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ABSTRACT

We present a new set of optical polarization plane rotations in blazars, observed during the

third year of operation of RoboPol. The entire set of rotation events discovered during three

years of observations is analysed with the aim of determining whether these events are inherent

in all blazars. It is found that the frequency of the polarization plane rotations varies widely

among blazars. This variation cannot be explained either by a difference in the relativistic

boosting or by selection effects caused by a difference in the average fractional polarization.

We conclude that the rotations are characteristic of a subset of blazars and that they occur as

a consequence of their intrinsic properties.

Key words: polarization – galaxies: active – galaxies: jets – galaxies: nuclei.

1 IN T RO D U C T I O N

Blazars are active galactic nuclei with relativistic jets oriented to-

wards the observer. Relativistic boosting causes synchrotron radia-

tion from the jet to dominate the blazar spectra at low frequencies

(Blandford & Königl 1979). Consequently, the optical emission of

blazars often has high and variable polarization. Commonly, the

polarization fraction and the electric vector position angle (EVPA)

in the optical band show irregular variations (e.g. Brindle et al.

1985). However, a number of events have been detected in which

the EVPA traces continuous, smooth rotations that in some cases oc-

cur contemporaneously with flares in the total broad-band emission

(Marscher et al. 2008).

It has been suggested that at least some large amplitude EVPA

swings can be physically associated with gamma-ray flares (e.g.

Larionov et al. 2013; Blinov et al. 2015; Zhang et al. 2016). The

RoboPol programme1 has been designed for efficient detection

⋆ E-mail: blinov@physics.uoc.gr
1 http://robopol.org

of EVPA rotations in statistically rigorously defined samples of

gamma-ray-loud and gamma-ray-quiet blazars and to investigate

possible correlations between their gamma-ray activity and optical

EVPA variability (Pavlidou et al. 2014).

RoboPol started observations at Skinakas observatory, Greece, in

2013 May. The EVPA rotations detected during its first two years

of operation were presented in Blinov et al. (2015, 2016, hereafter

Papers I and II). In Paper I, we presented evidence that at least some

EVPA rotations must be physically connected to the gamma-ray

flaring activity. We also found that the most prominent gamma-

ray flares occur simultaneously with EVPA rotations, while fainter

flares may be non-contemporaneous with the rotations. This was

taken as evidence for the co-existence of two separate mechanisms

producing the EVPA rotations. In Paper II, we showed that the

polarization degree decreases during the EVPA rotation events. The

magnitude of this decrease is related to the rotation rate in the jet

reference frame. Moreover we presented indications that the EVPA

rotations cannot be of arbitrary duration and amplitude.

In this paper, we present a new set of EVPA rotations that were

detected during the third RoboPol observing season in 2015. Then,

using data from all three seasons we study the occurrence frequency

C© 2016 The Authors
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of the EVPA rotations in blazars. We aim to determine whether

EVPA rotations occur in all blazars with the same frequency and to

investigate whether the rotation events are related to the activity of

the sources in the gamma-ray band.

2 O BSERVATIONS, DATA REDUCTION

A N D D E T E C T E D E V PA ROTAT I O N S

The third RoboPol observing season started in 2015 May and lasted

until the end of 2015 November. During this period we obtained

more than 1200 measurements of objects from our monitoring sam-

ple. The sample is composed of three groups: the main (‘gamma-

ray-loud’) group of 62 blazars detected by Fermi-Large Area Tele-

scope (LAT) and listed in the 2FGL catalogue (Nolan et al. 2012);

a control group of 17 ‘gamma-ray-quiet’ blazars; and an additional

group of 24 sources of high interest [see Pavlidou et al. (2014)

for details of the sample selection]. The control sample originally

included 15 sources, but two of them have been detected by Fermi-

LAT since the start of our project and are listed in the 3FGL cata-

logue (Acero et al. 2015). We therefore included these two sources,

which had not been detected previously by Fermi-LAT, in the main

sample for the third observing season.

2.1 Observations and data reduction

All the polarimetric data analysed in this paper were obtained at

the 1.3-m telescope of Skinakas observatory using the RoboPol po-

larimeter. The polarimeter was specifically designed for this mon-

itoring programme. It has no moving parts besides the filter wheel

and thus avoids unmeasurable errors caused by sky changes between

measurements and the non-uniform transmission of a rotating opti-

cal element. The instrument and the specialized pipeline with which

the data were processed are described in King et al. (2014).

The data were taken in the R band. Magnitudes were calculated

using calibrated field stars either found in the literature2 or presented

in the Palomar Transient Factory catalogue (Ofek et al. 2012). Pho-

tometry of blazars with bright host galaxies was performed with a

constant 4 arcsec aperture. All other sources were measured with

an aperture defined as 2.5 × FWHM, where FWHM is the average

full width at half-maximum of stellar images in the 13 × 13 arcmin

field and has a median value of 2.1 arcsec.

The exposure time was adjusted according to the brightness of

each target, which was estimated during a short pointing exposure.

Typical exposures for targets in our sample were in the range 2–

30 min. The average relative photometric error was ∼0.04 mag.

Objects in our sample have Galactic latitude |b| > 10◦, so the av-

erage colour excess in the directions of our targets is relatively

low, 〈E(B − V)〉 = 0.11 mag (Schlafly & Finkbeiner 2011). Con-

sequently, the interstellar polarization is expected to be less than

1.0 per cent on average (Serkowski, Mathewson & Ford 1975). The

statistical uncertainty in the measured degree of polarization is less

than 1 per cent in most cases, while the EVPA is typically deter-

mined with a precision of 1◦–10◦ depending on the source bright-

ness and fractional polarization.

We resolve the 180◦ EVPA ambiguity by assuming that the

temporal variation is smooth and does not exceed 90◦ between

two consecutive measurements θn and θn+1. The variation is de-

fined as �θ = |θn+1 − θn| and considered to be significant if

�θ >
√

σ (θn+1)2 + σ (θn)2, where σ (θ i) is the uncertainty of θ i.

2 https://www.lsw.uni-heidelberg.de/projects/extragalactic/charts/

If �θ −
√

σ (θn+1)2 + σ (θn)2 > 90◦, we shift the angle θn+1 by

± k × 180◦, where the integer ± k is chosen in such a way that it

minimizes �θ . Otherwise, we leave θn+1 unchanged.

2.2 Detected EVPA rotation events

Following Papers I and II, we define an EVPA rotation as any

continuous change in the EVPA that is indicated by at least four

consecutive measurements with at least three significant swings

between them, and has a total amplitude of �θmax ≥ 90◦. Moreover,

the EVPA curve slope �θ i/�ti has to change by no more than a

factor of 5 between consecutive pairs of measurements, and must

preserve its sign.

In the data set obtained during the 2015 observing season we

identified 13 events in 10 blazars of the main sample that satisfy

our definition of an EVPA rotation. The full season EVPA curves

along with the evolution of the polarization degree and the R-band

flux density, for the 10 blazars with detected rotations, are shown

in Fig. 1. The EVPA rotation intervals are marked by the filled cir-

cles. The observational parameters of the rotations: the amplitude,

�θmax, and the average rate, 〈�θ/�T〉, are listed in Table 1, along

with the observing season length, Tobs, and the median cadence of

observations, 〈�t〉, for the corresponding blazar. The EVPA swing

event in RBPL J0136+4751 might be considered to be a single

rotation, but according to our definition it is composed of two suc-

cessive rotations separated by a significant swing in the opposite

direction to the global trend.

3 FR E QU E N C Y O F E V PA ROTAT I O N S

I N B L A Z A R S

During the 2013–2015 observing seasons we detected 40 EVPA

rotation events in 24 blazars (see Papers I and II for details of the

first two seasons). Two events reported in Paper I belong to neither

the main nor the control sample. Two more events from Paper I do

not follow our definition of an EVPA rotation strictly. These four

events will not be taken into account in the analysis below. Using

the remaining 36 rotations, in the following sections we address the

question: do all blazars show EVPA rotations in the optical band?

3.1 Main and control sample blazars as a single population

A major advantage of the RoboPol project is that it was operated in

such a way that the objects in the two samples would be observed in

a ‘similar’ way. Nevertheless, the median observing cadence, 〈�t〉,

and the season length, Tobs, are not identical for all the blazars that

we monitored. In Fig. 2 we show 〈�t〉 versus Tobs for each object we

observed during each of the observing seasons. The lines in Fig. 2

bound regions (‘detection boxes’) in the 〈�t〉 – Tobs plane where a

rotation slower than a given rate could have been detected for each

object within the area (see section 3.3 of Paper I for details). For

example, the dashed line in Fig. 2 indicates the maximum 〈�t〉 value

for a given duration of observations, Tobs, that is needed to detect

rotations with a rate of 〈�θ/�T〉 ≤ 7 deg d−1. We are confident

that we can detect rotations with 〈�θ/�T〉 < 7 deg d−1 for all

the blazars within the 7 deg d−1 detection box. The solid and the

dash–dotted lines in Fig. 2 show the 10 and 20 deg d−1 detection

boxes, respectively.

In order to compare the EVPA rotation frequencies in blazars

that belong to different sub-samples, we need to consider data from

sources in the same detection boxes. The choice of the rotation rate

MNRAS 462, 1775–1785 (2016)
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RoboPol: EVPA rotations in blazars 1777

Figure 1. Evolution of fractional polarization, EVPA and R-band flux density for blazars with rotations detected during the third RoboPol season. Periods of

rotations are marked by filled circles.

limit is a trade-off between the number of sources within the detec-

tion box and the investigation of a wider range of EVPA rotation

rates. For example, the choice of 7 deg d−1 allows us to use data

from a number of sources that is substantially larger than the num-

ber of sources that are ‘complete’ in the detection of rotations with

a rate of ≤20 deg d−1, although the latter encompasses a larger por-

tion of all possible EVPA rotation events. In the analysis below, we

consider the objects in all three detection boxes as much as possible.

MNRAS 462, 1775–1785 (2016)
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Figure 1 – continued

Table 1. Observational data for the EVPA rotations detected by RoboPol in 2015. Columns (1) and (2): blazar identifiers; (3): 2015 observing season length;

(4): median time difference between consecutive observations; (5): total amplitude of EVPA change; (6): duration of the rotation; (7): number of observations

during rotation; (8): average rotation rate.

Blazar ID Survey Tobs 〈�t〉 �θmax Trot Nrot 〈�θ/�T〉

name (d) (d) (deg) (d) (deg d−1)

RBPL J0045+2127 GB6 J0045+2127 113 3.0 199.8 48 9 4.2

RBPL J0136+4751 OC 457 86 3.0 − 114.2 26 4 − 4.4

RBPL J0136+4751 −′′ − −′′ − −′′ − − 108.5 20 5 − 5.4

RBPL J1512−0905 PKS 1510−089 115 2.0 119.6 20 6 6.0

RBPL J1512−0905 −′′ − −′′ − −′′ − − 97.2 14 4 − 7.0

RBPL J1635+3808 4C 38.41 126 9.0 − 118.9 21 4 − 5.7

RBPL J1751+0939 OT 081 134 7.0 − 224.5 25 7 − 9.0

RBPL J1800+7828 S5 1803+784 147 7.5 161.6 56 7 2.9

RBPL J1809+2041 RX J1809.3+2041 130 6.0 − 426.7 91 14 − 4.7

RBPL J1836+3136 RX J1836.2+3136 133 9.0 181.8 39 7 4.7

RBPL J2232+1143 CTA 102 156 6.5 − 137.1 36 6 − 3.8

RBPL J2253+1608 3C 454.3 116 2.0 − 139.4 29 5 − 4.8

RBPL J2253+1608 −′′ − −′′ − −′′ − 101.2 7 4 14.5

MNRAS 462, 1775–1785 (2016)
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Figure 2. Season length, Tobs, and median cadence, 〈�t〉, for blazars with detected rotations for all observing seasons. The lines border areas inside which

rotations slower than 7 (dashed blue), 10 (solid red) and 20 deg d−1 (dot–dashed black) can be detected (see the text for details).

Table 2. Estimates of rotations frequencies. Columns (1) – total number

of rotations; (2) – summed observing length; (3) – average frequency of

rotations; (4) – probability of observing Nrot during Tobs if all blazars have

equal frequency of rotations λall.

Nrot Tobs (d) λ (d−1) P

≤ 7 deg d−1

All: 22 24 584 8.9 × 10−4 –

Rotators: 22 6296 (3.5 × 10−3) 1 × 10−7

Non-rotators: 0 18 288 (<5.5 × 10−5) 9 × 10−8

≤ 10 deg d−1

All: 24 17 820 1.4 × 10−3 –

Rotators: 24 5847 (4.1 × 10−3) 4 × 10−6

Non-rotators: 0 11 973 (<8.4 × 10−5) 5 × 10−8

≤ 20 deg d−1

All: 20 5412 3.7 × 10−3 –

Rotators: 20 2224 (9.0 × 10−3) 2 × 10−4

Non-rotators: 0 3188 (<3.1 × 10−4) 8 × 10−6

Columns 1 and 2 in Table 2 list the number of detected rotations,

Nrot, slower than the given rate and the total observing length, Tobs,

for all blazars within the 7, 10 and 20 deg d−1 detection boxes. For

instance, the top panel in Table 2 takes into account only sources

located within the 7 deg d−1 detection boxes for all three seasons,

and rotations only with a rate of ≤7 deg d−1. Column 3 gives the

average frequency of rotations, λ, slower than the given rate. This

frequency is defined as λ = Nrot/Tobs, for Nrot > 0. In the case of

Nrot = 0, we list an upper limit on λ, which is defined as 1/Tobs.

The corresponding numbers are listed separately for blazars with

and without detected EVPA rotations (rotators and non-rotators

hereafter). From the table we can see that λ differs by more than an

order of magnitude between rotators and non-rotators.

The probability that n independent events occur in a period of

time t can be estimated using the Poisson distribution,

P(n, t, λ) =
(λt)n

n!
e−λt , (1)

where λ is the average frequency of the events. Then, using data

from Table 2, under the hypothesis that all blazars exhibit rotations

with equal frequency, we can estimate the probability of having

Nrot rotations in blazars that were observed over a period of time

Tobs. For instance, the probability of having 22 rotations slower than

7 deg d−1 in blazars that fall in the corresponding detection boxes in

Fig. 2 and were observed for 6296 d is P(22, 6296, 8.9 × 10−4) =

1 × 10−7. This result indicates that, under the hypothesis of the same

frequency of rotations in blazars, it is highly unlikely to detect such

a large number of rotations in a small number of objects observed

in such a short Tobs.

Following the same reasoning we found the corresponding prob-

abilities, P , for rotators and non-rotators within the three detection

boxes. These probabilities, presented in Column 4 of Table 2, are

less than 2 × 10−4 in all cases. Therefore, the null hypothesis is re-

jected at a high significance level for all detectable rotation rates: it

is highly unlikely that all blazars exhibit rotations of the polarization

plane with rates ≤20 deg d−1, with the same frequency.

3.2 Absence of rotations in the control sample

If EVPA rotations are related to the gamma-ray activity of blazars,

the low probabilities we found in the previous section may per-

haps arise from the fact that we considered both gamma-ray-

loud and gamma-ray-quiet sources as a single population in

the analysis above. Here we test whether the two classes of

blazars differ significantly in the frequency of EVPA rotation they

exhibit.

As shown in the previous section, 22 rotations occurred in blazars

that are located within the 7 deg d−1 detection boxes and have rates

slower than 7 deg d−1. The total observing length for the main

sample blazars in the 7 deg d−1 detection boxes for all three seasons

is 20 625 d. Thus we can estimate the frequency of rotations with

〈�θ/�T〉 < 7 deg d−1 in the main sample sources as one rotation

in ∼940 d (Tobs = 20 625 d/Nrot = 22 rotations). Following the

same rationale we estimate average frequencies of rotations with

rates ≤10 deg d−1 and ≤20 deg d−1 as one rotation in ∼650 d

(15 632/24) and ∼250 d (5028/20).

The total Tobs for the control sample blazars lying within the

7 deg d−1 detection boxes in Fig. 2 is 3959 d. Under the hypothesis

that blazars of the control sample show EVPA rotations with the

same frequency as the main sample sources, we can estimate the

probability of not detecting any rotation with 〈�θ/�T〉 < 7 deg d−1

in the control sample blazars, asP(0, 3959, 1/940) = 1.5 per cent.

Similarly, the probability of not detecting rotations slower than

10 and 20 deg d−1 in the control sample is 3.5 per cent and

22 per cent, respectively. These numbers imply that we cannot

reject the null hypothesis at a sensibly significant level; it is pos-

sible that λ is the same for the blazars in the main and the control

samples.

These results indicate that the highly significant difference in the

frequency of the EVPA rotations in the rotators and non-rotators

MNRAS 462, 1775–1785 (2016)
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Table 3. Frequencies of EVPA rotations in the main sample sources within

the 7 deg d−1 detection box. Columns (1) – total number of rotations; (2) –

summed observing period length; (3) – average frequency of rotations.

Nrot Tobs (d) λ (d−1)

0 rotations 0 129 78 <7.7 × 10−5

1 rotation 12 4462 2.7 × 10−3

2 rotations 6 1246 4.8 × 10−3

3 rotations 6 885 6.8 × 10−3

4 rotations 12 1054 1.1 × 10−2

All rotators: 36 7647 4.7 × 10−3

Total: 36 20 625 1.8 × 10−3

is not due to the fact that we did not observe any rotations in the

control sample blazars. The majority of the main sample blazars

did not show any rotations either. It is possible then that the rate of

EVPA rotations is not constant even among the blazars of the main

sample. We investigate this possibility in the following section.

3.3 Subclasses of blazars within the main sample

In this section, we ascertain whether the occurrence of EVPA rota-

tions in the blazars of the main sample is consistent with a single

population of sources that exhibit rotations with equal frequency.

For this purpose we separate the main sample into five sub-samples:

blazars that did not show any rotation, and blazars that had one to

four rotations during the whole observing period. Then, for each

group, we count the total number of rotations, Nrot, the total ob-

serving period length, Tobs, and the average frequency of rota-

tions, λ, as defined earlier, using the sources within the 7 deg d−1

detection boxes in Fig. 2. These data are presented in Table 3.

The average frequency of rotations is strongly non-uniform among

the sub-samples. The frequency of rotations λ in non-rotators of the

main sample is more than two orders of magnitude smaller than λ

for the blazars that exhibited four events.

A number of hypotheses can be considered to verify whether the

difference of λ for these sub-groups of blazars is accidental or not.

Under the null hypothesis that all blazars of the main sample rep-

resent a single class and exhibit EVPA rotations with the average

frequency of λ= 1.8 × 10−3 d−1, using equation (1) we find the prob-

ability of detecting zero rotations in 41 sources observed for 12 978 d

isP(0, 12978, 1.8 × 10−3) = 7.2 × 10−11. On the other hand, if we

assume that all blazars have the same frequency of rotations equal

to λ = 7.7 × 10−5 d−1 (this is the upper limit of the frequency of

rotations for the non-rotators of the main sample), then the proba-

bility of detecting 36 events in the whole sample during 20 625 d of

observations is P(36, 20625, 7.7 × 10−5) = 9 × 10−36. Moreover,

assuming that the average frequency of rotations λ = 4.7 × 10−3 d−1

is characteristic of all rotators, we find the probability of detecting

12 rotations in the group of 3 blazars each of those exhibited 4

rotations as P(12, 1054, 4.7 × 10−3) = 3.2 × 10−3. We therefore

conclude that the frequency of the EVPA rotations is significantly

different among blazars of the main sample.

The analysis above implies that there is a sub-class of objects

that exhibit EVPA rotations much more frequently than others. This

difference does not simply depend on whether or not a blazar is

detected by Fermi-LAT. Even in objects that are in our gamma-ray-

loud sample and did not show any rotation, the frequency of the

EVPA rotations must be significantly smaller than the frequency

exhibited by the rotators in our sample.

Figure 3. Distribution of the median measured uncertainty of the EVPA

measurements. Left-hand panel: uncertainties in the rotator sub-sample,

measured (hatched bars), and multiplied by a factor of 4 (black bars). Right-

hand panel: uncertainties in the non-rotators of the main sample and the

control sample.

4 POSSI BLE REASONS O F D I FFERENT

O B S E RV E D ROTAT I O N F R E QU E N C I E S

The analysis presented above uses data from objects with the same

sampling properties in their light curves. However, there are two

more observational factors which may bias our results and conclu-

sions. The first one depends on possible differences in the accuracy

with which we can measure EVPA in rotators and non-rotators. The

second is related to possible intrinsic differences in the rest-frame

properties, namely redshift, z, and Doppler factor, δ, of rotators and

non-rotators. We address both issues below.

4.1 Differences in accuracy of EVPA measurements

It has been shown by Pavlidou et al. (2014) and Angelakis et al.

(in preparation) that the control sample blazars are on average sig-

nificantly less polarized than the main sample blazars. This could

potentially be the reason for the absence of EVPA rotation detections

in the control sample. Our definition of an EVPA rotation requires

three or more significant swings between four or more consecutive

EVPA measurements. Lower fractional polarization leads to higher

uncertainties in the EVPA, so larger errors may hide significant

swings. If non-rotators are significantly less polarized than rotators

we might have missed rotations in their EVPA curves because of

this observational bias.

One way to address this issue is to compare the mean polarization

fraction of rotators and non-rotators. Here we choose to investigate

this issue directly, i.e. we compare the amplitude of the EVPA

error in rotators and non-rotators. The distribution of the median

uncertainty, 〈σ EVPA〉, of the EVPA measurements for the rotators

and not-rotators is shown in the left- and the right-hand panels of

Fig. 3. The hatched, grey and white bars correspond to rotators,

non-rotators of the main sample, and non-rotators of the control

sample. On average, 〈σ EVPA〉 of non-rotators is larger than 〈σ EVPA〉

of rotators. A number of non-rotators in the main sample show small

uncertainties, but all the control sample sources and quite a few of

the main sample non-rotators show large uncertainties. The two-

sample Kolmogorov–Smirnov (K–S) test rejects the hypothesis that

the 〈σ EVPA〉 distribution of rotators and non-rotators (all together)

is sampled from the same parent population (p-value = 3 × 10−4).

However, we do not believe that this difference is the main reason

why we do not detect rotations in the non-rotators. To demonstrate

this, we multiplied σ EVPA of each measurement in the EVPA curves

MNRAS 462, 1775–1785 (2016)
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of rotators by a factor f. The distribution of 〈σ EVPA〉 for the rotators

when f = 3 is shown by the black bars in the left-hand panel of

Fig. 3. The null hypothesis that this distribution and the distribu-

tion of 〈σ EVPA〉 for the control sample are drawn from the same

parent population cannot be rejected according to the K–S test (p-

value = 0.03). More than half of the rotations (22 out of 36) still

follow our definition of an EVPA rotation for f = 3.

In order to investigate the significance of the measurement

accuracy, we repeated the analysis performed in Section 3.1

for rotators and non-rotators within the 7 deg d−1 detection

box, ignoring the 14 events that do not follow our definition

of an EVPA rotation when f = 3. Among the remaining ro-

tations that follow the definition, 13 events have rates slower

than 7 deg d−1. Therefore, the frequency of rotations decreases

in this case, from λ = 22/24 584 = 8.9 × 10−4 d−1, to

λ = 13/24 584 = 5.3 × 10−4 d−1. However, even in this case,

according to equation (1), the probability of detecting 13 rotations

in blazars observed for 3589 d is P(13, 3589, 5.3 × 10−4) = 10−7.

Similarly, the probability of not detecting any rotations in the

remaining blazars observed for 20 995 d is P(0, 20995, 5.3 ×

10−4) = 2 × 10−5. Thus even when we artificially increase the un-

certainty of EVPA measurements in rotators in such a way that

〈σ EVPA〉 distributions for rotators and non-rotators become compa-

rable, the frequency of rotations cannot be the same for the two

groups.

Therefore the difference in the amplitudes of the EVPA uncer-

tainties could partially explain the absence of detected rotations in

non-rotators. However, it is not large enough to be entirely responsi-

ble for the difference in the frequencies of EVPA rotations between

rotators and non-rotators found in Section 3.

4.2 Rest frame time-scale differences

Another possible explanation for the variation in rotation frequency

is that we miss rotations in some blazars because the duration of

observations in the jet rest frame, T
jet

obs, may be significantly different

for the rotators and the non-rotators. The analysis in Section 3 is

based on the total number of observing days in the observer frame,

Tobs, for the rotators and non-rotators. The jet frame and the observer

frame time-scales are related as �Tjet = �Tobsδ/(1 + z). Therefore,

T
jet

obs depends on the Doppler factor, δ, and the redshift, z, of the

sources as well. If the δ and/or z distributions are significantly

different for rotators and non-rotators then the difference in λ found

above could be artificial.

Table A1 lists estimates of δ and z for the blazars in our sample

taken from the literature. We use δ values estimated from the vari-

ability of the total flux density in the radio band, which are believed

to be the most reliable and self-consistent Doppler factor estimates

available3 (Liodakis & Pavlidou 2015). Such estimates are available

for 21 sources in both samples. Fig. 4 shows the distribution of these

δ values for rotators and non-rotators. The null hypothesis that the

two distributions are drawn from the same population is strongly

supported by the data according to the K–S test (p-value = 0.62).

Redshift estimates are available for 71 sources in the two samples;

52 are based on optical spectroscopic data, while the other 19 are

obtained using indirect methods (broad-band photometry of the

host galaxies, attenuation of the hard gamma-ray emission, etc.).

According to the K–S test the null hypothesis that the distributions

3 The actual Doppler factors for the optical emission region may be signifi-

cantly different, but estimates are not available at the moment.

Figure 4. Distribution of δ for rotators and non-rotators.

Figure 5. Distribution of z for rotators and non-rotators. Grey bars include

only spectroscopic z estimates, white bars include indirect z estimates.

Figure 6. Distribution of T
jet

obs for rotators and non-rotators. Grey bars in-

clude only spectroscopic z estimates, white bars include indirect z estimates.

of z for rotators and non-rotators (Fig. 5) are drawn from the same

population cannot be rejected (p-value = 0.48 for the spectroscopic,

and 0.54 for all available redshifts).

For the blazars with known δ and z that are located in the 7 deg d−1

detection boxes in Fig. 2, we computed the total Tobs and trans-

formed it to the jet frame T
jet

obs. The T
jet

obs distributions for rotators

and non-rotators are shown in Fig. 6. According to the K–S test, the

hypothesis that T
jet

obs for rotators and non-rotators are drawn from

the same population is again supported by the data (p-value = 0.27

for spectroscopic, and 0.25 for all available redshifts).

Using the reasoning of Section 3 we can estimate how large

the difference between the average Doppler factors of the rotators

and the non-rotators must be to explain the absence of rotations in

the EVPA curves of non-rotators. According to equation (1) and
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Figure 7. Distribution of blazars in the main and control samples together

and rotators among the synchrotron peak position types. Fraction is calcu-

lated as the number of sources of a given synchrotron peak class divided by

the total number of sources in the corresponding sample.

the frequency estimate for rotations slower than 7 deg d−1 from

Section 3.1, if we reduce the total Tobs for non-rotators by a factor

of 4, then the probability of having zero rotations in this sub-sample

of blazars can reach ∼1 per cent. This means that if the average

Doppler factor for the non-rotators was four times smaller than that

of the rotators, then the absence of rotations could be an accidental

outcome of the Poisson distribution of the rotations. Such a large

difference is inconsistent with the aforementioned K–S test that

finds no difference in the distributions of δ/(1 + z) for rotators and

non-rotators.

In summary, our analysis strongly suggests that there exists a sub-

class of blazars that exhibit EVPA rotations in the optical band sig-

nificantly more frequently than the others. The difference in the fre-

quency of the rotations cannot be explained by the non-uniformity

of observations or by observational biases due to differences in

the average fractional polarization. Moreover, based on the avail-

able data, it cannot be explained by differences in the relativistic

beaming or in the redshifts between the rotators and non-rotators.

In the next two sections we investigate possible physical reasons

that might be responsible for the prevalence of the optical EVPA

rotations in this sub-class of blazars.

5 ROTAT I O N S I N B L A Z A R S O F D I F F E R E N T

CLASSES

In this section, we examine whether the ability of a blazar to exhibit

EVPA rotations depends on its synchrotron peak location. The clas-

sification as either a low-, intermediate- or high-synchrotron-peaked

(LSP, ISP or HSP) blazar for the main sample sources was taken

from the third catalogue of active galactic nuclei detected by the

Fermi-LAT (3LAC, Ackermann et al. 2015). For the control sample

sources, which are not in 3LAC, the synchrotron peak positions

were taken from Angelakis et al. (in preparation) and Mao et al.

(2016), where a procedure similar to the one used by Ackermann

et al. (2015) was applied. The classification of blazars in our sample

according to the synchrotron peak position is listed in Table A1. We

find that the main and the control samples together are composed

of 33 LSP, 26 ISP and 15 HSP sources. The sample of rotators is

composed of 13 LSP, 5 ISP and 4 HSP sources. The distribution of

the sources among the classes is shown in Fig. 7. We estimate the

Figure 8. CDF of luminosity (left) and variability index (right) for rotators

and non-rotators. The red vertical line indicates the maximum difference

between the CDFs.

probability that rotators comprise sources randomly drawn from the

main and the control samples together as:

P =
C13

33C
5
26C

4
15

C22
74

= 0.014, (2)

where Ck
n is the binomial coefficient. The numerator in this equation

is the number of ways to obtain a sample composed of 13 LSP, 5 ISP

and 4 HSP blazars from the parent sample of 33 LSP, 26 ISP and 15

HSP sources. The denominator is the total number of combinations

how 22 objects can be selected out of 74. Similarly, the probability

that rotators are randomly drawn from the main sample only is

0.5 per cent. Therefore it is unlikely that LSP accidentally dominate

over ISP and HSP among the blazars that exhibit rotations.

6 G A M M A - R AY P RO P E RT I E S O F ROTATO R S

A N D N O N - ROTATO R S

As demonstrated in Section 3.3, the rotators form a particular sub-

sample of objects even among the sources in our main sample. In

this section, we investigate whether there are any differences in the

gamma-ray properties between these two sub-classes. To this end,

we extract the variability indices and we calculate luminosities in the

gamma-ray band (100 MeV ≤ E ≤ 100 GeV) for blazars of our main

sample using the data from the 3FGL catalogue (Acero et al. 2015).

The cumulative distribution functions (CDFs) of these quantities for

rotators and non-rotators are shown in Fig. 8. According to the two-

sample K–S test there is a strong indication that both luminosity

(p-value = 0.02) and variability (p-value = 0.01) are higher for the

blazars that exhibited rotations.

This is presumably caused by the dominance of LSP sources

among rotators found in the previous section, since LSP blazars tend

to have higher gamma-ray luminosities than HSP sources (Acker-

mann et al. 2015). High variability indices in the gamma-ray band

are characteristic of sources that are both luminous and variable

(Ackermann et al. 2015). Therefore the difference in the variability

indices is also explained by the dominance of LSP blazars among

the rotators.

7 D I S C U S S I O N A N D C O N C L U S I O N S

We have presented a set of EVPA rotations detected by RoboPol

during the 2015 observing season. After three years of operation

we have detected 40 EVPA rotations, and thereby more than tripled

the list of known events of this type.
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Our monitoring sample was constructed on the basis of statisti-

cally robust and bias-free criteria. It included both gamma-ray-loud

and gamma-ray-quiet blazars that were monitored with equal ca-

dence. This allowed us to perform statistical studies of the frequency

of EVPA rotations in blazars for the first time.

We have shown that the frequency of rotations varies significantly

among blazars. None of the control sample blazars displayed a ro-

tation during the monitoring period. Moreover, the EVPA rotations

occur with significantly different frequency in different blazars in

the main sample. There is a subset of blazars that show the events

much more frequently than others. This result is consistent with our

analysis in Paper I, where we showed that rotators have higher EVPA

variability than non-rotators even outside the rotating periods.

This is a major result of the RoboPol project: only a fraction of

blazars (∼28 per cent of sources in both samples) exhibit EVPA

rotations with rates ≤20 deg d−1 in the optical band, with an

average frequency of 1/232 d−1 (in the observer frame). The re-

maining ∼72 per cent of sources did not show any rotations. If

they do exhibit rotations, this should happen with a frequency less

than ∼1/3230 d−1.

The analysis of Section 4 shows that the difference in the frequen-

cies of EVPA rotations cannot be explained either by the difference

in the EVPA measurement uncertainties or by differences in red-

shifts and/or Doppler factors among the blazars. This result should

be confirmed using a larger number of objects with known δ. Only

a small fraction of blazars in our monitoring sample have Doppler

factor estimates available. The ongoing analysis of variability in

the radio band will allow us to increase the sample of blazars with

known Doppler factors and allow us to verify our results with better

statistics.

The tendency for EVPA rotations to occur in LSP blazars found

in Section 5 can be explained in the same way as higher variability

of LSP sources in the total optical flux. It has been shown by

Hovatta et al. (2014) that LSP blazars are more variable than HSP

in the optical band. This was attributed to the fact that, in the

optical band, LSP sources are observed near their electron energy

peak, which causes stronger variations of the emission compared to

HSP sources, where the lower energy electrons cool down slowly

and produce mild variability. For the same reason, the polarized

flux density as well as the EVPA must be more variable in LSP

sources compared to HSP when observed in the optical band. If

this interpretation is correct, then HSP blazars must exhibit EVPA

rotations more frequently at higher frequencies (UV and X-ray

bands). The dependence of the optical EVPA behaviour on the

synchrotron peak position is also reported in two other papers based

on RoboPol data. Angelakis et al. (2016) have shown that the EVPA

in HSP sources centres around a preferred direction, while in LSP

blazars it follows a more uniform distributions. Hovatta et al. (2016)

have shown that the scatter in the Q–U plane is smaller for HSP

blazars than for ISP. This also indicates that the polarization plane

direction is more stable in HSP sources.

We also found that the rotators seem to be more luminous and

more variable in the gamma-ray band than non-rotators. This differ-

ence can also be explained by the tendency of the EVPA rotations

to occur in LSP sources. These sources have higher luminosities on

average than ISP and HSP in the 3FGL because of an instrumental

selection effect. The same reason can also explain the increase of

their variability indices (Ackermann et al. 2015). For this reason, the

optical polarimetry monitoring programmes that select their observ-

ing samples on the basis of high variability in the gamma-ray band

will observe EVPA rotations more frequently than among blazars

on average.

The 180◦ EVPA ambiguity sets a fundamental limitation on the

rate of EVPA rotations that can be detected under a given cadence of

observations. So far we have been able to study rotations with rates

≤20 deg d−1. There was only one rotation with a rate ∼50 deg d−1

detected by RoboPol. However, there is an indication in the RoboPol

data as well as in the literature that fast EVPA rotations with rates

60–130 deg d−1 do occur in blazars (e.g. Larionov et al. 2013). We

plan to extend our studies to higher rotation rates by increasing our

cadence for future monitoring.
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