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Abstract— General-purpose robots can perform a range of
useful tasks in human environments; however, programming
them to robustly function in all possible environments that
they might encounter is unfeasible. Instead, our research aims
to develop robots that can be programmed by its end-users in
their context of use, so that the robot needs to robustly function
in only one particular environment. This requires intuitive ways
in which end-users can program their robot. To that end, this
paper contributes a flow-based visual programming language,
called RoboFlow, that allows programming of generalizable
mobile manipulation tasks. RoboFlow is designed to (i) ensure
a robust low-level implementation of program procedures on
a mobile manipulator, and (ii) restrict the high-level program-
ming as much as possible to avoid user errors while enabling
expressive programs that involve branching, looping, and nest-
ing. We present an implementation of RoboFlow on a PR2
mobile manipulator and demonstrate the generalizability and
error handling properties of RoboFlow programs on everyday
mobile manipulation tasks in human environments.

I. INTRODUCTION

Robots that can assist humans in everyday tasks have the

potential to bring independence to persons with physical dis-

abilities, enable older adults to age in place, and improve the

quality of our lives. A key challenge in realizing such robots

is to program them to robustly function in the end-users’

unique environments. Useful robotic capabilities for mobile

manipulators such as fetching items1, baking cookies[7] or

setting up the table2, have previously been demonstrated;

however, the way that these demonstrations are realized is

not scalable. The reason is two-fold: (i) they only work

in the particular environment they are developed for, and

(ii) they require highly skilled developers experienced in

robotics to program them. Most robotics research targets

the first problem by aiming to develop universal or adaptive

capabilities that will work in all possible scenarios. This is

extremely challenging and has had limited practical success

so far. Instead, we aim to address the second problem. Our

goal is to develop robots that can be programmed by the

end-users after they are deployed in their context of use.

To that end, we seek to apply techniques from the field of

End-User Programming [5] (EUP) to robot programming.

Although there are various techniques in EUP that are

relevant for robot programming, the technique that has been

most popular in robotics is Programming by Demonstration

[5] (PbD). Our previous work explored the use of program

visualization [26] in conjunction with PbD, to improve the
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1Beer me Robot: http://youtu.be/c3Cq0sy4TBs
2PR2 Sushi challenge: http://youtu.be/NnfJUPz6__M

users’ mental model of what the robot learns from provided

demonstrations [2]. In this paper, we explore the use of

another powerful EUP technique called visual programming

[10]. We develop a visual programming language for mobile

manipulation tasks and propose a programming paradigm

that involves graphical interactions to edit program structure

and physical demonstrations to instantiate program proce-

dures. We demonstrate the expressivity of the language in

creating flexible programs that generalize across different

scenarios on a set of real-world mobile manipulation tasks

on a PR2 robot. We also evaluate program comprehension,

creation, and debugging though a small scale user study that

confirms the intuitiveness of the language.

II. RELATED WORK

End-User Programming (EUP) is an active research area

in human-computer interaction that aims to enable everyday

people, who are not professional software developers, to

create custom programs that meet their particular needs [24],

[21]. Popular examples of EUP include spreadsheets [27] and

webpage development [34]. Research in EUP has produced

many techniques such as domain-specific languages (DSLs)

[25], programming by example [23] or model-based devel-

opment [30]. This paper focuses on one such method called

visual programming [26], [18], [10] which has had the most

success in making programming accessible to non-technical

users [16], [31]. Previously, the EUP technique that has been

most popular in robotics is Programming by Demonstration

(PbD) [4]. PbD allows users to program new capabilities

on a robot by demonstrating the desired behavior [5], [3].

Most work in this area focuses on learning control-level skills

represented by cost functions [1] or policies/controllers that

map a state to an appropriate action [15], [8].

One line of work, motivated by the use of robots in pro-

gramming education, produced a set of visual programming

tools for toy robots [32], [33], [20]. The simplicity of the

robots used by these tools allows programming at a low-

level where individual sensory inputs can be tied directly to

actuators. This impedes their applicability to general-purpose

mobile manipulators like PR2. Another set of tools have

been developed for animating articulated robots, such as

the Aldebaran Nao3 or the MIT Media lab magician robot

[29]. These closely resemble a class of visual programming

languages, but they are intended for open loop robot motions

rather than mobile manipulation tasks that involve interacting

with the environment.

3http://www.aldebaran.com/en

http://youtu.be/c3Cq0sy4TBs
http://youtu.be/NnfJUPz6__M
http://www.aldebaran.com/en


Another related line of work is has been focused on the

use of software engineering methods, particularly around a

series of workshops on DSLs for robotics. Some example

languages from this community include Robot Scene Graphs

[6] or a DSL for pick-and-place [9]. Work by Kress-Gazit

et al. uses formal verification techniques for low-level robot

programs [22]. Finally, most related to our system in terms

of application and purpose, is a system developed by Nguyen

et al. for the PR2 robot called RCommander [28]. While the

functionalities provided by RoboFlow and RCommander are

similar, RoboFlow has a simpler and much more restricted

programming interface and is formalized as a programming

language.

III. VISUAL PROGRAMMING FOR MOBILE MANIPULATION

In visual programming users create or modify programs

by manipulating a graphical representation of the program.

A visual programming language (VPL) is a programming

language in which visual expressions (e.g. spatial relation-

ships between tokens on a 2D screen) have significance in

the meaning of the program [10]. There are several types of

VPLs, differing based on how they exploit visual expression,

such as form-based [12], flow-based [19], or rule-based [16]

VPLs. Existing VPL research greatly informs its application

to new problem domains such as robotics. However, in

developing a VPL for robot programming, we face the chal-

lenge of specifying a language that appropriately balances

intuitiveness, scalability, and robust implementation on a

robot. The approach we take with RoboFlow is to maximally

constrain the language to keep it as simple as possible at the

high level, to ensure intuitiveness. Nonetheless, the language

needs to be expressive enough to capture useful tasks. We

focus on a rich but structurally constrained task domain,

explained in the following.

A. Task domain

RoboFlow targets tasks that involve configuring everyday

objects within a known environment. A large set of orga-

nizing tasks in human environments (often specified with

verbs such as straighten, pick up, put away, organize, tidy,

or clear out) simply involve reconfiguring objects within

the environment [13]. For example, the task straighten

counters involves placing dirty dishes in the dishwasher,

perishable food in the fridge, and clean dishes, tools, and

condiments in their respective cupboards or drawers. Such

tasks require a small number of low-level capabilities on a

robot including identification, localization, and manipulation

of objects and autonomous navigation. Nonetheless, there

are many different such tasks and each task has a unique

instantiation in every home. We exploit the common structure

of these tasks to specify a compact and extensible VPL that

allows programming unique programs tailored to a particular

environment.

B. Language specification

Programming languages are specified by their syntax

(form of the language) and semantics (meaning of the

language). A visual programming language is a language

whose semantically-significant syntax includes visual expres-

sions [10]. VPLs exploit familiar visual representations to

ensure intuitiveness; for example, arrows are often used to

indicate flow of information in one direction. The VPL used

in this paper is a flow-based VPL [19], similar to popularly

known flow diagrams or control flow graphs. Based on

the task structure that the language is intended to support

(Sec. III-A), we propose the following syntax to keep the

language as simple as possible.

• We use a box-line representation. Boxes are procedures

or functions with inputs and outputs. Lines represent

flow of data from the output of a box to the input of

another box.

• We use a pure data flow model, with no control flow

constructs such as while or repeat. We allow itera-

tions/loops through cycles in the flow graph.

• We only allow selector functions, i.e. functions that have

one input and multiple outputs.

• Outputs/inputs (i.e. lines) do not carry semantic in-

formation (they are on or off); instead semantics are

embedded in the box structure.

The formal syntax and semantics of RoboFlow is shown

and explained in Fig. 1.

An important decision in the design of the VPL is the

choice of procedures (i.e. boxes) available to users. These

need to ensure a robust implementation on the robot, while

being intuitive for users. Based on the capabilities required

for our task domain (Sec. III-A), we constrain available

procedures to three types robot actions that independently

control different groups of actuators on the robot: (i) manip-

ulation, (ii) navigation, and (iii) active perception (i.e. head

movements). Each procedure type has a fixed structure. The

core is the operation, which is a low-level subroutine that

interacts with the actuators. The operation may have pre-

conditions to be checked before it is executed and post-

conditions to be checked upon completion of the operation.

This is a common action representation for robots in the

planning literature [17]. The three types of procedures are

as follows (illustrated in Fig. 2(a-c)).

1) Manipulation procedures: These actuate the robot’s

arms to interact with objects in the environment. We rep-

resent manipulation actions as a sparse sequence of end-

effector poses relative to landmarks (objects or detectable

markers). These actions are programmed by demonstration.

Our previous work has demonstrated this simple representa-

tion captures a wide range of manipulation actions, from a

simple pick-up-place, to complex bi-manual or constrained

grasps and non-prehensile manipulation actions [2]. The pre-

conditions for a manipulation procedure is that the landmarks

involved in the action are present in the robot’s view and

that any pose relative to these landmarks is reachable be the

robot. The post-condition checks whether the manipulation

has succeeded. Failures can happen if the arm get stuck due

to an obstacle or if the objects slip during manipulation. Both

failures are detectable.



P ::= nil | gid { G } P

G ::= nil | nid -> N :: G

N ::= Op(O, nids)

| Call(gid, nid, nid)

| Success | Failure

O ::= Manipulate(params)

| Navigate(params)

| Look-at(params)

(a)

G[n] = Op(o, ns) JoK(σ, ns) = (σ′, n′)

(n, (G,ns, nf ) :: Γ, σ) → (n′, (G,ns, nf ) :: Γ, σ
′)

G[n] = Success

(n, (G,ns, nf ) :: Γ, σ) → (ns,Γ, σ)

G[n] = Call(g, n′

s, n
′

f ) P [g] = G′ entry(G′) = n′

(n, (G,ns, nf ) :: Γ, σ) → (n′, (G′, n′

s, n
′

f ) :: (G,ns, nf ) :: Γ, σ)

G[n] = Failure

(n, (G,ns, nf ) :: Γ, σ) → (nf ,Γ, σ)

(b)

Fig. 1: RoboFlow Formal Syntax and Semantics. The Backus-Naur Form grammar in (a) specifies RoboFlow programs

as a list of graphs, each labeled by a graph identifier, gid. Each graph in turn is specified as a list of nodes labeled by a

node identifier, nid. There are four types of nodes: Op, Call, Success, Failure. Each node includes the node identifiers of its

potential successors. The small step operational semantics in (b) provides the meaning of RoboFlow programs as a set of

logical inference rules specifying when one state can step to another. Each state comprises the current nid, call stack, and

configuration which represents the state of the world and is denoted by σ. Note the use of an operation’s denotation JoK in the

Op case which both returns the updated configuration and successor node. This design choice modularizes RoboFlow with

respect to the available procedures which keeps our semantics simple and provides extensibility for adding new procedures.
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Fig. 2: Illustration of VPL tokens and structure of (a) manip-

ulation, (b) navigation, and (c) active perception procedures;

and (d) procedures abstracted from other programs.

2) Navigation procedures: These actuate the robot’s

base to make it move about its environment. They are

parametrized by a target location. They have no pre-

conditions but they have a post-condition that checks whether

the destination was reached. Failures can happen due to

obstacles that block the robot’s path to its destination.

3) Active perception (look-at) procedures: These actuate

the robot’s pan-tilt head to direct its sensors towards different

parts of the environment. They are parametrized by the pan

and tilt angles and they have no pre-conditions. They have

no post-conditions either, as they are guaranteed to succeed.

RoboFlow embeds conditions within a procedure. This is

in contrast with general-purpose flow diagrams where the

user directly manipulates conditions and operations and can

connect them in arbitrary ways. Nonetheless, we chose to

visualize the control flow within a procedure (with diamonds

for conditions and rectangles for operations) to partially

communicate the semantics of a procedure to the user.

C. Program definition and procedural abstraction

In addition to the procedures, a complete program requires

a start terminal (a unit with one output only) and end

terminals (a unit with one input only). We allow two types

of end terminals: success and failure. The flow of a program

is specified by edges between procedures and terminals,

represented with arrows from an output an input. Note that

only one edge can start at an output, but multiple edges can

end at an input.

Parametrization of the procedures improves the scalability

of our VPL [11]; however it necessitates giving users the

ability to instantiate each parameter. The different types

of procedures are instantiated through different interfaces

described in Sec. III-D.

Given our language specifications, a valid program is a

program that has (i) one start terminal, (ii) at least one

success end-terminal, (iii) at least one procedure, (iv) for

every output to have one outgoing edge, and (v) every input

to have at least one incoming edge. This program definition

allows nesting programs in other programs; a concept known

as procedural abstraction. A program can be abstracted as

a procedure simply by considering its start as input and its

two types of terminals as its two outputs. Thus, a program

is equivalent to a procedure with two outputs (Fig. 2(d)).

D. Programming interactions

VPLs naturally support creation and modification of pro-

grams through a graphical interface. However, a purely

graphical interface does not exploit the physicality and situ-

atedness of the robot. Our VPL nicely separates the portion

of the programming process for which graphical interaction

is crucial; that is, the specification of program structure. On

the other hand, for the instantiation of procedures physical

interaction with the robot can be more effective than a

graphical interface. We propose two alternative programming

interaction paradigms that aim to combine graphical and

physical interactions in different ways.

1) Top-down programming: The first proposed approach

is to have users start creating a program from scratch

using a graphical interface. This interaction technique is

akin to existing VPL development tools. Users add different

procedures and terminals to a program pad, and create edges

to specify program structure. At any time during this process,



users can instantiate a procedure that is in the program. The

instantiation process is different for each type of procedure.

For manipulation the user will demonstrate the sequence of

poses (possibly relative to landmarks) by physically guiding

the robot’s arms and giving simple commands [2]. For

navigation, the user drives the robot to the desired location

using a joystick. For active perception, users specify the pan-

tilt angle of the head by clicking on the robot’s camera view

to center target objects.

2) Bottom-up programming: The second approach in-

volves the user first demonstrating one full execution of

the program. This is used to automatically create a default

program. The user then switches to the graphical program

development environment, and edits the program structure.

The default program is one that has all demonstrated pro-

cedures in a sequence and fails if any of the conditions are

not met and succeeds when the last procedure completes

successfully. A single demonstration can only create a linear

program. Therefore, the provided demonstration should trace

all parts of the program at least once. Structural edits can

then change the program to repeat or skip certain parts of

the default program. This approach becomes problematic if

a program has two branches that cannot be traced in the

same execution. In that case, users need to exploit procedural

abstraction by creating separate programs for each branch

and then nesting them into the main program.

Although users do not have control on the condition

checking structure, on manipulation procedures, they can

change the similarity threshold for matching objects in the

scene to the object with which the manipulation action was

programmed with. A higher threshold results in more object

to meet the criteria, and hence return true when the condition

is checked. This functionality is explored in Sec. IV-B.2.

E. Implementation

We implement RoboFlow for the PR2 research robot. PR2

(Personal Robot 2) is a mobile manipulator with an omni-

directional base and two 7 degree-of-freedom (DoF) arms

with 1-DoF under-actuated grippers. PR2’s manipulators are

naturally gravity compensated through a passive balance

mechanism. This allows safe and comfortable kinesthetic

interactions with the robot, during demonstrations of ma-

nipulation procedures. The implementation of manipulation

procedures is based on the open-source PR2 Programming

by Demonstration package4. Similarly, navigation procedures

use existing autonomous navigation software5. The front-end

editor of RoboFlow is implemented as a Java applet (Fig. 3).

IV. EVALUATION

Next, we present sample programs and executions of

these programs in different environments to demonstrate

the expressivity of RoboFlow and the generalizability of

programs created with it. Then, in Sec. IV-C we present

findings from a small scale user study investigating the

usability and intuitiveness of RoboFlow.

4http://ros.org/wiki/pr2_pbd
5http://wiki.ros.org/pr2_navigation

Fig. 3: Overview of the RoboFlow editor.

For the systematic evaluation we used the bottom-up

programming approach (Sec. III-D.2). All tasks were pro-

grammed by one of the authors and tested in 3 to 5 different

scenarios chosen to illustrate different traces of the program.

For user studies, we assumed a top-down programming

approach but the participants did not actually instantiate the

procedures on the real robot. Rather, they chose procedures

from a set of pre-specified alternatives that were described

to them.

A. Analysis of expressivity

We first present RoboFlow programs that illustrate its ex-

pressivity over simple sequential programs that are common

in robot PbD systems (e.g. [2]).

1) Looping: To demonstrate looping, we programmed two

tasks. The first consisted of putting toy building blocks in a

box. The demonstration used one block only (Fig. 4(a)), and

the execution was tested with different numbers of blocks

(Fig. 4(b-c)). The RoboFlow program for the task is shown

in Fig. 8(a). The program starts with moving the robot

head down, then looking for objects similar to the object

used in the demonstration. If no such objects were detected,

the program ends successfully. If the objects were detected,

but are unreachable, the program fails. Otherwise, the robot

manipulates the object as in the demonstration (in this case,

puts the block in the box). If manipulation fails, the program

fails too. Otherwise, the program loops back, i.e. the robot

looks for objects again, an so on.

The second task consisted of stacking paper cups. The

demonstration used two cups (Fig. 5(a)), the execution was

again tested with different numbers of cups (Fig. 5(b-c)). The

program is structurally exactly the same as for the previous

one (Fig. 8(a)), the only difference is that now the robot

looks for two objects that are similar to cups, instead of the

small block and the large box.

2) Procedural abstraction: We illustrate the procedural

abstraction with two examples. The first one involves stack-

ing cups and putting them in a box. Since the first part was

programmed before, this program could use that program

as a procedure. The demonstration for this task consist of

calling that procedure and then continuing on to demonstrate

the second part of the task by picking up the the stacked

cups and placing them into the box. This program is shown

http://ros.org/wiki/pr2_pbd
http://wiki.ros.org/pr2_navigation


(a)

(b)

(c)

(d)

(e)

Fig. 4: (a) Demonstration of the manipulation procedure for

picking up a small block and placing it in a large box. (b-c)

Execution of the looping program in the original scene it

was demonstrated and a new scene with more objects. (d-

e) Execution of the lopping program with different object

matching condition thresholds.

in Fig. 8(b). For the second example we programmed two

smaller tasks first: opening and closing a drawer. We then

used those tasks as operations in two new tasks: putting a

block in a drawer and taking a block out of a drawer, both

starting and ending with a closed drawer. The execution of

these two programs is shown in Fig. 6. We envision users

creating a library of such reusable tasks, such as opening or

closing drawers, cabinets and doors or pick up and placement

of specific objects. These could later be reused in different

programs that involve those objects.

3) Branching: A type of branching is already seen in

the previous examples: if an object is found, perform ma-

nipulation, otherwise, end the program. We further explore

the branching capabilities by programming a trash clean-up

task. For this task, the robot navigates to a table and looks

for paper cups. If one is found, the robot picks it up and

navigates to the trash can, where it throws the cup away.

After that, the robot proceeds to the next table. If a cup is

not found or if it cannot be reached, the robot proceeds to

the next table immediately, skipping several steps that require

the presence of the cup. An execution of this task is shown

in Fig. 7(a).

Another use case for branching is a supported right grasp,

where the robot picks up a bottle if it is reachable with its

right gripper but, otherwise, pushes it towards the right arm

using its left arm. This program is also an example of a

loop: as long as the left gripper can reach the bottle and the

right gripper cannot, the robot pushes the bottle towards the

right. The corresponding program is shown on Fig. 8(c) and

(a)

(b)

(c)

(d)

Fig. 5: (a) Demonstration of the manipulation procedure

for stacking a cup on another one. (b-c) Execution of the

corresponding looping program in the original scene and a

new scene with three cups. (d) Execution in a dynamically

changing environment (new cup inserted by user during

execution).

(a)

(b)

Fig. 6: Two programs that re-use abstracted procedures

(opening the drawer and closing the drawer) (a) putting an

object into the drawer, and (b) taking an object out of the

drawer.

different executions of the program are shown in (Fig. 7(b-

c)). Yet another example of branching is the task of picking

up a cup with different grasps (Fig. 7(d)). At first the robot

attempts to pick up the cup from the side. If that fails, the

robot tries to pick it up from the top. If the first grasp

succeeds, the second manipulation procedure is not used.

B. Analysis of generalization

The structure of RoboFlow programs allows them to work

robustly across different situations. In this section we re-

iterate the dimensions in which generalizability is supported

by the capabilities demonstrated in Sec. IV-A.

1) Number of objects: Loops allow for generalization

across different number of objects, as illustrated by the block

and cup examples discussed earlier (Sec. IV-A.1).

2) Types of objects: Flexible conditions allow for gener-

alization of actions programmed for one object to different

objects. For instance, after programming the robot to pick

up toy blocks, we edited the threshold for object similarity,

allowing the robot to perform the same action on larger toy



(a)

(b) (c)

(d)

Fig. 7: Programs that further illustrate branching: (a) picking

up recycling from all tables, (b-c) supported right grasp

where the robot uses the left arm to push the object towards

the right arm if it is not directly reachable with the right arm,

(d) adaptive grasp that tries an alternative grasp if the first

tried one fails.

(a) (b)

stacking cups

(c)

push towards
rightpickup with

right

Fig. 8: Sample programs in RoboFlow: (a) picking up objects

and placing them into a box in a loop, (b) a program that uses

another program as a procedure (c) a program that picks up

an object with the right arm, but is the object is not reachable,

pushes it towards the right using the left arm within a loop.

blocks ((Fig. 4(d)), and even less similar objects such as a

whiteboard eraser and a sponge ((Fig. 4(e)). Note that the

robot does not alter its grasp, but the task is still performed

successfully, because the grasp on all roughly rectangular

objects of similar size is essentially the same.

3) Configurations of objects: RobotFlow has generaliz-

ability in different object configuration due to its object-

centered representation of manipulation actions, based on

[2]. RoboFlow further improves this generalizability by

allowing alternative grasps (Fig. 7(d)) and by making an

object graspable when it is not (Fig. 7(b)). Our system also

accommodates the objects being present or absent at different

locations. For example, we can have a program that searches

for an object until it is found, or a program that goes through

all locations and operates on the same objects in any location

they occur (e.g. pick up and throw in trash).

4) Dynamic changes in the environment: The branching

and looping allow to handle dynamic changes in the envi-

ronment. For instance, in the stacking cups example, cups

can be added to the scene in the middle of the task, and the

robot will stack the new cups as well (Fig. 4(d)). Another

example would be setting the table in collaboration with a

human: human places the placemats, then robot places the

plates and cups, then human places silverware, then robot

pours water into the cups, and so on.

5) Error handling: The described capabilities of

RoboFlow allow for error detection and recovery. Since

each operation has a success/fail execution status, the

following operations can use that in conjunction with

branching to recover from errors. For example, if navigation

fails because the planner could not find the route to the

destination, the robot can be programmed to move a small

distance to localize, reset the planner and try again. In

manipulation, if a grasp fails, another grasp can be tried

(Fig. 7(d)).

C. Analysis of intuitiveness

Lastly we verify the usability of RoboFlow as a program-

ing language for robot tasks.

1) Procedure: We evaluate the front-end of RoboFlow

with a common protocol for VPL evaluation [10], sepa-

rately testing program comprehension, debugging, and cre-

ation. Participants are first introduced to the RoboFlow

GUI through an example. The experimenter demonstrates

adding procedures to the program and one by one introduces

the three types of procedures explaining their operation.

Participants do not actually instantiate procedures in the

study but instead they choose one from the existing procedure

instantiations (e.g. “pick up small object with left arm” or

“look at the table”). The experimenter then demonstrates

creating and editing links, and continues to create a complete

sample program for the task shown in Fig. 7(d).

After answering question by participants, we move on to

the comprehension task. In this part participants are shown

a program (Fig. 8(a)) and are asked to describe how the

program would behave.

The next task is debugging, where we give participants a

program that is automatically created from a single demon-

stration in the bottom up programming approach. The desired

program behavior is described and participants are told

to modify the program so it would behave as intended.

The desired program is the one shown in Fig. 8(c). The

default program created by demonstration does not have

the backwards edge that results in repeating the pushing

procedure until the object is reachable by the right arm. So

the participant needs to correct that edge so it loops back.

Finally, participants create a program from scratch for

a described behavior. For this the task is to search for a

particular object around the lab and pick is up when it

is found. We record an audio and screen capture of the

whole session for later analysis. At the end, we conduct a

semi-structured interview with the participants to get their

feedback on RobotFlow.

2) Findings: We conducted our user study with 9 par-

ticipants (5 male and 4 female, ages 24-28). Three were

roboticists who are proficient programmers, three were pro-

gramming languages experts, and the last three were non-



TABLE I: Task metrics in the user study. The left entry in

each column includes completion time (seconds), while the

right entry includes the number of errors made in the task.

Participant Comprehension Debugging Creation

time #err time #err time #err

P1 (Robo) 110 0 130 0 235 1

P2 (Robo) 255 0 245 0 245 1

P3 (Robo) 115 0 170 0 505 0

P4 (PL) 95 0 135 0 240 0

P5 (PL) 160 0 235 0 190 0

P6 (PL) 130 1 205 0 205 0

P7 (EU) 315 0 675 0 888 2

P8 (EU) 120 0 252 1 364 0

P9 (EU) 116 0 126 0 468 0

Average 157 241 371

St.dev. 76 170 225

programmers. Although RoboFlow is intended mainly for

non-programmers with diverse backgrounds, this initial eval-

uation included the other two extreme users types, as their

insights can be valuable in improving the language before

a larger scale usability analysis. Table I summarizes the

measurements from the user study in all three tasks. We make

the following observations.

a) Overall performance: After only a three to four

minute tutorial on RoboFlow, all participants were able to

complete each of the tasks in a few minutes, while making

very few mistakes. The mistakes that occurred were as

follows. One of the programming languages (PL) experts

misunderstood the relationship between looking (changing

head pan and tilt) and object detection for manipulation

during the comprehension test. Two of the robotics experts

(Robo) made small mistakes during the creation test where

their program instructed the PR2 to continue searching for an

object even after the specified task required failure. One of

the non-expert programmers neglected the look-at procedures

in parts of the program, while the other included a redundant

pushing action in their program in the case where the object

was already reachable at the start.

b) Difference between tasks: As expected, the Com-

prehension, Debugging, and Creation tasks were ordered by

amount of time required to complete the task. The fact that

the debugging task took less time than the creation task could

be taken as evidence in favor of the bottom up programming

approach (Sec. III-D.2). However, this comparison does not

take into account the difference between the two programs

in each task. Therefore it is not conclusive. It should also

be noted that the creation task involves more mechanical

steps (dragging procedures and terminals into the program

and connecting them) whereas debugging involves just a

few edits on an existing program. Most of the debugging

task is actually comprehension. Hence, improvements on the

editor that streamline mechanical tasks could reduce the gap

between the two tasks.

c) Differences among user types: While the task met-

rics show fairly similar quantitative performance for the

three groups, their approach to solving the various tasks

was distinct. The robotics experts tended to describe their

reasoning in real world terms as they worked the tasks, using

phrases like “When the robot moves between tables, if it

encounters an obstacle, then the whole task should fail”. In

contrast, the programming language experts often focused on

invariants arising from the path constraints required to reach

a certain procedure in the program graph, e.g. “At this point

I know the object cannot be present since all paths to this

node establish and maintain that invariant.”

Even though the robotics and programming languages

experts were good at programming with RoboFlow and

found it intuitive, they were not in favor of using a visual

programming language. During the interview, all six of them

stated that they would prefer to write the same programs in

a general-purpose programming language such as Python.

In contrast, one of our non-expert participants (P8) who

had taken a 10-week Python class, stated that she “very

much prefers [RoboFlow] to Python.” Her reasoning cited

the usefulness of having a “visual analogue for code” in

allowing her to assess whether the program was complete,

i.e. all the conditions were handled.

V. DISCUSSION

One of the key limitations of RobotFlow is the absence of

manipulable program state. Because the programmer cannot

record state transitions, certain abstractions are difficult to

implement. In particular, once control flow merges at a

node, no later transitions will be able to distinguish between

the various possible execution paths that could have led

to that node. To overcome this limitation, users sometimes

must copy entire parts of the graph and tweak only a

few small parameters in leaf nodes. Such code duplication

makes scaling programs up and maintaining changes more

challenging. Furthermore, the lack of state means that each

time a Call operation is executed, the caller must rely on

the callees to maintain all crucial invariants, since the caller

is unable to save necessary state that may be useful once the

callee has returned.

An extension of RoboFlow with simple condition con-

structs would allow such state checks. However, instantiation

of such conditions is an open challenge. In the case of

precondition for manipulation, the conditional statements are

based on the objects that are involved in the manipulation.

In other words, manipulation demonstrations are one way to

refer to objects detected by the robot. Allowing arbitrary

conditionals that check whether an object exists or not

would require another way for the user to indicate which

of the objects currently visible by the robot is actually the

one the robot needs to check in the future. A clickable

visualization of the robot’s view would be an intuitive option.

Another extension for conditionals would be the ability to

compare individual object properties rather than compare

objects based on an overall similarity metric. This would

allow the application of manipulation procedures to object



that are similar in relevant dimensions (e.g. object of similar

height) rather than object that are globally similar.

Our user study yielded promising results; however, it is

crucial that we evaluate RoboFlow with a larger population

that has no programming experience. In addition, our user

study did not involve the full system; it focused on the

high-level program structure and left out the instantiation of

procedures in the program. While our previous user studies

[2], [14] have demonstrated the usability of PbD-based

procedure instantiation, an end-user evaluation of the com-

plete system would be valuable. Finally, we are interested

in comparing the bottom-up and top-down programming

approaches proposed in Sec. III-D as part of such a study

involving interactions with the full system.

VI. CONCLUSION

This paper contributes RoboFlow: a flow-based visual

programming language for mobile manipulation tasks. We

describe the design of this language, in all aspects ranging

from the choice of procedures to interaction modes, and we

present an implementation on the PR2 robot. We demonstrate

that generalizable RoboFlow programs can be created for a

diverse set of mobile manipulation tasks, simply be demon-

strating a trace of the program and modifying its structure

in the RoboFlow editor. A preliminary evaluation with three

different user groups demonstrates that RoboFlow can be

quickly learned by people with diverse backgrounds, allow-

ing them to quickly complete common robotics programming

tasks with a low error rate.
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