest that the robit model with a small number of degrees of freedom

provides reliable inference, for example, regarding the difference between βRATE and βVOL.

8 Conclusion

It has been shown that the robit model is a useful robust alternative to the probit and logistic

models for analyzing binary response data. The advantages of using the robit model include (1)

15



the inference based on the robit model is robust to the presence of outlying observations, and

(2) computation for a Bayesian robit regression model using Markov chain Monte Carlo (MCMC)

methods is simpler than that for the logistic model (see, for example, Zeger and Karim (1991)),

especially when the model is extended to allow for random effects. Since robit(ν) with small ν gives

more weight to the observations that are close to the dividing line (pr(y = 1|x) = (pr(y = 0|x) = 1/2

when they agree with the fitted model, the robit model with a small number of degrees of freedom

should also be useful in classification. In addition, as with the probit model (e.g., Albert and Chib,

1993; and Chib and Greenberg, 1998), the extension of the robit model to correlated multivariate

responses is straightforward, where the efficient DA algorithms appear to be especially useful (Liu,

2000).
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Figure 1: The Q-Q plot of the robit (7) model and the logistic model in the range corresponding

to the probability range from 0.001 to 0.999. The horizontal and vertical dotted lines represent the

0.01 and 0.99 quantiles. The diagonal dotted line is the reference line indicating how well the two

distributions match with each other.
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Figure 2: Scatter plot of the skin vaso-constriction data (with the symbols • and ◦ indicating

positive and negative responses, respectively). The probability contours represent the probit (solid

line), logistic (dotted line), and robit(7) (dashed line) models fitted by the methods of maximum

likelihood.
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(a) robit(infinity) = probit
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(b) robit(7) ~ logit

log-likelihood = -14.65

Volume of inspiration (liters)

R
at

e 
of

 in
sp

ira
tio

n 
(li

te
rs

 p
er

 s
ec

.)

0 1 2 3 4

0
1

2
3

4

0.05

0.10

0.50

0.90

0.95

(c) robit(2)

log-likelihood = -13.95
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(d) robit(1)

log-likelihood = -12.55
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(e) robit(0.5)

log-likelihood = -11.35
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(f) robit(0.25)

log-likelihood = -10.77

Figure 3: The robit models with various numbers of degrees of freedom fitted to the skin vaso-

constriction data using the methods of maximum likelihood.
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(d) robit(1)

Figure 4: The robit models with various numbers of degrees of freedom fitted to the skin vaso-

constriction data using the Bayesian methods.
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Figure 5: The posterior distributions of the difference d = βRATE − βVOL obtained from the robit

models with various numbers of degrees of freedom fitted to the skin vaso-constriction data with

and without the two individual observations with i = 4 and 8.
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