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Abstract

Background: Ontologies are invaluable in the life sciences, but building and maintaining ontologies often requires
a challenging number of distinct tasks such as running automated reasoners and quality control checks, extracting
dependencies and application-specific subsets, generating standard reports, and generating release files in multiple
formats. Similar to more general software development, automation is the key to executing and managing these
tasks effectively and to releasing more robust products in standard forms.
For ontologies using the Web Ontology Language (OWL), the OWL API Java library is the foundation for a range
of software tools, including the Protégé ontology editor. In the Open Biological and Biomedical Ontologies (OBO)
community, we recognized the need to package a wide range of low-level OWL API functionality into a library of
common higher-level operations and to make those operations available as a command-line tool.

Results: ROBOT (a recursive acronym for “ROBOT is an OBO Tool”) is an open source library and command-line tool
for automating ontology development tasks. The library can be called from any programming language that runs
on the Java Virtual Machine (JVM). Most usage is through the command-line tool, which runs on macOS, Linux, and
Windows. ROBOT provides ontology processing commands for a variety of tasks, including commands for
converting formats, running a reasoner, creating import modules, running reports, and various other tasks. These
commands can be combined into larger workflows using a separate task execution system such as GNU Make, and
workflows can be automatically executed within continuous integration systems.

Conclusions: ROBOT supports automation of a wide range of ontology development tasks, focusing on OBO
conventions. It packages common high-level ontology development functionality into a convenient library, and
makes it easy to configure, combine, and execute individual tasks in comprehensive, automated workflows. This
helps ontology developers to efficiently create, maintain, and release high-quality ontologies, so that they can
spend more time focusing on development tasks. It also helps guarantee that released ontologies are free of
certain types of logical errors and conform to standard quality control checks, increasing the overall robustness and
efficiency of the ontology development lifecycle.

Keywords: Ontology development, Automation, Ontology release, Reasoning, Workflows, Quality control, Import
management
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Background

Ontologies are vital parts of the informatics ecosystem

supporting life science research, enabling analysis of

high-throughput datasets, data standardization and inte-

gration, search, and discovery. However, there is a lack

of tools supporting the complete ontology development

lifecycle, especially when compared with the software

development lifecycle. This has resulted in many groups

developing their own ad-hoc ontology development

workflows, often with time-consuming and inefficient

manual steps. In some cases, groups release ontologies

without any kind of systematic workflow or quality con-

trol process, which can result in errors or problems with

downstream applications or analyses.

Noy, Tudorache, Nyulas, and Musen (2010) describes a

general ontology lifecycle with a focus on bio-ontologies

[1]. First, requirements for the ontology are gathered.

Then, the ontology is collaboratively developed in an

ontology editor such as Protégé [2]. Once the require-

ments have been fulfilled, the ontology is published, and

feedback is solicited from the community. Feedback is

integrated back into development, and the ontology is

continuously updated and released. At any point after the

initial publication, the ontology may be deployed in other

applications.

In broad strokes, this ontology development lifecycle re-

flects much of our experience of ontology development in

the Open Biological and Biomedical Ontologies (OBO)

community [3], circa 2010. A wide range of Semantic

Web software exists to support these steps, including

many tools for Web Ontology Language (OWL) ontology

development. In practice, though, the OBO community

has relied predominantly on the free and open source

Protégé OWL editor for manual editing and conversion,

and on a small set of other tools supporting OBO

conventions.

Other than Protégé, the most prominent suite of tools

used by the OBO community has been the Onto-animal

suite developed by the He group [4] including Ontobee

[5], Ontofox [6], and Ontorat [7]. These tools are free web

services backed by a Virtuoso triplestore loaded with the

latest version of all available OBO community ontologies,

as well as some other ontologies. Ontobee is an ontology

term browser. Ontofox implements the MIREOT term ex-

traction method [8]. Ontorat implements template-based

ontology term creation. Together with a few other tools,

these support an extensible ontology development strategy

[9] covering a range of ontology development tasks, many

of which can combined and automated using a sequence

of web-based API calls.

The core operations of the Onto-animal suite are driven

by SPARQL queries against the centralized triplestore.

This results in a number of limitations. First, only the spe-

cific version of each ontology loaded into that triplestore

can be used. This is a particularly severe limitation during

ontology development. Second, processing is done on the

centralized server, limiting the processing power available

to any user. Third, SPARQL has limited utility when

working with OWL logical axioms.

These limitations are mitigated by running software lo-

cally, loading the desired versions of the desired ontologies,

and using OWL API [10] for OWL-native processing. A

number of tools used in the OBO community have done

precisely this. We have seen a spectrum of development,

from tools that are focused on a single project, to tools used

by a dozen related projects, to the current push for tools

that are shared across the OBO community.

Slimmer [11], created as part of the eNanoMapper

ontology project [12], uses OWL API to create ontology

subsets (also known as “slims”). A configuration file al-

lows the user to specify which terms to include and

which annotations to include on those terms. OntoPilot

[13], developed for the Plant Phenotype Ontology, uses

OWL API via Jython (a version of Python that runs on

the Java Virtual Machine) to provide an integrated ontol-

ogy development framework, including term imports,

term creation, releases, and documentation.

The lack of automation seen circa 2010 led directly to a

lack of standardization, with each ontology editor or

group adopting a slightly different approach to manual

editing in Protégé. This diversity of practices, even within

the OBO community, made it a challenge to develop tools

to serve multiple ontology projects. OWLTools [14] was

designed for use by multiple OBO ontology projects, pro-

viding convenience methods on top of the OWL API.

OWLTools includes the OBO Ontology Release Tool

(OORT) [15], a command-line tool to release OWL- and

OBO-format ontologies. OORT provides a series of basic

commands to create a release pipeline for an ontology, in-

cluding module extraction with MIREOT, support for

multiple input ontologies, reasoning, and creation of

‘main’ and ‘simple’ release products.

ROBOT (a recursive acronym for “ROBOT is an OBO

Tool”) was developed to replace OWLTools and OORT

with a more modular and maintainable code base. It

builds on previous experience to include a comprehen-

sive set of automation capabilities to support an even

wider range of OBO projects. Development began in

2015 and continues with more than 1000 commits from

a dozen contributors. ROBOT is freely available open

source software. Although we do not track our users, a

recent GitHub search shows that at least 26 ontology

projects in the OBO community have adopted ROBOT.

Implementation

Overview

ROBOT provides a standardized yet configurable way to

support the ontology development lifecycle via a library
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of common high-level functionality and a command-line

interface. ROBOT builds on OWL API and is compatible

with all ontology syntaxes that OWL API supports: RDF/

XML, OWL/XML, Turtle, OWL Functional Syntax, OWL

Manchester Syntax, and OBO format. The source code is

written in Java and is available from our GitHub reposi-

tory [16] under an open source (BSD 3) license. It is also

released as a Java library on Maven Central. ROBOT code

can be used from any programming language that runs on

the Java Virtual Machine (JVM). The command-line tool

is packaged as a JAR file that can be run on Unix (includ-

ing macOS and Linux), Windows, and other platforms

supported by the JVM. This JAR file is available for down-

load from the ROBOT GitHub site [16], along with plat-

form-specific scripts for using ‘robot’ from the command

line. Installation instructions and documentation are avail-

able from http://robot.obolibrary.org.

Architecture

We previously described the basic architecture of the

tool [17], which we summarize here.

The ROBOT source code consists of two parts: ‘robot-

core’ and ‘robot-command’. ‘robot-core’ is a library sup-

porting common ontology development tasks, which we

call “operations”. ‘robot-command’ provides a command-

line interface divided into “commands”, each of which

wraps a ‘robot-core’ operation.

Most ROBOT operations package low-level functionality

provided by OWL API into high-level functionality com-

mon to ontology development workflows in the OBO com-

munity. For best compatibility, we aim to match the exact

version of OWL API used by ROBOT with the exact

version used by the latest Protégé release. Some operations

use Apache Jena [18]. Each operation works with Java

objects that represent OWL ontologies, OWL reasoners,

OWL classes, etc., while each command works with com-

mand-line option strings and files. The commands also

perform various conversion and validation steps. The

command-line interface uses the Apache Commons CLI

library [19] for parsing commands.

Each operation has a set of unit tests built with JUnit

[20] that are executed each time the final product (the

JAR file) is generated. Each command in ROBOT is docu-

mented in its own web page (e.g. http://robot.obolibrary.

org/reason). The web pages are authored in Markdown

format and contain embedded command-line examples

that are parsed and executed as part of our integration

tests, with the results compared against a “gold standard”

set of outputs. ROBOT’s ‘diff ’ functionality is used

when comparing ontology files, otherwise standard

file comparison is used. This helps ensure correctness

and consistency of documentation and code. The unit

tests and integration tests are executed on any pull

request onto the codebase via Travis continuous

integration (Travis CI) [21], so that contributions to

the codebase are verified.

Commands and operations

ROBOT currently provides 15 operations (in the ‘robot-

core’ library) and 19 commands (for the command-line

interface). Some commands are quite specialized, and

most ontology projects will not make use of all of them.

Here we provide an overview of the most common and

general commands. In each case, the core functionality

is supported by operations in the ‘robot-core’ library,

that can be used independently of the command-line

interface from any programming language that runs on

the JVM.

Convert

A variety of OWL ontology formats are supported, inclu-

ding RDF/XML, Turtle, Manchester, OBO format, and

more. To enable further interoperability, ROBOT includes

a ‘convert’ command to change between supported onto-

logy formats. A complete list of supported formats can be

found in the ‘convert’ documentation [22].

Reasoning

Reasoning is one of the most important operations in

ROBOT. The ‘reason’ command covers two uses: logical

validation of an ontology and automatic classification.

In both cases, users can choose their preferred reasoner,

which is used to perform inference. Large ontologies

such as the Gene Ontology typically use ELK [23], which

performs reasoning quickly using the OWL EL profile.

Smaller ontologies with richer axiomatization, such as

the Relations Ontology, typically use a complete OWL

DL reasoner such as HermiT [24].

When the ‘reason’ command is invoked on an input

ontology, ROBOT will initiate a reasoner using the

OWL API Reasoner interface. The resulting inferences

are checked to ensure the ontology is logically coherent:

the ontology must be consistent and have no unsatis-

fiable classes (i.e., classes that cannot be instantiated

without introducing an inconsistency). If the ontology is

incoherent, this is reported and execution halts. ROBOT

can optionally perform additional checks, such as

ensuring that no two classes are inferred to be equiva-

lent post-reasoning.

If the ontology is consistent, ROBOT will perform

automatic classification. All direct inferred ‘subClassOf ’

axioms are added to the ontology. Generation of other

types of axioms can be configured.

The assertion of all inferred axioms is often a funda-

mental step in the release process for biomedical onto-

logies. Many of these ontology classes only assert a

single named superclass (‘A subClassOf B’, where B is

another class in the ontology), and zero or more
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anonymous superclasses and/or anonymous equivalent

classes (‘A subClassOf/equivalentTo (R some B)’, where R

is an object property). These anonymous classes allow the

reasoner to make inferences, which are then asserted.

Therefore, in the release version of an ontology, a class

may have more than one named superclass.

The ‘reason’ command has additional “helper” com-

mands. The ‘relax’ command asserts entailed subClassOf

axioms according to a simple structural rule: an expression

‘A equivalentTo (R some B) and …’ entails ‘A subClassOf R

some B’. This can be useful as consumers of bio-ontologies

often expect to navigate these expressions, e.g., partonomy

in GO and Uberon. The ‘relax’ command relieves the

ontology developer from the need to assert these in

addition to the equivalence axioms, and as such it is also

often included in release workflows. Finally, the ‘reduce’

command removes redundant subClassOf axioms, and can

be used after ‘relax’ to remove duplicate axioms that were

asserted in that step.

The ‘materialize’ command uses an Expression

Materializing Reasoner (EMR) to assert inferred expres-

sions of the form ‘A subClassOf R some B’ [25]. Where

the ‘reason’ command asserts inferred named superclasses,

‘materialize’ asserts anonymous superclasses. This is not

part of the standard release cycle but can be beneficial for

creating complete ontology subsets.

Working with external ontologies

The OBO Foundry aims to coordinate ontologies in a

modular fashion, such that parts of some ontologies can

be used as building blocks for other ontologies. For

example, the ChEBI chemical entities ontology [26] is

used to construct OWL definitions for metabolic

processes and activities in the Gene Ontology [27].

There are a variety of different strategies for leveraging

external ontologies and managing dependencies between

ontologies, depending on the use case.

Extract

The ‘extract’ command creates a module based on a set

of entities to extract (the “seed”). There are four differ-

ent extraction methods (as specified by the ‘--method’

option): MIREOT, TOP, BOT, and STAR.

ROBOT’s MIREOT extraction method is based on the

principle of the same name [8] and requires that one or

more “bottom” entities are specified. Optionally, one or

more “top” entities can also be specified. The command

extracts all the “bottom” level entities and their ances-

tors up to the “top” level from the input ontology. If no

“top” entities are provided, ancestors up to the top-level

entity (‘owl: Thing’) are included.

The TOP, BOT, and STAR methods make use of the

OWL API Syntactic Locality Module Extraction (SLME)

implementation, which is guaranteed to capture all

information logically relevant to the seed set [28]. The

BOT method (“bottom”) includes all relationships

between the input entities and their ancestors. The TOP

method includes all relationships between the input

entities and their descendants. Finally, the STAR method

only includes all relationships between input entities.

The STAR method produces the smallest outputs, while

the TOP method typically produces the largest outputs.

In order to support ontology term provenance, the

‘extract’ command has an ‘--annotate-with-source true’

option that will annotate each extracted term with the

URL of the source ontology that it is extracted from.

Remove and filter

The ‘remove’ and ‘filter’ commands are used for fine-

grained operations on OWL axioms. ‘remove’ allows

users to choose which sets of axioms they wish to

remove from a target ontology. ‘filter’ does the opposite,

so that only selected axioms are copied from the input

into a new output ontology.

These two commands work by starting with a seed set

of entities, then applying various selectors to find related

entities, and finally selecting which axiom types to

remove or filter. We expect only a small number of

“power users” to use this feature directly, but these

commands will eventually provide a foundation for other

higher-level commands.

These commands can be used to generate ontology

subsets based on annotations by either filtering for or re-

moving entities with the specified annotation. OBO

Foundry ontologies often annotate classes with the ‘in

subset’ property to specify where a class might be used.

The annotation selector allows a user to provide a full

annotation value or a pattern to match using regular

expression.

Merge

The ‘merge’ command combines two or more separate

input ontologies into a single ontology. It also provides

the ability to merge all imported ontologies of a single

input ontology into one main ontology, which is often

used when creating a release.

Merging imported ontologies (specified by import

statements) into the input ontology is performed auto-

matically, so that the user does not need to list each

imported ontology as an input. We offer the option

(‘--collapse-import-closure false’) to turn this feature off,

supporting cases in which users may merge multiple

input ontologies that have import statements but want

to keep their imports separate.

Querying and reporting

Ontology workflows typically include query operations over

the ontology, producing reports which may be informative
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for both editors and users of the ontology -- for example, a

table of all classes plus their textual definitions. Query

operations can also be used for validation checks. The

SPARQL query language provides a universal and declara-

tive way for ontology maintainers to create ontology reports

and validation checks [29]. ROBOT provides a convenient

way to perform queries with the ‘query’ command, or

validation checks using ‘verify’. Additionally, the ‘report’

command includes a configurable package of standard

queries for OBO projects that can be used in any ontology

workflow, without requiring the maintainer to be familiar

with SPARQL.

Query

ROBOT’s ‘query’ command runs SPARQL queries on

ontologies or other RDF resources. This can be used by

an ontology maintainer to either perform interactive

queries, or more typically to include standard queries

into an ontology workflow. The ‘query’ command wraps

one of the few operations that uses Apache Jena [18],

rather than OWL API. The Jena API allows ROBOT to

load an ontology as a collection of triples contained by

an RDF Model object. It provides a SPARQL query en-

gine for those models, which we use to run all queries.

‘SPARQL SELECT’ queries produce a comma- or tab-

separated table of results. ASK queries produce a file

with a Boolean value. ‘SPARQL CONSTRUCT’ queries

produce an RDF file, which can be further processed by

ROBOT or merged back into the loaded ontology.

‘CONSTRUCT’s provide a convenient way of performing

“macro” style expansion [30]. ‘SPARQL UPDATE’ quer-

ies insert and/or remove data directly in an ontology (as

an RDF Model). ROBOT converts the updated RDF

Model back to an OWL API ontology object to be saved

in any of the supported syntaxes.

The ‘query’ command supports an option to load

imported ontologies as named graphs with the ‘--use-

graphs’ option. If this is set to ‘true’, the imports can be

queried as named graphs (the name being that onto-

logy’s IRI) and the default graph is a union of all graphs.

Using the default graph is similar to conducting a

‘merge’ of all the imports prior to querying, but the

distinction between imports would be lost in a ‘merge’.

Verify

The ‘verify’ command is a variation on the ‘SPARQL SE-

LECT’ execution. The queries are used to ensure that an

ontology conforms to a predetermined set of conditions;

for example, ensuring that no class has multiple textual

definitions. Given a SELECT query, ‘verify’ will succeed

(i.e., exit with status code 0) if no results are returned. It

will fail (i.e., exit with a non-zero status code) if any results

are return from the query. So, given a SPARQL query that

SELECTs for invalid data, the ‘verify’ command will verify

that the ontology (or other resource) does not contain any

such invalid data.

Report

The ‘report’ command is an extension of ‘query’ and

‘verify’ that provides a series of configurable quality

control (QC) checks for an ontology and returns a

spreadsheet or YAML output of the violations. The

spreadsheet is output in either comma- or tab-separated

format and easy for a user to read, while the YAML

output can be easily parsed by other programs.

The QC checks include annotation checks, logical

checks, and metadata checks. Annotations are important

to facilitate human comprehension, so the ‘report’ com-

mand finds cases where missing or duplicate annotations

could cause problems. Logical checks look at the struc-

tural coherency and consistency of the ontology. Finally,

‘report’ identifies missing ontology metadata, as specified

by OBO Foundry recommendations.

There are three levels of violations that are reported:

ERROR, WARN, and INFO. An ERROR is the most se-

vere, such as a missing or duplicate label. By default, the

‘report’ command fails if there are any ERROR-level vio-

lations, halting any automated build processes. These

types of violations must be fixed before publishing an

ontology. WARN-level violations should be fixed as soon

as possible, e.g. inferred one-to-one class equivalencies,

which are typically unintended in OBO projects. INFO

is for recommended fixes that help maintain consistency

across OBO Foundry ontologies, such as beginning a

definition with an uppercase letter and ending with a

period. ‘report’ can be configured with a command-line

option to fail on a different violation level or to never

fail, regardless of any violations. We document each QC

check with a suggestion for a manual fix that the user

can apply.

A default “profile” with report levels for each QC

check is provided by ROBOT, but users are also able to

create their own profiles. In these profiles, they can

change the violation levels of individual checks, choose

to exclude certain checks, and add their own checks as

SPARQL queries. For example, some ontologies may

categorize a class lacking a textual definition as an error,

while others may categorize this as a warning. One of

our goals is to converge on a standard profile that is

maximally useful for the set of all ontologies in the OBO

library, encouraging adoption of common quality control

checks.

Repair

Although most problems raised by ‘validate’ and ‘report’

must be fixed manually, ROBOT also provides a ‘repair’

command that can automatically fix certain problems.

The current implementation will merge annotations on
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duplicate axioms and update references to deprecated

classes when they are annotated with a suggested re-

placement. We intend to extend ‘repair’ to a wider range

of common problems for which the correct fix is clear.

Templated ontology development

ROBOT provides a template-driven ontology term

generation system. Users also have the option to plug

in their own term generation system into their work-

flow, such as Dead Simple OWL Design Patterns

(DOS-DPs) [31].

A huge amount of data is stored in spreadsheets and

databases, and tabular formats are well suited to many

sorts of data. ROBOT’s ‘template’ command allows users

to convert tabular data into RDF/OWL format. A

ROBOT template is simply a tab-separated values (TSV)

or comma-separated values (CSV) file with some special

conventions, which are outlined in the ROBOT ‘tem-

plate’ documentation [32].

These templates can be used for modular ontology de-

velopment. The template spreadsheets may be main-

tained as part of the ontology’s source code repository,

and instead of directly editing the ontology file, devel-

opers edit rows in the spreadsheet which correspond to

terms in the ontology. The ‘template’ command is then

used to generate a module of the ontology, which is in-

cluded as an import statement in the editors’ version of

the ontology and merged during the release process.

Workflows

A workflow consists of a set of tasks coordinated by

some workflow system. Ontology workflows consist of

tasks such as executing QC checks, building import

modules, reasoning over ontologies, and generating vari-

ous ontology release products.

ROBOT itself is not a workflow manager, although it

allows multiple commands to be chained together into

one long command. When chaining ROBOT commands,

the output ontology from one command is passed

directly as the input to the next command. For example,

chaining may be used to replace two commands that

merge ontologies and then reason over the merged

product:

`robot merge --input ont-1.owl --input ont-2.owl

--output merged.owl.

robot reason --input merged.owl --output reasoned.owl`.

Instead of creating the merged product and running

‘reason’ over that, it can be done in one command:

`robot merge --input ont-1.owl --input ont-2.owl

reason --output reasoned.owl`.

The key advantage to chaining is that ontologies do

not have to be serialized and parsed between each step;

the same OWL API ontology object is maintained in

memory and passed through the chain of ROBOT

commands. For large ontologies, chaining can vastly im-

prove ROBOT’s performance.

Because ROBOT commands can be executed on the

command line, a number of different workflow systems

can be used. We highlight the use of GNU Make [33],

which is typically used to compile software. A Makefile

consists of a set of rules used to make “targets”. In

ontology development, the Makefile is used for auto-

mated tasks, such as preparing an ontology for release.

In this case, the targets are usually ontology files. The

“recipes” for the rules are Unix-style system commands,

carried out by the ‘make’ command.

ROBOT commands can be used as the “recipes” to

make the “targets”. A typical workflow will not use all 19

of the ROBOT commands. For example, not all ontology

projects may use ROBOT templates and therefore not

all release workflows need to include the ‘template’ com-

mand. Ontology developers can decide which commands

are needed to perform the release and build a workflow

around those commands. Figure 1 shows a standard way

in which a selection of ROBOT commands is combined

for a release workflow.

First, quality control checks are run over the editors’

version of the ontology with ‘report’ or ‘verify’. These

look for equivalent classes, trailing whitespace in anno-

tations, self-references, incorrect cross-reference syntax,

and missing labels. The results are saved to a specified

‘reports/’ directory. If there are any ERROR-level viola-

tions, the task will fail and write the violations to a table

so that they can be easily identified. This step allows

developers to quickly see if new changes have introduced

any problems within the ontology and fix them before

releasing.

Assuming the initial QC check step has completed

successfully, the next step is to create the import mod-

ules. The ROBOT ‘extract’ is run for each entry in a list

of imports, which have corresponding term files (for the

seed set) in the ‘imports/’ directory. This creates all the

import modules in the same ‘imports/’ directory. This

ensures that when an ontology is released with external

terms, all external terms are up-to-date with the released

versions of the source ontologies. Releasing out-of-date

external terms can cause confusion, as the term will

show both the old and new details in ontology search

services like Ontobee [5] and the Ontology Lookup

Service [34]. Additional QC checks can be run over the

full ontology with imports using the ‘verify’ command or

by running ‘report’ again.

Last, the main release products are created: the OWL

file and the OBO file. To create the OWL release, the

editors’ file is passed through a series of chained ROBOT

commands: ‘reason’, ‘relax’, ‘reduce’, and ‘annotate’. This

series of commands helps to ensure that the released

ontology is both easy to browse and understand, as well as
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free of any redundant axioms. If any of these commands

fail, the Make process will terminate with the corre-

sponding error message. For example, if an ontology

is incoherent the ‘reason’ step will fail. Finally, the

‘annotate’ command adds the version IRI to the onto-

logy metadata. This OWL file is then converted to

OBO format, at which point all targets are copied to

a dated release directory.

The Ontology Development Kit

Creating a Makefile to coordinate all these steps can be

challenging. We make this easier for ontology developers

by providing an Ontology Development Kit (ODK) [35].

This can be used to create a GitHub repository following a

standard layout, with a standard Makefile following the

workflow detailed above. The resulting GitHub repository

will also be automatically configured to run the validation

steps (such as ‘report’) of the workflow via Travis CI [21].

The workflow can also be executed using Docker with

ODK containers released on Dockerhub [36]. This allows

easy execution of workflows on either the local computer

of an ontology developer, with Travis CI, or through

scalable-build tools such as Jenkins [37].

ODK builds on ROBOT and demonstrates ROBOT’s

utility, but a full discussion is beyond the scope of this

article.

Results and discussion

While there are many other Semantic Web and OWL

development tools available, a number of factors have

driven the OBO community to build and support

ROBOT. First, the OBO commitment to open source

development is a strong reason to use open source soft-

ware. Second, our wide reliance on the free and open

Protégé editor is a strong reason to use the same OWL

API library that it is built upon. Third, there is a strong

incentive to pool our limited resources and invest in

shared tooling. Fourth, the OBO community has a range

of conventions that support interoperability, and our

workflows are simpler if we build these assumptions into

the tools. Points three and four are clearly in tension:

what is the right balance to strike between reusing

general Semantic Web tools and building our own?

Protégé, OWL API, and various OWL reasoners are

general tools that we use, for instance, but we have

strong conventions in our community for identifiers,

Fig. 1 The ROBOT release workflow. A typical release workflow using ROBOT. The ontology edit file ONT-edit.owl is first verified as a quality

control check with ROBOT ‘verify’. Then, text files containing lists of external ontology terms in the imports directory are used to regenerate
import modules using ‘extract’, ensuring that the imports are up-to-date. ONT-edit.owl is then passed through a series of ROBOT commands

(‘reason’, ‘relax’, ‘reduce’, and ‘annotate’) to generate the release, ONT.owl. Finally, ONT.owl is converted to OBO format
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release artifacts, metadata, quality control, etc. that these

tools do not help us to enforce. Our compromise is to

reuse open source tools as much as practical and invest

community resources in customizing general tools such

as OWL API to serve the needs of our community. A

growing number of ontology developers are using

ROBOT to help automate their quality-checking and

release workflows. Two case studies are described here.

Ontology for Biomedical Investigations

The Ontology for Biomedical Investigations (OBI) is an

OBO Foundry ontology that aims to describe the processes,

agents, devices, inputs, and outputs of scientific investiga-

tions [38]. When the project began more than a decade

ago, development was done in Protégé, without any auto-

mation, and hosted on SourceForge. Today, OBI uses

ROBOT to implement an automated workflow, supported

by GitHub pull requests and Travis CI testing. More than

50 people have contributed to OBI development, including

two of the authors of this paper (Overton and Jackson).

OBI has always imported a range of terms from other

OBO projects, and OBI developers have maintained a

number of separate OWL files to facilitate concurrent

development by different groups of developers. When it

comes time to prepare a new release of OBI, the various

OWL files must be merged, tested and reasoned over.

In the early days of the project, OBI developer

Alan Ruttenberg wrote a series of scripts for quality control

and common operations, but merging, reasoning, and test-

ing a new release still involved many hours of work by OBI

developers. In 2013, James Overton developed a precursor

to ROBOT: an automated build tool written in Java, using

OWL API and Apache Ant, that automated some of the

build, test, and release processes. This drastically reduced

the time required to make a release, allowing for more fre-

quent releases. While this code was specific to OBI work-

flows, some of it was used in early versions of ROBOT.

In 2017 OBI moved from SourceForge to GitHub and

the release workflow was updated to use ROBOT

throughout. This change vastly increased the degree of

automation for ontology development tasks, expanded

capabilities, and allowed OBI to pool some of its deve-

lopment resources with the wider OBO community to

support shared tooling. OBI currently uses a Makefile

[39] that defines a range of tasks for managing imports,

converting templates, merging, reasoning, testing, and

releasing new versions of OBI. The Makefile specifies

various target files, and most target files are generated

from a single ROBOT command or a single chain of

ROBOT commands. The key steps are:

1. Update imports from upstream ontologies

(currently using Ontofox [6]). OBI imports subsets

of terms from more than a dozen OBO projects. As

discussed, ROBOT supports this functionality with

‘extract’, but OBI’s use of Ontofox predates ROBOT

development and has not yet been migrated.

2. Normalize RDF/XML for cleaner history of changes

in the version control system (‘robot convert’).

Different versions of OWL API have slightly

different serialization behavior, which can lead to

spurious reports of differences that make it more

difficult to see relevant changes to the source files.

3. Convert template files (TSV) to OWL modules

(‘robot template’). Templates often make it easier

for domain experts to contribute to ontology

development and enforce ontology design patterns

that improve the overall quality of OBI.

4. Merge imports and templates with ‘obi-edit.owl’

(‘robot merge’). OBI uses a number of import and

template files to enforce a separation of concerns,

rather than making all changes in a single source

file. These are merged into a single release file.

5. Use ‘SPARQL CONSTRUCT’ queries to update

various term annotations (‘robot query’). Some

standard term metadata can be automatically added

and updated, rather than manually maintained.

6. Run an automated test suite (‘robot verify’). A

range of quality control checks helps to ensure

that errors have not been introduced into OBI by

recent changes.

7. Run the HermiT reasoner (‘robot reason’).

Reasoning checks the logical consistency of OBI

and performs automated classification of terms.

8. Update annotations for release (‘robot annotate’).

These annotations include the dated version IRI

of this release of OBI.

9. Extract the OBI Core subset (‘robot extract’). The

OBI Core subset provides approximately 100

important terms for educational and documentation

purposes.

10. Create a list of OBI terms (‘robot query’). The

term list is used to report on the new terms added

to OBI with each release.

Disease Ontology

The Disease Ontology (DO) is an OBO Foundry ontol-

ogy that provides a standardized description of human

diseases, including the phenotypic characteristics, symp-

toms, genetic bases, and related medical terminology.

These terms are used by various model organism data-

bases to provide a consistent representation of diseases

[40]. The DO is developed at the University of Maryland

School of Medicine by Lynn Schriml and her team,

which currently includes one of the authors (Jackson).

In order to accurately and thoroughly describe the

different aspects of diseases, DO makes use of more

than 10 other biological ontologies. In the past, all DO
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imports were manually created and maintained. This led

to inconsistencies as ontologies were updated and ex-

panded, and also made it very difficult to add new en-

tities to the imports.

In 2018, DO switched their entire automated build

process (contained in the Makefile) from OWLTools

[14] and OORT [15] to ROBOT. Instead of manually

updating import modules, all required entities are now

specified in text files. When a developer wishes to add a

new imported entity, they simply add a line to the text

file and run ‘make imports’. All imports are automati-

cally regenerated during releases, as well, to keep the

information up-to-date.

Before ROBOT, the monthly DO releases took

multiple hours to run and required additional hours of

manual editing and review. Now, DO developers simply

run the ‘make release’ command and all content is

generated in less than 20min. The release process makes

use of ROBOT commands such as ‘report’ to run quality

control checks over the release products and reduce the

time spent reviewing output.

Both ROBOT ‘verify’ and ‘report’ are used for DO’s

Travis CI system [21]. Each time a new commit is

pushed to the GitHub repository, a series of queries is

run against the ontology files to ensure they meet certain

standards. If they do not (or if ‘report’ fails with an

ERROR-level violation), Travis CI notifies developers

that the checks have failed with a red “X” next to the

commit. Clicking on the red “X” will take the user to

Travis CI, where they can see the command log to deter-

mine what caused the failure. On success, a green check-

mark is displayed next to the commit to show that the

checks have passed.

Conclusions

ROBOT makes it easy for ontology developers to auto-

mate a wide range of tedious and error-prone deve-

lopment tasks, freeing their time to focus on other

important parts of the ontology life cycle. Circa 2010,

most OBO projects were manually edited, with manual

imports, manually tested, and manually released using

only Protégé. With ROBOT, ontology developers have a

convenient tool for building powerful workflows that in-

clude format conversion, reasoning, extracting, querying,

updating, testing, reporting, templating, and more. Low-

level OWL API and Apache Jena operations are pack-

aged into a library of high-level operations, and these

operations are wrapped in a convenient command-line

interface that is supported on the common server and

desktop platforms. With ODK, developers benefit not

only from ROBOT, but additionally from a wide range of

best practices and standard procedures developed and

shared by the OBO community.

ROBOT is open source software developed by a com-

munity of a dozen contributors with more than 1000

commits, hundreds of closed issues, and six releases.

The ROBOT source code is freely available on GitHub and

Maven Central. Documentation for the library is available

on Javadoc.io and documentation for the commands is

available on our website at http://robot.obolibrary.org,

where you will also find examples of usage, test files, and

explanations of common errors.

With ROBOT, we have tried to strike a balance

between general tools such as Protégé and the specific

needs of the OBO community, and to deliver the

benefits of automation from software development to

ontology development.

Availability and requirements

Project name: ROBOT (ROBOT is an OBO Tool).

Project home page: http://robot.obolibrary.org/

Operating system(s): Platform-independent.

Programming language: Java 8.

Other requirements: None for the command-line tool.

The ROBOT library depends on the following: Apache

Jena, SnakeYAML, OpenCSV, FasterXML Jackson, OWL

API, Apache Commons IO, Apache Maven, JSONLD-

JAVA, Protégé, JUnit, SLF4J, and fmt-maven-plugin.

License: ROBOT is available under BSD 3. Dependencies

are available under Apache 2.0 (Jena, SnakeYAML,

OpenCSV, Jackson, OWL API, Commons IO, and Maven),

BSD 3 (JSONLD-JAVA and Protégé), EPL-1.0 (JUnit), and

MIT License (SLF4J and fmt-maven-plugin).

Any restrictions to use by non-academics: None

other than those specified by the licenses.
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