
RoboBrain:
Large-Scale Knowledge Engine for Robots

Ashutosh Saxena, Ashesh Jain, Ozan Sener, Aditya Jami, Dipendra K Misra, Hema

S Koppula

Abstract In this paper we introduce a knowledge engine, which learns and shares

knowledge representations, for robots to carry out a variety of tasks. Building such an

engine brings with it the challenge of dealing with multiple data modalities including

symbols, natural language, haptic senses, robot trajectories, visual features and many

others. The knowledge stored in the engine comes from multiple sources including

physical interactions that robots have while performing tasks (perception, planning

and control), knowledge bases from the Internet and learned representations from

several robotics research groups.

We discuss various technical aspects and associated challenges such as modeling

the correctness of knowledge, inferring latent information and formulating different

robotic tasks as queries to the knowledge engine. We describe the system architecture

and how it supports different mechanisms for users and robots to interact with the

engine. Finally, we demonstrate its use in three important research areas: grounding

natural language, perception, and planning, which are the key building blocks for

many robotic tasks. This knowledge engine is a collaborative effort and we call it

RoboBrain: http://www.robobrain.me

Keywords—Cloud Robotics, Robot Learning, Systems, knowledge bases.

1 Introduction

Over the last decade, we have seen many successful applications of large-scale

knowledge systems. Examples include Google knowledge graph [13], IBM Wat-

son [16], Wikipedia, and many others. These systems know answers to many of our

day-to-day questions, and not crafted for a specific task, which makes them valuable

for humans. Inspired by them, researchers have aggregated domain specific knowl-

edge by mining data [3, 6], and processing natural language [9], images [12] and

speech [41]. These sources of knowledge are specifically designed for humans, and

Authors are with the Department of Computer Science, Cornell University and Stanford University.
A. Saxena is also with Brain Of Things Inc.
Email: {asaxena, ashesh, ozansener, adityaj, dipendra, hema}@cs.stanford.edu

1

http://www.robobrain.me

2 Saxena, Jain, Sener, Jami, Misra and Koppula

their human centric design makes them of limited use for robots—for example, imag-

ine a robot querying a search engine for how to “bring sweet tea from the kitchen”

(Figure 1).

In order to perform a task, robots require access to a large variety of information

with finer details for performing perception, planning, control and natural language

understanding. When asked to bring sweet tea, as shown in Figure 1, the robot would

need access to the knowledge for grounding the language symbols into physical en-

tities, the knowledge that sweet tea can either be on a table or in a fridge, and the

knowledge for inferring the appropriate plans for grasping and manipulating objects.

Efficiently handling this joint knowledge representation across different tasks and

modalities is still an open problem.

In this paper we present RoboBrain that allows robots to learn and share such

representations of knowledge. We learn these knowledge representations from a va-

riety of sources, including interactions that robots have while performing perception,

planning and control, as well as natural language and visual data from the Internet.

Our representation considers several modalities including symbols, natural language,

visual or shape features, haptic properties, and so on. RoboBrain connects this knowl-

edge from various sources and allow robots to perform diverse tasks by jointly rea-

soning over multiple data modalities.

Fig. 1 An example showing

a robot using RoboBrain

for performing tasks. The
robot is asked “Bring me
sweet tea from the kitchen”,
where it needs to translate the
instruction into the perceived
state of the environment.
RoboBrain provides useful
knowledge to the robot for
performing the task: (a) sweet
tea can be kept on a table
or inside a refrigerator, (b)
bottle can be grasped in
certain ways, (c) opened
sweet tea bottle needs to be
kept upright, (d) the pouring
trajectory should obey user
preferences of moving slowly
to pour, and so on.

sweet
_tea

lo
ok
s_
lik
e

grasp_feature

table

kept

pouring

has
_tra
jec
tory

looks_like

sub
jec
t_o
f

obje
ct_o

f

object_of

first_order_
collection

type_of

refrigerator looks_li
ke

object_of

Perception
Module Environment

Perception
Query

Planning
Module

Planning
Query

Representation

Representation

RoboBrain enables sharing from multiple sources by representing the knowledge

in a graph structure. Traversals on the RoboBrain graph allow robots to gather the

specific information they need for a task. This includes the semantic information,

such as different grasps of the same object, as well as the functional knowledge,

such as spatial constraints (e.g., a bottle is kept on the table and not the other way

around). The key challenge lies in building this graph from a variety of knowledge

sources while ensuring dense connectivity across nodes. Furthermore, there are sev-

eral challenges in building a system that allows concurrent and distributed update,

and retrieval operations.

RoboBrain: Large-Scale Knowledge Engine for Robots 3

Fig. 2: A visualization of the RoboBrain graph on Nov 2014, showing about 45K nodes and 100K
directed edges. The left inset shows a zoomed-in view of a small region of the graph with rendered
media. This illustrates the relations between multiple modalities namely images, heatmaps, words
and human poses. For high-definition graph visualization, see:
http://pr.cs.cornell.edu/robobrain/graph.pdf

We present use of RoboBrain on three robotics applications in the area of ground-

ing natural language, perception and planning. For each application we show usage of

RoboBrain as-a-service, which allow researchers to effortlessly use the state-of-the-

art algorithms. We also present experiments to show that sharing knowledge represen-

tations through RoboBrain improves existing language grounding and path planning

algorithms.

RoboBrain is a collaborative project that we support by designing a large-scale

cloud architecture. In the current state, RoboBrain stores and shares knowledge

across several research projects [53, 40, 23, 25, 26, 31, 57, 35] and Internet knowl-

edge sources [34, 15]. We believe as more research projects contribute knowledge to

RoboBrain, it will not only improve the concerned project but will also be benefi-

cial for the robotics community at large. RoboBrain knowledge graph is available at

http://www.robobrain.me.

This is our first paper introducing RoboBrain. It summarizes the key ideas and

challenges in building a knowledge engine for robots. The goal of the paper is to

present an overall view of the RoboBrain, its architecture, functionalities, and demon-

strate its application to robotics. In Section 4 we formally define the RoboBrain graph

and describe its system architecture in Section 5. In order for robots to use RoboBrain

we propose the Robot Query Library in Section 6. In Section 7 we present different

robotic applications using RoboBrain.

2 Related Work

We now describe some works related to RoboBrain. We first give an overview of the

existing knowledge bases and describe how RoboBrain differs from them. We then

describe some works in robotics that can benefit from RoboBrain, and also discuss

some of the related on-going efforts.

Knowledge bases. Collecting and representing a large amount of information in a

knowledge base (KB) has been widely studied in the areas of data mining, natural

language processing and machine learning. Early seminal works have manually cre-

ated KBs for the study of common sense knowledge (Cyc [34]) and lexical knowledge

(WordNet [15]). With the growth of Wikipedia, KBs started to use crowd-sourcing

(DBPedia [3], Freebase [6]) and automatic information extraction (Yago [51, 21],

NELL [9]) for mining knowledge.

http://pr.cs.cornell.edu/robobrain/graph.pdf
http://www.robobrain.me

4 Saxena, Jain, Sener, Jami, Misra and Koppula

One of the limitations of these KBs is their strong dependence on a single modality

that is the text modality. There have been few successful attempts to combine mul-

tiple modalities. ImageNet [12] and NEIL [10] enriched text with images obtained

from Internet search. They used crowd-sourcing and unsupervised learning to get the

object labels.

We have seen successful applications of the existing KBs within the modalities

they covered, such as IBM Watson Jeopardy Challenge [17]. However, the existing

KBs are human centric and do not directly apply to robotics. The robots need finer

details about the physical world, e.g., how to manipulate objects, how to move in

an environment, etc. In RoboBrain we combine knowledge from the Internet sources

with finer details about the physical world, from RoboBrain project partners, to get

an overall rich graph representation.

Robot Learning. For robots to operate autonomously they should perceive their en-

vironments, plan paths, manipulate objects and interact with humans. We describe

previous work in each of these areas and how RoboBrain complements them.

Perceiving the environment. Perception is a key element of many robotic tasks. It has

been applied to object labeling [33, 1, 57], scene understanding [28, 20], robot lo-

calization [39, 42], path planning [27], and object affordances [11, 30]. RoboBrain

stores perception related knowledge in the form of 3D point clouds, grasping fea-

tures, images and videos. It also connects this knowledge to human understandable

concepts from the Internet knowledge sources.

Path planning and manipulation. Planning algorithms formulate action plans which

are used by robots to move around and modify its environment. Planning algorithms

have been proposed for the problems of motion planning [58, 49], task planning [7]

and symbolic planning [46]. Some planning applications include robots baking cook-

ies [7], folding towels [50], assembling furniture [29], and preparing pancakes [4].

The previous works have also learned planning parameters using Inverse Optimal

Control [45, 23]. RoboBrain stores the planning parameters learned by previous

works and allow the robots to query for the parameters.

Interacting with humans. Human-robot interaction includes collaborative tasks be-

tween humans and robots [43], generating safe and human-like robot motion [36,

18, 14, 8], interaction through natural language [54, 40], etc. These applications re-

quire joint treatment of perception, manipulation and natural language understanding.

RoboBrain stores different data modalities required by these applications.

Previous efforts on connecting robots range from creating a common operating

system (ROS) for robots [44] to sharing data acquired by various robots via cloud [56,

2]. For example, the RoboEarth [56] provides a platform for the robots to store and

off-load computation to the cloud and communicate with other robots; and the KIVA

systems [2] use the cloud to coordinate motion for hundreds of mobile platforms. On

the other hand, RoboBrain provides a knowledge representation layer on top of data

storing, sharing and communication.

Open-Ease [5] is a related on-going effort towards building a knowledge engine for

robots. Open-Ease and RoboBrain differ in the way they learn and represent knowl-

edge. In Open-Ease the knowledge is represented as formal statements using pre-

defined templates. On the other hand, the knowledge in RoboBrain is represented as

a graph. The nodes of the RoboBrain graph have no pre-defined templates and they

can be any robotic concept like grasping features, trajectory parameters, and visual

RoboBrain: Large-Scale Knowledge Engine for Robots 5

data. This graph representation allows partner projects to easily integrate their learned

concepts in RoboBrain. The semantic meaning of concepts in the RoboBrain graph

are represented by their connectivity patterns in the graph.

3 Overview

RoboBrain is a never ending learning system that continuously incorporates new

knowledge from its partner projects and from different Internet sources. One of the

functions of RoboBrain is to represent the knowledge from various sources as a graph,

as shown in Figure 2. The nodes of the graph represent concepts and edges represent

the relations between them. The connectivity of the graph is increased through a set

of graph operations that allow additions, deletions and updates to the graph. As of

the date of this submission, RoboBrain has successfully connected knowledge from

sources like WordNet, ImageNet, Freebase, OpenCyc, parts of Wikipedia and other

partner projects. These knowledge sources provide lexical knowledge, grounding of

concepts into images and common sense facts about the world.

The knowledge from the partner projects and Internet sources can sometimes be

erroneous. RoboBrain handles inaccuracies in knowledge by maintaining beliefs over

the correctness of the concepts and relations. These beliefs depend on how much

RoboBrain trusts a given source of knowledge, and also the feedback it receives from

crowd-sourcing (described below). For every incoming knowledge, RoboBrain also

makes a sequence of decisions on whether to form new nodes, or edges, or both. Since

the knowledge carries semantic meaning RoboBrain makes many of these decisions

based on the contextual information that it gathers from nearby nodes and edges. For

example, RoboBrain resolves polysemy using the context associated with nodes. Re-

solving polysemy is important because a ‘plant’ could mean a ‘tree’ or an ‘industrial

plant’ and merging the nodes together will create errors in the graph.

RoboBrain incorporates supervisory signals from humans in the form of crowd-

sourcing feedback. This feedback allows RoboBrain to update its beliefs over the

correctness of the knowledge, and to modify the graph structure if required. While

crowd-sourcing feedback was used in some previous works as means for data collec-

tion (e.g., [12, 48]), in RoboBrain they serve as supervisory signals that improve the

knowledge engine. RoboBrain allows user interactions at multiple levels: (i) Coarse

feedback: these are binary feedback where a user can “Approve” or “Disapprove”

a concept in RoboBrain through its online web interface; (ii) Graph feedback: these

feedback are elicited on RoboBrain graph visualizer, where a user modifies the graph

by adding/deleting nodes or edges; (iii) Robot feedback: these are the physical feed-

back given by users directly on the robot.

In this paper we discuss different aspects of RoboBrain, and show how RoboBrain

serves as a knowledge layer for the robots. In order to support knowledge sharing,

learning, and crowd-sourcing feedback we develop a large-scale distributed system.

We describe the architecture of our system in Section 5. In Section 6 we describe

the robot query library, which allow robots to interact with RoboBrain. Through ex-

periments we show that robots can use RoboBrain as-a-service and that knowledge

sharing through RoboBrain improves existing robotic applications. We now present

a formal definition of our Robot Knowledge Engine and the graph.

6 Saxena, Jain, Sener, Jami, Misra and Koppula

(a) original graph (b) feed insertion
(c) after merge(Mug,Mug′)→
Mug◦split(Cup)→ (Cup,Mug′)

Fig. 3: Visualization of inserting new information. We insert ‘Sitting human can use a mug’ and
RoboBrain infers the necessary split and merge operations on the graph. In (a) we show the original
sub-graph, In (b) information about a Mug is seen for the first time and the corresponding node
and edge are inserted, In (c) inference algorithm infers that previously connected cup node and cup
images are not valid any more, and it splits the Cup node into two nodes as Cup and Mug′ and then
merges Mug′ and Mug nodes.

4 Knowledge Engine: Formal Definition

In this section we present the formal definition of RoboBrain. RoboBrain represents

knowledge as a directed graph G = (V,E). The vertices V of the graph stores concepts

that can be of a variety of types such as images, text, videos, haptic data, or learned

entities such as affordances, deep learning features, parameters, etc. The edges E ⊆
V ×V ×C are directed and represents the relations between concepts. Each edge has

an edge-type from a set C of possible edge-types.

An edge (v1,v2, ℓ) is an ordered set of two nodes v1 and v2 and an edge-type ℓ. Few

examples of such edges are: (StandingHuman, Shoe, CanUse), (StandingHuman,

N (µ,Σ), SpatiallyDistributedAs) and (Grasping, DeepFeature23, UsesFeature). We

do not impose any constraints on the type of data that nodes can represent. However,

we require the edges to be consistent with RoboBrain edge set C. We further associate

each node and edge in the graph with a feature vector representation and a belief. The

feature vector representation of nodes and edges depend on their local connections in

the graph, and their belief is a scalar probability over the accuracy of the information

that the node or an edge represents. Tables 1 and 2 show few examples of nodes and

edge-types. A snapshot of the graph is shown in Figure 2.

Creating the Graph. Graph creation consists of never ending cycle of two stages

namely, knowledge acquisition and inference. Within the knowledge acquisition

stage, we collect data from various sources and during the inference stage we ap-

ply statistical techniques to update the graph structure based on the aggregated data.

We explain these two stages below.

1. Knowledge acquisition: RoboBrain accepts new information in the form of set

of edges, which we call a feed. A feed can either be from an automated algo-

rithm crawling the Internet sources or from one of RoboBrain’s partner projects.

We add a new feed to the existing graph through a sequence of union operations

performed on the graph. These union operations are then followed by an infer-

ence algorithm. More specifically, given a new feed consisting of a set of N edges

{(v1
1,v

1
2, ℓ

1) . . .(vN
1 ,v

N
2 , ℓ

N)}, and the existing graph G = (V,E). The graph union op-

erations give a graph G′ = (V ′,E ′) as follows:

RoboBrain: Large-Scale Knowledge Engine for Robots 7

V ′ = v1
1 ∪ v1

2 ∪ . . .∪ vN
1 ∪ vN

2 ∪V

E ′ = (v1
1,v

1
2, ℓ

1)∪ . . .∪ (vN
1 ,v

N
2 , ℓ

N)∪E
(1)

2. Inference on the Graph: After adding the feed to the graph using equation (1),

we perform inference to update the graph based on this new knowledge. The infer-

ence outputs a sequence of graph operations which are then performed on the graph.

These graph operations modify the graph by adding new nodes or edges to the graph,

deleting nodes or edges from the graph, merging or splitting nodes, etc.

Word an English word represented
as an ASCII string

DeepFeature feature function trained
with a Deep Neural Network

Image 2D RGB Image
PointCloud 3D point cloud
Heatmap heatmap parameter vector

Table 1: Some examples of different node types in
our RoboBrain graph. For full-list, please see the
code documentation.

We mention two graph operations

here: split and merge. The split opera-

tion is defined as splitting a node into a

set of two nodes. The edges having end

points in the split node are connected to

one of the resultant nodes using the in-

ference algorithm. A merge operation is

defined as merging two nodes into a sin-

gle node, while updating the edges con-

nected to the merged nodes. An exam-

ple of such an update is shown in Figure

3. When a new information “sitting human can use a mug” is added to the graph, it

causes the split of the Cup node into two nodes: a Cup and a Mug node. These two are

then connected by an edge-type TypeOf. The graph update can be expressed through

the following equation:

G⋆ = splitvs1
◦mergevm1

,vm2
◦ . . .◦ splitvsM

◦G′

In the above equation G⋆ is the graph obtained after the inference. The goal of the

inference steps is to modify the graph G′ in a way that best explains the physical

world. However, the graph that captures the real physical world is a latent graph,

i.e., it is not directly observable. For example, the latent information that “coffee is

typically in a container” is partially observed through many edges between the

IsTypeOf human IsTypeOf a mammal
HasAppearance floor HasAppearance as

follows (this image)
CanPerformAction human CanPerformAction cutting
SpatiallyDistributedAs location of human is

SpatiallyDistributedAs

IsHolonym tree IsHolonym of leaf

Table 2: Some examples of different edge types in
our RoboBrain graph. For full-list, please see the
code documentation.

coffee node and the nodes with con-

tainer images. Our graph construction

can also be explained in a generative

setting of having a latent graph with all

the knowledge about physical word, and

we only observe noisy measurements in

form of feeds. In this paper, we abstract

the algorithmic details of inference and

focus on the overall ideas involved in

RoboBrain, its architecture, and its ap-

plication to robotics.

5 System Architecture

We now describe the system architecture of RoboBrain, shown in Figure 4. The sys-

tem consists of four interconnected layers: (a) knowledge acquisition, (b) knowledge

parser, (c) knowledge storage, and (d) knowledge inference. The principle behind our

design is to efficiently process large amount of unstructured multi-modal knowledge

8 Saxena, Jain, Sener, Jami, Misra and Koppula

and represent it using the structured RoboBrain graph. In addition, our design also

supports various mechanisms for users and robots to interact with RoboBrain. Below

we discuss each of the components.
Knowledge Inference

Knowledge
acquisition

Knowledge Parser

Knowledge Storage

User Session
Logs

Serving Data

Public
APIsKnowledge Parser

Internet
 Knowledge Bases

 (Wikipedia,
ImageNet etc.)

Robo Brain
Project

Partners

Robo Brain
Crawler

Robo Brain
Knowledge Base

● Feeds
● User Feedback
● Machine Learning

parameters

Large Media
Storage
(Images,

Videos etc.)

Robots, Cars
and

Smart devices

Robo Brain
Query Language

Distributed Queue
Learning and Inference

Learning algorithms,
Disambiguation, Ranking,

Graph builder etc.

Robo Brain
Graph database

WWW

http://robobrain.me

Graph
Visualizer

CDN

Fig. 4: RoboBrain system architecture. It con-
sists of four interconnected knowledge layers and
supports various mechanisms for users and robots
to interact with RoboBrain.

Knowledge acquisition layer is the

interface between RoboBrain and dif-

ferent sources of multi-modal data.

Through this layer RoboBrain gets ac-

cess to new information which the

other layers process. RoboBrain primar-

ily collects knowledge through partner

projects, by crawling existing knowl-

edge bases such as Freebase, ImageNet,

WordNet, etc., and from unstructured

sources such as Wikipedia.

Knowledge parser layer of Robo-

Brain processes the data acquired by the

acquisition layer and converts it to a

consistent format for the storage layer.

It also marks the incoming data with ap-

propriate meta- data such as timestamps, source version number etc., for scheduling

and managing future data processing. Moreover, since the knowledge bases might

change with time, it adds a back pointer to the original source.

Knowledge storage layer of RoboBrain is responsible for storing different repre-

sentations of the data. In particular it consists of a NoSQL document storage database

cluster – RoboBrain Knowledge Base (RoboBrain-KB) – to store “feeds” parsed by

the knowledge parser, crowd-sourcing feedback from users, and parameters of differ-

ent machine learning algorithms provided by RoboBrain project partners. RoboBrain-

KB offloads large media content such as images, videos and 3D point clouds to a dis-

tributed object storage system built using Amazon Simple Storage Service (S3). The

real power of RoboBrain comes through its graph database (RoboBrain-GD) which

stores the structured knowledge. The data from RoboBrain-KB is refined through

multiple learning algorithms and its graph representation is stored in RoboBrain-GD.

The purpose behind this design is to keep RoboBrain-KB as the RoboBrain’s single

source of truth (SSOT). SSOT centric design allows us to re-build RoboBrain-GD in

case of failures or malicious knowledge sources.

Knowledge inference layer contains the key processing and machine learning com-

ponents of RoboBrain. New and recently updated feeds go through a persistent repli-

cated distributed queuing system (Amazon SQS), which are then consumed by some

of our machine learning plugins (inference algorithm, graph builder, etc.) and popu-

lates the graph database. These plugins along with other learning algorithms (operat-

ing on the entire graph) constitute our learning and inference framework.

RoboBrain supports various interaction mechanisms to enable robots and users to

communicate with the knowledge engine. We develop a Robot Query Library as a

primary method for robots to interact with RoboBrain. We also make available a set

of public APIs to allow information to be presented on the WWW for online learning

mechanisms (eg., crowd-sourcing). RoboBrain serves all its data using a commercial

content delivery network (CDN) to reduce the end user latency.

RoboBrain: Large-Scale Knowledge Engine for Robots 9

6 Robot Query Library (RQL)

In this section we present the RQL query language, through which the robots use

RoboBrain for various robotic applications. The RQL provides a rich set of retrieval

functions and programming constructs to perform complex traversals on the Robo-

Brain graph. An example of such a query is finding the possible ways for humans to

use a cup. This query requires traversing paths from the human node to the cup node

in the RoboBrain graph.

RQL allows expressing both the pattern of sub-graphs to match and the operations

to perform on the retrieved information. An example of such an operation is ranking

the paths from the human to the cup node in the order of relevance. The RQL admits

following two types of functions: (i) graph retrieval functions; and (ii) programming

construct functions.

Graph retrieval function. The graph retrieval function is used to find sub-graphs

matching a given template of the form: Template: (u)→ [e]→ (v)
In the template above, the variables u and v are nodes in the graph and the variable

e is a directed edge from u to v. We represent the graph retrieval function with the

keyword fetch and the corresponding RQL query takes the form: fetch(Template)
This RQL query finds the sub-graphs matching the template. It instantiates the vari-

ables in the template to match the sub-graph and returns the list of instantiated vari-

ables. We now give a few use cases of the retrieval function for RoboBrain.

Example 1. RQL query to retrieve all the objects that a human can use

Query: fetch(({name : ‘Human′})→ [‘CanUse′]→ (v))

The above query returns a list of nodes that are connected to the node with name

Human and with an edge of type CanUse.Using the RQL we can also express several

operations to perform on the retrieved results. The operations can be of type SortBy,

Len, Belief and ArgMax. We explain it with an example.

Example 2. RQL query to sort possible paths from the Human node to the Cup node.

paths := fetch({name : ‘Human′})→ [r∗]→ ({name : ‘Cup′})

SortBy(λP→ BeliefP)paths

In the example above, we first define a function paths which returns all the paths

from the node Human to the node Cup in the form of a list. The SortBy query first

runs the paths function and then sorts, in decreasing order, all paths in the returned

list using their beliefs.

Programming construct functions. The programming construct functions serve to

process the sub-graphs retrieved by the graph retrieval function fetch. In order to

define these functions we make use of functional programming constructs like map,

filter and find. We now explain the use of some of these constructs in RQL.

Example 3. RQL query to retrieve affordances of all the objects usable by a human.

objects := fetch({name : ‘Human′})→ [‘CanUse′]→ (v)

affordances n := fetch({name : n})→ [‘HasAffordance′]→ (v)

map(λu→ affordancesu)objects

10 Saxena, Jain, Sener, Jami, Misra and Koppula

In this example, we illustrate the use of map construct. The map takes as input a func-

tion and a list, and then applies the function to every element of the list. More specif-

ically, in the example above, the function objects retrieves the list of objects that

the human can use. The affordances function takes as input an object and returns

its affordances. In the last RQL query, the map applies the function affordances to

the list returned by the function objects.

We now conclude this section with an expressive RQL query for retrieving joint pa-

rameters shared among nodes. Parameters are one of the many concepts we store in

RoboBrain and they represent learned knowledge about nodes. The algorithms use

joint parameters to relate multiple concepts and here we show how to retrieve joint

parameters shared by multiple nodes. In the example below, we describe the queries

for parameter of a single node and parameter shared by two nodes.

Example 4. Retrieve the joint parameters shared between a set of nodes.
parents n := fetch (v)→ [‘HasParameters′]→ ({handle : n})

parameters n := fetch ({name : n})→ [‘HasParameters′]→(v)

find parameters a := filter(λu→Len parents u= 1)parameters a

joint param a1 a2 := filter(λu→ Len parents u= 2 andu in parameters a2) parameters a1

The query above uses the filter construct function and Len operation. The

filter takes as input a list and a check condition, and returns only those items

from the list that satisfies the input condition. The Len takes as input a list and re-

turns the number of items in the list. In the query above, we first define a function

parents which for a given input node returns its parent nodes. Then we define a

function parameters which for a given input node returns its parameters. The third

and the fourth queries are functions accepting one and two input nodes, respectively,

and return the (joint) parameters that share an edge with every input node and not

with any other node.

7 Applications

In this section we first show how RoboBrain can be used as-a-service by the robots

for several robotics problems. Specifically, we explain the usage of RoboBrain in an-

ticipating human activities, grounding of natural language sentences, and path plan-

ning. We then show how RoboBrain can help robotics projects by sharing knowledge

within the projects and throughout the Internet.

7.1 RoboBrain as-a-service
Our goal with providing RoboBrain as-a-service is to allow robots to use the repre-

sentations learned by different partner projects. This allows RoboBrain to effortlessly

address many robotics applications. In the following we demonstrate RoboBrain as-a-

service feature for three robotics applications that deal with different data modalities

of perception, natural language and trajectories.

7.1.1 Anticipating human actions
The assistive robots working with humans should be able to understand human ac-

tivities and also anticipate the future actions that the human can perform. In order to

anticipate, the robot should reason over the action possibilities in the environment,

i.e., object affordances, and how the actions can be performed, i.e., trajectories. Sev-

eral works in robotics have addressed the problem of anticipation [28, 31, 32].

RoboBrain: Large-Scale Knowledge Engine for Robots 11

Anticipation

Environment,
Objects and

Activities

Affordances,
Trajectory

parameters

moveable

stationary
moving

reaching

placing

To
p

A
nt

ic
ip

at
io

ns

{ reachable }

{ placeable, reachable }

RoboBrain

Fig. 5: RoboBrain for anticipating human activities. Robot using anticipation algorithm of Kop-
pula and Saxena [31] queries RoboBrain, for the activity, affordance and trajectory parameters in
order to generate and rank the possible future activities in a given environment.

We now show how robots can query RoboBrain and use the algorithm of Koppula

et al. [31] for anticipating human actions. In order to anticipate the future human

actions, the authors [31] learn parameters using their anticipatory algorithm, and us-

ing the learned parameters they anticipate the most likely future object affordances

and human trajectories. RoboBrain serves anticipation as-a-service by storing those

learned parameters, object affordances and trajectories as concepts in its graph. Fig-

ure 5 illustrates a robot retrieving relevant information for anticipation. The robot first

uses the following queries to retrieve the possible trajectories of an object:

affordances n := fetch ({name : n})→ [‘HasAffordance′]→ (v{src : ‘Affordance′})

trajectories a := fetch ({handle : a})→ [‘HasParameters′]→

(v{src : ‘Affordance′,type : ‘Trajectory′})

trajectory parameters o := map(λa→ trajectories a) affordances o

In the queries above, the robot first queries for the affordances of the object and

then for each affordance it queries RoboBrain for the trajectory parameters. Having

retrieved all possible trajectories, the robot uses the learned parameters [31] to an-

ticipate the future human actions. Since the learned parameters are also stored in the

RoboBrain graph, the robot retrieves them using the following RQL queries:

parents n := fetch (v)→ [‘HasParameters′]→ ({handle : n})

parameters n := fetch ({name : n})→ [‘HasParameters′]→ (v{src : ‘Activity′})

find parametersa := filter(λu→Len parentsu= 1)parametersa

joint param a1 a2 := filter(λu→ Len parents u= 2 and u in parameters a2) parameters a1

The queries above retrieves both independent and joint parameters for anticipat-

ing the object affordances and human activities. Detailed explanation of the query is

given in Example 4 of Section 6

7.1.2 Grounding natural language
The problem of grounding a natural language instruction in an environment requires

the robot to formulate an action sequence that accomplish the semantics of the in-

struction [53, 40, 38]. In order to do this, the robot needs a variety of information.

Starting with finding action verbs and objects in the instruction, the robot has to dis-

cover those objects and their affordances in the environment.

We now show the previous work by Misra et al. [40] using RoboBrain as-a-service

in their algorithm. In order to ground a natural language instruction the robot has to

check for the satisfiability of the actions it generates in the given environment. For

example, an action which pours water on a book should be deemed unsatisfiable. In

12 Saxena, Jain, Sener, Jami, Misra and Koppula

cereal

“add ice-cream to cup and drizzle syrup over it”
argmaxI P(Ι | E,L)

squeezeable (syrup1)
on (syrup1,pot1)
getTraj(pour cup1)

True; belief: 0.6
False; belief: 1

[traj1,traj2,..]

Learned Concepts

Grounded Sequence

moveto(spoon1)
grasp(spoon1)
scoop(spoon1,ice-cream 1)
place(ice-cream 1,pot1)
place(spoon1,table1)
grasp(syrup1)
squeeze(syrup1,pot1)

cup →cup1
vanilla syrup→syrup2
drizzle syrup→grasp(syrup1); ….

Robobrain

Fig. 6: Grounding natural language sentence. The robot grounds natural language by using the
algorithm by Misra et al. [40] and querying RoboBrain to check for the satisfiability of actions. In
another application, Tellex at al. [52] at Brown University query RoboBrain for placing mugs.

the previous work [40], the authors manually define many pre-conditions to check

the satisfiability of actions. For example, they define manually that a syrup bottle

is squeezable. Such satisfiability depends on the object’s affordances in the given

environment, which can be retrieved from RoboBrain.

Figure 6 illustrates a robot querying RoboBrain to check the satisfiability of ac-

tions that it can perform in the given environment. Below is the RQL query for re-

trieving the satisfiability of squeezable action:

squeezable syrup := Len fetch (u{name : ‘syrup′})→ [‘HasAffordance′]→

(v{name : ‘squeezable′}) > 0

7.1.3 Path planning using RoboBrain

One key problem robots face in performing tasks in human environments is iden-

tifying trajectories desirable to the users. An appropriate trajectory not only needs

to be geometrically valid (i.e., feasible and obstacle-free), but it also needs to sat-

isfy the user preferences [23, 24]. For example, a robot should move sharp objects

such as knife strictly away from nearby humans [22]. Such preferences are com-

monly represented as cost functions which jointly model the environment, the task,

and trajectories. Typically research groups have independently learned different cost

functions [23, 32, 28], which are not shared across these groups. Here we show Robo-

Brain as-a-service for a robot to store and retrieve the planning parameters.

In Figure 8 we illustrate the robot planning for an egg carton by querying Robo-

Brain. Since eggs are fragile, users prefer to move them slowly and close to the sur-

face of the table. In order to complete the task, the robot queries RoboBrain and

retrieves the attributes of the egg carton and also the trajectory parameters learned in

the previous work by Jain et al. [24]. Using the retrieved attributes and the parame-

ters, the robot samples trajectories and executes the top-ranked trajectory. Below we

show the RQL queries.

attributes n := fetch ({name : n})→ [‘HasAttribute′]→ (v)

trajectories a := fetch({handle : a})→ [‘HasTrajectory′]→ (v)

trajectory parameters := map(λa→ trajectories a) attributes ‘egg′

7.2 RoboBrain for sharing knowledge

RoboBrain allows sharing the knowledge learned by different research groups as well

as knowledge obtained from various internet sources. In this section we show with

experiments how sharing knowledge improves existing robotic applications:

Sharing knowledge from the Internet. In this experiment we show that sharing

knowledge from several Internet sources using RoboBrain improves robotic applica-

tions such as path planning. Knowledge from the Internet sources has been shown

to help robots in planing better paths [55], understand natural language [47, 53], and

RoboBrain: Large-Scale Knowledge Engine for Robots 13

also recently in object retrieval [19]. However, for certain robotic tasks a single In-

ternet source does not cover many of the real world situations that the robot may

encounter. In such situations it is desired to use multiple sources to get richer repre-

sentation. The RoboBrain graph is designed to acquire and connect information from

multiple Internet sources and make it accessible to robots.

In this experiment we build upon work by Jain et al. [23] for planning trajecto-

ries that follow user preferences. The work relied on object attributes in order to plan

desirable trajectories. These attributes convey properties such as whether an object is

sharp, heavy, electronic etc. The attributes were manually defined by the authors [23].

In practice this is very challenging and time-consuming because there are many ob-

jects and many attributes for each object. Instead of manually defining the attributes,

we can retrieve many of them from the Internet knowledge sources such as Open-

Cyc, Wikipedia, etc. However, a single knowledge source might not have attributes

for all objects. The RoboBrain graph connects many attributes obtained from multiple

Internet sources to their respective objects.

Figure 7 illustrates the planning results when the robot does not use any attributes,

when it uses attributes from a single source (OpenCyc), and when it use attributes

from RoboBrain. The planning performance is best when using RoboBrain since it

covers more attributes than the OpenCyc alone. Most importantly all these attributes

are retrieved from the RoboBrain graph with a single RQL query as explained in

Section 7.1.3.

Sharing learned representations. New algorithms are commonly proposed for a

problem to address the shortcomings of previous methods. These algorithms have

their own learned representations. For example, different representations have been

learned for grounding natural language [53, 40, 38]. It is usually hard for practition-

ers to select a representation since there could be inputs where one representation

fails but some others work. In this experiment we show that a robot can query Robo-

Brain for the best representation while being agnostic to the algorithmic details of the

learned representations.

0 2 4 6 8 10
Feedbacks

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80

nD
CG

@
3

No attributes
OpenCyc
RoboBrain

Fig. 7: Sharing from Internet sources.

Algorithm IED EED

Algorithm A 31.7 16.3
Algorithm B 23.7 27.0

RoboBrain (A+B) 34.2 24.2

Table 3: RoboBrain allows sharing
learned representations.

Left: The plot shows performance of the algorithm by Jain et al. [23] for three settings of attributes.
This is an online algorithm that learns a good trajectory from the user feedback. The performance
is measured using the nDCG metric [37], which represents the quality of the ranked list of trajec-
tories. RoboBrain combines information from multiple sources and hence its richer in attributes as
compared to retrieving attributes from OpenCyc alone.
Right: It allows the robot to query RoboBrain for a representation given an input natural language
command. In this table the Algorithm A is a greedy algorithm based on Misra et al. [40], and Algo-
rithm B is their full model. The IED metric measures the string-edit distance and the EED metric
measures the semantic distance between the ground-truth and the inferred output instruction se-
quences. The metrics are normalized to 100 such that higher numbers are better.

Simulating the above setting, we present an experiment for sharing multiple

learned representations on a natural language grounding problem. Here the goal is

14 Saxena, Jain, Sener, Jami, Misra and Koppula

vase
cup egg cereal

Task: Move the egg carton

Planning
argmax

Trajectory
parameters

Environment,
Objects

Task Top three
trajectories

Robobrain

Fig. 8: RoboBrain for planning trajectory. The robot queries RoboBrain for the trajectory param-
eters (learned by Jain et al. [23]) to plan paths for the fragile objects like an egg carton.

to output a sequence of instructions for the robot to follow, given an input natural

language command and an environment. Following the work by Misra et al. [40],

we train a baseline algorithm for the task of making ramen (Algorithm A), and train

their full algorithm for the task of making affogato (Algorithm B). These algorithms

assign a confidence score (i.e., probability) to the output sequence of instructions. We

store these learned representations as concepts in the RoboBrain graph, along with a

prior belief over the correctness of the algorithms. The robot queries RoboBrain for

a representation as follows:

algParam := fetch(u{type :′ GroundingAlgorithm′})→ [‘HasParameters′]→ (v)

prior n := fetch({name : n})→ [‘HasPriorProb′]→ (v)

groundings L,E := argMaxBy(λ (u,v)→ v)map(λ (u,v)→ u(L,E,v)∗prioru) algParam

In the algParam function, we retrieve all natural language grounding algorithms

from the RoboBrain graph with their parameters. This returns a list in which each

element is a tuple of algorithm u and its parameters v. The prior function retrieves

the prior belief over the correctness of an algorithm. In order to ground a given nat-

ural language command L in environment E, the grounding function evaluates the

likelihood score for each algorithm using their parameters as u(L,E,v). It further in-

corporates the prior belief over the algorithms, and returns the representation with the

highest likelihood score. These set of queries corresponds to the following likelihood

maximization equation: I ∗ = argmaxI ,m′∈{A,B} P(I |E,L,w∗
m′ ,m

′)P(m′). As shown

in the Table 3, choosing a representation by querying the RoboBrain achieves better

performance than the individual algorithms.

8 Discussion and Conclusion

RoboBrain graph currently has 44347 nodes (concepts) and 98465 edges (relations).

The knowledge in the graph is obtained from the Internet sources and through the

project partners. For the success of many robotics application it is important to relate

and connect the concepts from these different knowledge sources. In Figure 9 we

plot the degree distribution of the RoboBrain graph and compare it with the degree

distribution of independent knowledge sources. The graph of independent knowledge

sources is the union of each knowledge source, which have nodes from all the projects

and the edges only between the nodes from the same project. RoboBrain success-

fully connects projects and increases the average degree per-node by 0.8. RoboBrain

graph has fifteen thousand nodes with degree one. Most of these nodes come from

Wikipedia and WordNet. These nodes are not directly related to the physical world

and represent concepts like political ideas, art categories, etc.

RoboBrain: Large-Scale Knowledge Engine for Robots 15

0 5 10 15 20 25

Degree

0

5000

10000

15000

20000

C
o
u
n
t

RoboBrain

Independent Sources

Fig. 9: Degree distribution of RoboBrain and the union
of independent knowledge sources. For the case of in-
dependent sources, we only consider the edges between
nodes from the same source. RoboBrain connects different
projects successfully: number of nodes with degree 1 and 2
decrease and nodes with degree 3 and more increase.

In this paper we described

different aspects and techni-

cal challenges in building a

knowledge engine for robots.

RoboBrain represents multiple

data modalities from various

sources, and connects them to

get an overall rich graph rep-

resentation. We presented an

overview of the large-scale sys-

tem architecture and devel-

oped the Robot Query Library

(RQL) for robots to use RoboBrain. We illustrated robotics applications of antic-

ipation, natural language grounding, and path planning as simple RQL queries to

RoboBrain. We also showed in experiments that sharing knowledge through Robo-

Brain improves existing path planning and natural language grounding algorithms.

RoboBrain is an ongoing effort where we are collaborating with different research

groups. We are working on improving different aspects such as learning from crowd-

sourcing feedback, inference methods over the graph for discovering new relations

between concepts, and expanding RoboBrain to new robotics applications.

Acknowledgement. This work was supported in part by ARO award W911NF-12-

1-0267, ONR award N00014-14-1-0156, NRI award IIS-1426744, Google Faculty

Research award (to Saxena), and Qualcomm research award. This was also supported

in part by Google PhD Fellowship to Koppula, and by Microsoft Faculty Fellowship,

NSF CAREER Award and Sloan Fellowship to Saxena.

[1] A. Anand, H. S. Koppula, T. Joachims, and A. Saxena. Contextually guided semantic labeling and search for 3d
point clouds. IJRR, 2012.

[2] R. D. Andrea. Guest editorial: A revolution in the warehouse: A retrospective on kiva systems and the grand
challenges ahead. IEEE Tran. on Automation Science and Engineering (T-ASE), 9(4), 2012.

[3] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A nucleus for a web of open data.
Springer, 2007.

[4] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mosenlechner, D. Pangercic, T. Ruhr, and M. Tenorth. Robotic
roommates making pancakes. In Humanoids, pages 529–536. IEEE, 2011.

[5] M. Beetz, M. Tenorth, and J. Winkler. open-ease a knowledge processing service for robots and robotics/ai re-
searchers. TZI Technical Report, 74, 2014.

[6] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collaboratively created graph database for
structuring human knowledge. In Proc. ACM SIGMOD, pages 1247–1250, 2008.

[7] M. Bollini, S. Tellex, T. Thompson, M. Roy, and D. Rus. Interpreting and executing recipes with a cooking robot.
In ISER, 2012.

[8] M. Cakmak, S. S. Srinivasa, M. K. Lee, J. Forlizzi, and S.B. Kiesler. Human preferences for robot-human hand-over
configurations. In IROS, 2011.

[9] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, and T. M Mitchell. Toward an architecture for
never-ending language learning. In AAAI, volume 5, page 3, 2010.

[10] X. Chen, A. Shrivastava, and A. Gupta. NEIL: Extracting Visual Knowledge from Web Data. In ICCV, 2013.
[11] V. Delaitre, D. Fouhey, I. Laptev, J. Sivic, A. Gupta, and A. Efros. Scene semantics from long-term observation of

people. In Proc. ECCV, 2012.
[12] J. Deng, W. Dong, R. Socher, L-J Li, K. Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database.

In CVPR, 2009.
[13] X.L. Dong, T. Strohmann, S. Sun, and W. Zhang. Knowledge vault: A web-scale approach to probabilistic knowl-

edge fusion. In KDD, 2014.
[14] A. Dragan and S. Srinivasa. Generating legible motion. In RSS, June 2013.
[15] C. Fellbaum. WordNet. Wiley Online Library, 1998.
[16] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyanpur, A. Lally, J. W. Murdock, E. Nyberg,

J. Prager, et al. Building watson: An overview of the deepqa project. AI magazine, 31(3):59–79, 2010.
[17] D. A. Ferrucci. Introduction to this is watson. IBM J. of RnD, 56(3.4):1–1, 2012.

16 Saxena, Jain, Sener, Jami, Misra and Koppula

[18] M. J. Gielniak, C. Karen Liu, and A. L. Thomaz. Generating human-like motion for robots. IJRR, 32(11), 2013.
[19] S. Guadarrama, E. Rodner, K. Saenko, N. Zhang, R. Farrell, J. Donahue, and T. Darrell. Open-vocabulary object

retrieval. RSS, 2014.
[20] S. Gupta, R. Girshick, P. Arbelaez, and J. Malik. Learning rich features from RGB-D images for object detection

and segmentation. In Proc. ECCV, 2014.
[21] J. Hoffart, F. M Suchanek, K. Berberich, and G. Weikum. Yago2: a spatially and temporally enhanced knowledge

base from wikipedia. Artificial Intelligence, 194:28–61, 2013.
[22] A. Jain, S. Sharma, and A. Saxena. Beyond geometric path planning: Learning context-driven trajectory preferences

via sub-optimal feedback. In ISRR, 2013.
[23] A. Jain, B. Wojcik, T. Joachims, and A. Saxena. Learning trajectory preferences for manipulators via iterative

improvement. In NIPS, 2013.
[24] A. Jain, D. Das, J. K. Gupta, and A. Saxena. Planit: A crowdsourced approach for learning to plan paths from large

scale preference feedback. arXiv preprint arXiv:1406.2616, 2014.
[25] Y. Jiang, H. Koppula, and A. Saxena. Hallucinated humans as the hidden context for labeling 3d scenes. In CVPR,

2013.
[26] Yun Jiang, Marcus Lim, and Ashutosh Saxena. Learning object arrangements in 3d scenes using human context. In

ICML, 2012.
[27] D. Katz, A. Venkatraman, M. Kazemi, J. A. Bagnell, and A. Stentz. Perceiving, learning, and exploiting object

affordances for autonomous pile manipulation. Autonomous Robots, 37(4), 2014.
[28] K. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert. Activity forecasting. In Proc. ECCV, 2012.
[29] R. A. Knepper, T. Layton, J. Romanishin, and D. Rus. Ikeabot: An autonomous multi-robot coordinated furniture

assembly system. In ICRA, 2013.
[30] H.S. Koppula and A. Saxena. Physically grounded spatio-temporal object affordances. In Proc. ECCV, 2013.
[31] H.S. Koppula and A. Saxena. Anticipating human activities using object affordances for reactive robotic response.

In RSS, 2013.
[32] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard. Feature-based prediction of trajectories for socially

compliant navigation. In RSS, 2012.
[33] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical multi-view RGB-D object dataset. In ICRA, 2011.
[34] D. B Lenat. Cyc: A large-scale investment in knowledge infrastructure. Commun. ACM, 38(11):33–38, 1995.
[35] I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting robotic grasps. In RSS, 2013.
[36] J. Mainprice and D. Berenson. Human-robot collaborative manipulation planning using early prediction of human

motion. In IROS, 2013.
[37] Christopher D Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to information retrieval, volume 1.

Cambridge university press Cambridge, 2008.
[38] C. Matuszek, E. Herbst, L. Zettlemoyer, and D. Fox. Learning to parse natural language commands to a robot

control system. In Proc. of the 13th International Symposium on Experimental Robotics (ISER), June 2012.
[39] C. McManus, B. Upcroft, and P. Newman. Scene signatures: Localised and point-less features for localisation. In

RSS, 2014.
[40] D.K. Misra, J. Sung, K. Lee, and A. Saxena. Tell me dave: Context-sensitive grounding of natural language to

mobile manipulation instructions. In RSS, 2014.
[41] A. R. Mohamed, T. N. Sainath, G. Dahl, B. Ramabhadran, G. E. Hinton, and M. A. Picheny. Deep belief networks

using discriminative features for phone recognition. In (ICASSP), pages 5060–5063, 2011.
[42] T. Naseer, L. Spinello, W. Burgard, and C. Stachniss. Robust visual robot localization across seasons using network

flows. In AAAI, 2014.
[43] S. Nikolaidis, P. Lasota, G. Rossano, C. Martinez, T. Fuhlbrigge, and J. Shah. Human-robot collaboration in man-

ufacturing: Quantitative evaluation of predictable, convergent joint action. In Intl. Sym. on Robotics, 2013.
[44] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, and A. Ng. Ros: an open-

source robot operating system. In ICRA Workshop on Open Source Software, 2009.
[45] N. Ratliff, J. A. Bagnell, and M. Zinkevich. Maximum margin planning. In ICML, 2006.
[46] J. Rintanen. Planning as satisfiability: Heuristics. Artificial Intelligence, 193:45–86, 2012.
[47] M. Rouhizadeh, D. Bauer, R. E. Coyne, O. C. Rambow, and R. Sproat. Collecting spatial information for locations

in a text-to-scene conversion system. Computational Models for Spatial Languages, 2011.
[48] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman. Labelme: a database and web-based tool for image

annotation. IJCV, 77(1-3), 2008.
[49] J. Schulman, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, and P. Abbeel. Finding locally optimal, collision-free trajec-

tories with sequential convex optimization. In RSS, 2013.
[50] J.M. Shepard, M.C. Towner, J. Lei, and P. Abbeel. Cloth grasp point detection based on multiple-view geometric

cues with application to robotic towel folding. In ICRA, 2010.
[51] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge. In WWW, 2007.
[52] S. Tellex and J. Oberlin. Placing mugs with robobrain. http://h2r.cs.brown.edu/

placing-mugs-on-pedestals-with-robobrain/.
[53] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. J. Teller, and N. Roy. Understanding natural

language commands for robotic navigation and mobile manipulation. In AAAI, 2011.
[54] S. Tellex, R. Knepper, A. Li, D. Rus, and N. Roy. Asking for help using inverse semantics. In RSS, 2014.
[55] M. Tenorth, D. Nyga, and M. Beetz. Understanding and executing instructions for everyday manipulation tasks

from the world wide web. In ICRA, 2010.
[56] M. Waibel, M. Beetz, R. D’Andrea, et al. Roboearth: A world wide web for robots. IEEE R & A. Magz., 2011.
[57] C. Wu, I. Lenz, and A. Saxena. Hierarchical semantic labeling for task-relevant rgb-d perception. In RSS, 2014.
[58] M. Zucker, N. D. Ratliff, A. D. Dragan, M. Pivtoraiko, M. K., C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa.

CHOMP: covariant hamiltonian optimization for motion planning. IJRR, 32(9-10), 2013.

http://h2r.cs.brown.edu/placing-mugs-on-pedestals-with-robobrain/
http://h2r.cs.brown.edu/placing-mugs-on-pedestals-with-robobrain/

	RoboBrain: Large-Scale Knowledge Engine for Robots
	Ashutosh Saxena, Ashesh Jain, Ozan Sener, Aditya Jami, Dipendra K Misra, Hema S Koppula
	Introduction
	Related Work
	Overview
	Knowledge Engine: Formal Definition
	System Architecture
	Robot Query Library (RQL)
	Applications
	RoboBrain as-a-service
	RoboBrain for sharing knowledge

	Discussion and Conclusion
	-1.5cm

