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ABSTRACT

To achieve the ever increasing demand for science re-
turns, extraterrestrial exploration rovers require more au-
tonomy to successfully perform their missions. Indeed,
the communication delays are such that teleoperation is
unrealistic. Although the current rovers (such as MER)
demonstrate a limited navigation autonomy, and mostly
rely on ground mission planning, the next generation (e.g.
NASA Mars Science Laboratory and ESA Exomars) aims
at “beyond the field of view” autonomous navigation.
Other exploration missions which cannot rely on human
teleprogramming, will even require activity planning, re-
pair and replanning to be made onboard.

In this paper, we propose and give experimental results of
an original approach for temporal planning and execution
control, including plan repair and replanning, fully inte-
grated onboard a robot performing rover exploration like
missions. Our claim is twofold. First these planning/plan
repair methods and techniques are now mature enough to
be considered to solve real world problems. Second they
can be integrated in existing architectures and used on-
board a fully operational robot, with currently available
hardware.

Key words: Mobile robotic, mission task planning, exe-
cution control.

1. INTRODUCTION

Extraterrestrial exploration rovers have an increasing
need for high level autonomy. If one compares the nav-
igation capabilities of Sejourner and MER, one can al-
ready see that some modest, yet real, navigation auton-
omy has been introduced. Moreover, higher science re-
turn, and the communication latency of deep space mis-
sion1 are pushing to get some of the traditionally high

1Unlike most navigations on the ground, a comet landing phase can
hardly be suspended.

level activities planning performed on board. For exam-
ple in the MER mission, an automated planning system
(MapGen (Ref. 1)) was used on the ground to produce
the daily activities for Spirit and Opportunity. The op-
erational results of MapGen are quite encouraging, as it
allowed a 25% increase in science returns compared to
a human generated plan (Ref. 2). As of today, the ESA
Exomars project (part of Aurora) aims at having the rover
navigating over its “field of view”, in one day, with nav-
igation decisions taken on board. NASA MSL will also
push the autonomy cursor further than for MER. Last, the
“Human on Mars” goal will require the deployment of a
large number of autonomous systems to “prepare” and
study the planet before a human can set foot on it. The
“future” of exploration rovers and probes clearly lies in
an increased autonomy addressing the problems of action
planning, and plan execution control.

Meanwhile, automated actions planning has made some
progress since the early days of Shakey and STRIPS.
There are now planners able to take into account time,
resources, constraints and to solve real world problems.
Still, planning is only one aspect of the problem. Plans,
even flexible or contingent one, are bound to fail. Plan
repair and replanning are thus needed to ensure that the
system is able to recover from unexpected plan execution
failure.

In this paper we present IxTeT, a temporal planner which
includes an execution controller, as well as some plan re-
pair and replanning capabilities. The resulting system has
been integrated in the LAAS architecture(Ref. 3) and im-
plemented onboard Dala, our iRobot ATRV Robot. Such
a planner is in charge of producing plans composed of
actions such as move, science activities (moving and op-
erating instruments), communication with earth and an
orbiter or a lander, while managing resources (power,
memory, etc) and temporal constraints (communication
visibility windows, rendezvous, etc).

Still, the execution of action as simple navigation task
such as amove in an unknown environment implies com-
plex processes (Ref. 4, 5): localization, map building,
motion generation, etc. The LAAS architecture (Ref. 3)
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and its associated tools provide a support in order to de-
sign and integrate such a complete autonomous system.
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Figure 1. The LAAS architecture on Dala, an iRobot
ATRV.

Fig. 1 presents the architecture implemented for the ex-
periment on Dala. Thefunctional levelincludes all the
basic built-in robot action and perception capabilities,
encapsulated into controllable communicating modules.
These modules are activated by requests, send reports
upon completion and export data. For example, the POM
module computes the best position estimate from stan-
dard (RFLEX) and visual (STEO) odometry, while the
wheels are controlled by RFLEX according to the ref-
erence velocity produced by the reactive motion planner
(P3D). Therequests control levelfilters the requests ac-
cording to the current state of the system and a formal
model of allowed and forbidden states (see (Ref. 6)).

IxTeT has been integrated in thedecisional leveland in-
teracts with the user and the functional level through a
procedural executive (OpenPRS). First, IxTeT produces
a plan to achieve a set of goals provided by the user. The
plan execution is controlled by both procedural and tem-
poral executives as follows. The temporal executive de-
cides when to start or stop an action in the plan and han-
dles plan adaptations.OpenPRS expands and refines the
action into commands to the functional level, monitors its
execution and can recover from specific failures. It finally
reports to IxTeT upon the action completion.

The paper is organized as follows. The first section
presents the core planner used as well as the 3DC+ al-
gorithm. The following section focuses on the execution
control part of the system as well as the repair and replan-

ning mechanism. Then we present the experimentation
(rover exploration planning), and the result of the integra-
tion of IxTeT on board the Dala robot. Last, we compare
this work with similar works and present conclusions and
possible prospectives.

2. THE PLANNER

The planner in IxTeT is a lifted POCL temporal planner
based on CSPs (Ref. 7). Its temporal representation de-
scribes the world as a set ofattributes: logical attributes
(e.g. robot_position(?r)), which are multi-valued func-
tions of time, and resource attributes (e.g.battery_level())
for which one can specify borrowings, consumptions or
productions. We noteLgcA andRscA, respectively the
sets of logical and resource attributes.LgcAg andRscAg

designate the sets of all possible instantiations of these at-
tributes.

The evolution of a logical attribute value is represented
through the propositionhold, which asserts the persis-
tence of a value over a time interval, and the proposition
event, which states an instantaneous change of value. The
propositionsuse, consumeandproducerespectively spec-
ify over an interval the borrowing, the consumption or the
production at a given instant of a resource quantity.

event(ROBOT_POS():(?initL,IDLE_POS),st);
hold(ROBOT_POS():IDLE_POS,(st,et));
event(ROBOT_POS():(IDLE_POS,?endL),et);

event(ROBOT_STATUS():(STILL,MOVING),st);
hold(ROBOT_STATUS():MOVING,(st,et));
event(ROBOT_STATUS():(MOVING,STILL),et); contingent ?duration = et − st;

distance(?initL,?endL,?di);
distance_uncertainty(?du);
?dist = ?di * ?du;
speed(?s);

?dist = ?s * ?duration;

?initL,?endL in LOCATIONS;
task MOVE(?initL,?endL)(st,et){

hold(PTU_POS():FORWARD,(st,et)); }latePreemptive

variable ?di,?du,?dist;
variable ?duration;

Figure 2. Example of MOVE action model.

hold(ROBOT_STATUS():STILL,(end_heat, st));

timepoint end_heat;

event(PTU_STATUS():(COLD, HEAT),st);

hold(PTU_STATUS():HEAT,(st,end_heat));

event(PTU_STATUS():(HEAT,MOVING),end_heat);

hold(PTU_STATUS():MOVING,(end_heat,et));

event(PTU_STATUS():(MOVING,COLD),et);

contingent (et − st) in [16,20];

(end_heat − st) in [10,12];

hold(PTU_POS():?initL,(st,end_heat));

event(PTU_POS():(?initL,PTU_POS_IDLE),end_heat);

hold(PTU_POS():PTU_POS_IDLE,(end_heat,et));

event(PTU_POS():(PTU_POS_IDLE,?endL),et);

hold(PTU_INIT():TRUE,(st,et));

}latePreemptive

task MOVE_PTU(?initL,?endL)(st,et){

?initL,?endL in PTU_POSITIONS;

Figure 3. Example of MOVE_PTU action model.

As shown on Fig. 2, an action (also calledtask) consists
of a set ofeventsdescribing the change of the world in-
duced by the action, a set ofhold propositions express-
ing required conditions or the protection of some fact be-
tween two events, a set of resource usages, and a set of
constraints on the timepoints and variables of the action.
Note theconteingentkeyword used to express that this
duration should not be modified by the planner.

A plan relies on two CSP managers. A Simple Tem-
poral Network (STN) handles the timepoints and their
binary constraints (ordering, duration, etc.). The other
CSP manages atemporal symbolic and numeric variables
and their constraints (binding, domain restriction, sum,
etc.). Mixed constraints between temporal and atemporal



variables can also be expressed (Ref. 8) (e.g. the rela-
tion between the distance, speed and duration of amove
?dist =?speed ∗ (et − st)). These CSP managers com-
pute for each variable a minimal domain which reflects
only the necessary constraints in the plan. Thus the plan
is least committed and as much as possible flexibility is
left for execution.

The plan search explores a treeT in the partial plan
space. In a POCL framework, a partial plan is gener-
ally defined as a 4-tuple(A,C,L, F ), whereA is a set of
partially instantiated actions,C is a set of constraints on
the temporal and atemporal variables of actions inA, L
is a set of causal links2 andF is a set of flaws. A partial
plan stands for a family of plans. It is considered to be
a valid solution if all its possible instances are coherent,
that isF is empty.

The root node ofT consists of: the initial state (initial
values of all instantiated attributes), expected availability
profiles of resources, goals to be achieved (desired values
for specific instantiated attributes) and a set of constraints
between these elements. The branches ofT correspond
to resolvers (new actions or constraints) inserted into the
partial plan in order to solve one of its flaws. Three kinds
of flaws are considered:
– Open conditionsare events or assertions that have not
yet been established. Resolvers consist in finding an es-
tablishing event (in the plan or a new action) and adding
a causal link that protects the attribute value between the
establishing event and the open condition.
–Threatscorrespond to pairs ofeventandholdwhich val-
ues are potentially in conflict. Such conflicts are solved
by adding temporal or binding constraints.
– Resource conflictsare detected as over-consuming sets
of potentially overlapping propositions. Resolvers in-
clude insertion of resource production action, etc
Thus, a planning step consists in detecting flaws in the
current partial plan, selecting one, choosing a resolver in
its associated list of potential resolvers and inserting it
into the partial plan. This planning step is repeated un-
til a solution plan is found. When a dead end is reached
(flaws remain but no resolver are available), the search
backtracks on a previous choice. The algorithm is com-
plete and the flaw and resolver choices are guided by di-
verse heuristics discussed in (Ref. 7). Note that the search
is stopped as soon as a valid plan is found.

The advantages of the CSP-based functional approach
are numerous in the context of plan execution. Besides
the expressiveness of the representation (handling of time
and resources), the flexibility of plans (partially ordered
and partially instantiated, with minimal constraints) is
well-adapted to their execution in an uncertain and dy-
namic environment. Plans are actually constrained at ex-
ecution time. Finally, the planner, performing a search
in the plan space, can be adapted to incremental planning
and plan repair.

2A causal linkai
p→ aj denotes a commitment by the planner that a

propositionp of actionaj is established by an effect of actionai. The
precedence constraintai ≺ aj and binding constraints for variables of
ai andaj appearing inp are inC.
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Figure 4. Two Network Examples

3DC+ algorithm

Nevertheles, there are still open problems such as how to
handle the controllability issue. Regular propagation in
STN, and by extension in the atemporal CSP, may shrink
a temporal interval which may not be “controllable” by
the planner. As a result, the execution may fail, not be-
cause the action model is wrong, but because the planner
took some “freedom” with respect to what it is allow to
control.

The 3DC+ algorithm was first introduced by (Ref. 9).
Fig. 5 presents the general algorithm illustrated on the
two examples on fig. 4.

Five various cases must be distinguished. If one considers
the network on the left (fig. 4), with a contingent linkAB:

Precede caseThis is the case whereu ≥ 0. In this case
we must tightenAB to [y − v, x− u].

Unordered caseThis is the case whereu < 0 andv ≥
0. In this case and ifx < y − v, we must add a
ternary constraint, called a wait, onAB and of value
< C, y−v >. It means that we must waity−v after
the instantiation ofA to instantiateB. We must also
instantiateB at a time consistent with the constraints
and after the observation ofC.

If one now considers the network on the right (fig. 4):

Regression of waitSuppose a linkAB has a wait<
C, t >

• If a link DB (includingAB itself) with an up-
per bound ofq exists, then we must add a wait
< C, t− q > onAD.

• If a contingent linkDB with B 6= C and with
p as lower bound exists, then we must add a
wait < C, t− p > onAD.

General reduction If a link AB has a wait< C, t >
and the lower bound of the contingent link that ends
onC is l with l < t, then we must add a lower bound
of l onAB.

Unconditional wait If a link AB has a wait< C, t >
and the lower bound of the contingent link that ends
onC is l with l > t, then we must add a lower bound
of t onAB and suppress the wait which is useless.



1. Compute the minimal STN. If it is not pseudo-controllable return
false.

2. Select any triangle such thatv (fig. 4) is non-negative. Introduce
any tightenings required by the Precede case and any waits re-
quired by the Unordered case.

3. Do all possible regressions of waits, while converting uncondi-
tional waits to lower bounds. Also introduce lower bounds as
provided by the general reduction.

4. If steps 2 and 3 do not produce any more tightenings, then return
true, otherwise return to 1.

Figure 5. 3DC+ Algorithm

We have implemented the 3DC+ algorithm presented
above in IxTeT, and we are thus able to produce plans
which are dynamically controllable with waits. The re-
sulting plans may not be as “efficient” as one produced
without 3DC+, but, as we will see in the example sec-
tion, it is more robust and still more efficient than a plan
where all non controllable actions have been maximized.

3. TEMPORAL EXECUTIVE, PLAN EXECU-
TION, REPAIR AND REPLANNING

The temporal executive controls the temporal network of
the plan produced by IxTeT by deciding the execution
order of actions execution and by mapping the timepoints
at their execution time. The execution of an actiona with
grounded parameterspa, starting timepointsta, ending
timepointeta, and identifieria is started by sending the
command to the procedural executive. If the action is
non preemptive, eta is not controllable, and IxTeT just
monitors ifa is completed in due time. Otherwiseeta is
controllable: if the action does not terminate by itself, it
is stopped as soon (resp. as late) as possible ifa is early
(resp. late) preemptive.

IxTeT integrates in the plan the reports sent by the con-
trolled system upon each action completion. A report re-
turns the ending status of the action (nominal, interrupted
or failed) and a partial description of the system state. If
nominal, it just contains the final levels of the resources,
if any, used by the action. Otherwise, it also contains the
final values of the other state variables relevant to the ac-
tion.

Besides completion reports, IxTeT also reacts to user re-
quests to insert a new goal and sudden alterations of a
resource capacity.

In any case, while execution is taking place, various
events can forbid further execution of the plan:
– temporal failuresThe STN constrains each timepointt
to occur inside a time interval[tlb, tub]. Thus two types
of failure lead to an inconsistent plan: the corresponding
event (typically, the end of an action) happenstoo early
or too late(time-out).
– action failureThe system returns a non nominal report.
– resource level adjustmentIf an action has consumed

more or produced less than expected, the plan may con-
tain future resource contentions.

When these occur, IxTeT starts and controls the processes
of plan adaptation. To take advantage of the temporal
flexibility of the plan, the dynamic replanning strategy
has two steps. A first attempt is to repair the plan while
executing its valid part in parallel. If this fails or if a
timepoint times out, the execution is aborted and IxTeT
completely replans from scratch.

Interleaving partial order planning and execution may in-
sert flaws in the plan. We formally define under which
conditions such a partial plan remains executable.

3.1. Definitions

We extend the previous definition of a partial plan to the
definition ofPt: apartial plan partially executed up to time
t.

Definition 1 Pt = (RAt, FAt, St, Gt, Ct, Lt, Ft).

RAt is the set of currentlyrunning actions(a ∈ RAt if
staub < t andetaub > t), FAt is the set offuture actions
(a ∈ FAt if staub ≥ t). St represents thestate of the
world at timet. It is composed of 2 sets:LgcSt contains
the last value of each attributela ∈ LgcAg, 3 RscLt con-
tains the level at timet of each resourcer ∈ RscAg. Gt

is the set ofgoalsnot yet completely achieved at timet
(and eventually not established)4. Ct is the set of con-
straints on the variables appearing inFAt, RAt, St and
Gt. Lt is the set of causal links supporting future actions.
Ft is the set of flaws present in the partial plan at timet.

The level of a resource at a certain time in the future can-
not be computed, since it depends on the partial order of
actions using this resource. But at timet the past part of
the plan is completely instantiated and linearized. Two
cases have to be considered: if no running action mod-
ifies r, the exact level can be computed; if at least one
action inRAt requires the resource, only an estimate is
available. We refer the reader to (Ref. 10) for the details
on how these evaluations are computed.

A timepoint in the temporal network may correspond to
a goal timepoint or to an action starting or ending time-
point.

Definition 2 (executable timepoint) A timepoint T is
executable at time t if all timepointsT p that must di-
rectly precede it in the temporal network have already
been executed (T p

lb = T p
ub < t), if all positive waits on

links with positive upper bound and which ends onT are
enabled and ift ∈ [Tlb, Tub].

3In IxTeT, LgcSt contains the last executedeventfor eachla.
4In IxTeT, a goal is represented by a grounded proposition

hold(GoalAtt(g):GoalValue, (stg , etg)). Gt contains goals such
thatetgub ≥ t.



A goal is instantaneously achieved or persistent (achieve
and maintain a property betweenstg andetg).

Definition 3 (achievable goal)A goal g is achievable
at timet if stg is executable and ifg /∈ Ft.

Let Af
t be the set of actions that are involved inFt. 5

Definition 4 (executable action)A future actiona is ex-
ecutable at timet if its start timepoint is executable and
if a /∈ Af

t .

Definition 5 (executable plan) A partial planPt is exe-
cutable at timet if the constraint networks are consistent
and ifRAt ∩Af

t = ∅.

3.2. Execution cycle

As previously explained, the system, when bootstrapped,
produces a first plan (let us call itExecutingPlan), and
will only start execution afterward. The executive man-
ages the messages received, the actions timeout, and the
timepoints execution. Integrating messages inExecuting-
Plan may partially invalidate it. IfExecutingPlancon-
tains new flaws, aplan repair consists in keeping the
structure of the plan (the ordering of actions) and taking
advantage of the flexibility to try and find a solution plan.
The user defines the maximum time allowed for plan re-
pair (µ). If plan repair takes more thanµ, it is suspended
to allow reactivity to events and concurrent execution of
the valid part of the plan.

Yet, to distribute planning on several cycles raises two
problems:
Which plan does the concurrent execution rely on, es-
pecially if no solution has been found? This plan has
to be executable. At each planning step, the node is
labeled if the current partial plan isexecutable. When
µ has elapsed, the last labeled partial plan becomes
ExecutingPlan.
Which plan and which search tree the planning process rely
on in the next cycle? If no change has been made mean-
while (no timepoint execution, no message reception),
the search tree can be kept as is and further developed
during the nextplan repairpart. However, if the plan has
been modified, a new search tree whose root node is the
new ExecutingPlanis used, and the planning decisions
made in previous cycles are final.

The following subsections further detail the different
phases of the executive loop. Basically, all modifica-
tions made toExecutingPlanhave to guarantee that an

5The determination ofAf
t is straightforward in the case of open

conditions and resource conflicts. In a threat case, an actionak has
effects in contradiction with the establishment of propositionp by the

causal linkai
p→ aj and(ai ≺ ak ≺ aj) is consistent.Af

t contains
ak andaj .

executableplan is available after each phase of the cycle.
If this condition does not hold, the cycle is stopped and a
complete replanning is mandatory. During a cycle with-
out plan repair,ExecutingPlanremains a solution plan.

3.3. Message integration

A message can be a report upon action completion; a new
goal request or a notification of a capacity alteration (we
do not detail the two last ones, and refer the reader to
(Ref. 11) for a complete explanation on these).

A report is associated with the ending timepointeta of
the corresponding actiona. If the message is received in-
side the bounds[etalb, et

a
ub], eta is set to the current time

t (equivalent to posting the constraint(eta− origin) = t
in the STN). Otherwise, two situations arise. If there is
no flexibility left in the plan, it is not executable anymore.
Else, a new end timepoint, set tot and constrained to oc-
cur before the executable timepoints, is created and the
failed one is relaxed. The network is then recomputed.
In IxTeT, such an operation keeps the network consistent,
since the only constraint that can be specified between
two actionsa anda′ is a precedence constraint which up-
per bound is flexible:(sta

′−eta) in ]0,+∞[. If the report
contains information about the state,St is updated in the
following way:

Resource level -For each resourcer, the report returns
the current “real” levellr. lr is compared to the fore-
casted evaluation (see (Ref. 10)) which are properly up-
dated accordingly. Plan repair is requested in case of
over-consumption and in case of over-production of a
reservoir resource (which may then overfill).

State variables -LgcSt contains the last value for each
instantiated logical attribute. If the report is nominal,
LgcSt is updated with the effects ofa expected in the
plan. Otherwise, it is updated with the values returned
in the report. A value is not inserted if it leads to a non
executable plan (that is it threatens some proposition of a
running actionar). In that case and ifar is preemptive,
its interruption is requested. Else, the value is inserted
and causal links which contradict it are broken. This up-
date leads to an executable plan with open conditions on
which plan repair can be processed.

After message integration, the plan may contain flaws
(open conditions and/or resource conflicts) on a set of
grounded attributesAttf , possibly repaired thanks to the
insertion of new actions. Let us considerAtti the set
of the attributes appearing in the potentially inserted ac-
tions. Additional causal links, protecting propositions in
the plan on attributes inAtti, have to be broken to allow
the insertion of these actions in the current plan structure.

The determination ofAtti is based on information given
by an abstraction hierarchy verifying the Ordered Mono-
tonicity Property (Ref. 12, 13) and generated offline from
the model description. Notably, this hierarchy points out



the primary effects of an operator, which justify its inser-
tion to solve a flaw. Let us callmain attributesof an ac-
tion the attributes appearing in its primary effects.Atti,
initialized withAttf , is computed by searching the action
operators for which at least one attributeattm in Atti

is a main attribute. This operator is partially grounded
(by binding its corresponding parameter withattm) and
the (eventually grounded) attributes appearing in the op-
erator and not yet taken into account are added toAtti.
The algorithm proceeds recursively until a fixed point is
reached.

Finally, the partial plan is executable and the sets of ac-
tions that are independent from the failures remain exe-
cutable.

3.4. Plan repair

The plan repair is similar to the IxTeT search process in
the plan space. The root of the search treeT is Execut-
ingPlan, partially invalidated. Planning is distributed, if
necessary, on several cycles and each time a new time-
point is inserted, it is constrained to occur after the end of
the current cycle. Planning during one cycle is done one
step at a time until it results into a dead-end (there is no
solution), or a solution is found or a deadline is reached.
This deadline corresponds to the user defined time (µ) al-
located to the plan repair part of the cycle time.

Some aggregation mechanisms allow a reduction of the
search space. In IxTeT, the establishing events are looked
for in LgcSt and executed resource propositions are ag-
gregated in one proposition.

This plan repair process is not guaranteed to find a valid
plan, yet it can avoid aborting execution and completely
replanning at each failure. By invalidating only a part of
the plan, the amount of decisions is rather limited and a
repaired plan may be found in a few cycles. Plan repair
is especially efficient and useful for temporally flexible
plans and plans with some parallelism. This mechanism
is also efficient to compensate for inadequate models of
actions. Consider amove(L1,L2) action, which is defined
as a late preemptive action in the IxTeT model. If the
robot takes longer than expected in the model (e.g. due
to unexpected obstacle avoidance), the action is inter-
rupted. The controlled system returns the intermediate lo-
cationLi and, if some temporal flexibility remains, a new
move(Li,L2) is immediately inserted and launched. This
example is representative of the failures that frequently
break plan execution.

3.5. Action

Each timepoint is associated to anexecution timetexec.
If T is a start or goal timepoint, or an end timepoint of an
early preemptive action,texec = Tlb. If T is an end time-
point of a late preemptive action,texec = Tub−ts. If T is
an end timepoint of a non preemptive action,texec = Tub.

The executive determines the set of timepoints to execute
during the current cycle (ExecTPs): these timepoints are
executable and their execution time happens before the
end of the cycle.ExecTPsis updated after each timepoint
execution to take into account newly executable time-
points. The detail of a timepoint execution depends on
its type and timeouts are raised when reports have not
been received in time.

3.6. Complete replanning

Let us callPts
= (∅, FAts

, Sts
, Gts

, Cts
, Lts

, Fts
) the

plan obtained once execution is stopped. An initial plan
is extracted fromPts

as:
Pti

= (∅, ∅, Sti
, Gti

, Cti
, ∅, Fti

), with
Sti = Sts , Gti = {g ∈ Gts/temporal constraints on
g are coherent with current time}, Cti = {c ∈ Cts/c
is a constraint just on variables appearing inSti and
Gti

}(Cti
notably contains constraints on origin and hori-

zon timepoints), andFti
= Gti

.

POCL planning cannot be interrupted at any time and
come up with an applicable plan. Still we have to guar-
antee that at the end of the replanning process, there re-
mains enough time to execute the solution plan and meet
the goal deadlines. We propose to add a specific flex-
ible timepointT end to Pti

, that corresponds to the end
of the planning process.T end is only constrained to oc-
cur betweenti and the end of the horizon. Each time a
new timepoint is inserted by the planning process, it is
constrained to occur afterT end. ThusT end

ub decreases as
new actions or new temporal constraints are added, and
there is not enough time to execute the current plan if
T end

ub < current time. Note however thatT end
ub can in-

crease when backtracking.

The strategy is then to plan one step at a time until it
results into a dead-end, or a solution is found, or a time
limit l is reached.l is defined asl = T end

ub − d, d being a
slackduration to save enough time at the end of planning
for cycle initialization. l is updated after each planning
step. Planning is stopped whenl is reached unless the
next step corresponds to a backtrack node. In that case,
and if the next step increasesl, planning is pursued.

If planning is aborted without finding a solution, some
goals are rejected and a new attempt is done (Ref. 11).

4. INTEGRATION AND EXAMPLE OF SCE-
NARIO

We illustrate the capabilities and the performances of Ix-
TeT with an example of a scenario for a rover with an
exploration mission. In such a domain, the quantitative
effects and durations can be estimated in advance for
planning but are accurately known only at execution time
(e.g. the actual compression rate of an image or the actual



Figure 6. DALA GUI showing the goals of the exploration
mission.

Figure 7. Initial plan produced with the use of 3DC+
(top) and without (bottom) (note the flexibility left, the
dependencies and the parallelism).

duration of a navigation task), thus requiring regular up-
dates and look-ahead capabilities to manage unforeseen
situations and resource levels. We also illustrate the ad-
vantage of using the 3DC+ algorithm in order to produce
a more robust plan and compare with a plan without tem-
poral controllability.

IxTeT has been integrated in the decisional level of the
LAAS architecture (Ref. 3) and used to control an iRobot
ATRV (see the first section and Fig. 8). We set up an

Figure 8. The robot Dala.

exploration mission scenario which requires the robot
to achieve three types of goals (see Fig. 6): “take pic-
tures of specific science targets” (in locations (0.5,-0.5),
(4.5,-0.5), (1.5,-2.5)), “communicate with a ground sta-
tion during visibility window” (W1[117− 147]), and “re-
turn to location (0.5,-0.5) before time 500”. Dala runs
a 3 GHz Pentium IV (1 GB memory) under Linux and
is equipped with the following sensors: odometry and a
stereo camera pair mounted on a pan&tilt unit (PTU).
Five main actions are considered at the mission plan-
ning level: take_picture, move_ptu, move (Fig. 2),down-
load_images, communicate. The first three actions are
performed by Dala, while the last two are realistically
simulated.

There are specific constraints attached to each tasks. The
pan&tilt unit must be warmed up ten seconds before it
can move. During a move action (of the rover), the cam-
era must be pointed at a specific angle in order to provide
the best perception of the environment. Thus the move
action and the move pan&tilt action are mutually exclu-
sive, however the pan&tilt unit can be warmed up during
the “end of the move”. It allows us to start a pan&tilt
action before the end of the move that precedes it with-
out “stopping” the move itself. Yet, to do so, we need
3DC+ to correctly produce and execute this plan. With-
out this, IxTeT produce a plan which may shorten the du-
ration of the move to its lower limit and we will most
likely get a temporal failure. You can see on Fig.7 that in
the top plan the end of two MOVE action is overlapped
by a MOVE_PTU action. Unfortunately at this stage, the
IxTeT Plan Viewer used to produce these screen dumps
does not show the wait introduced by the 3DC+ algo-
rithm.

The plan execution is controlled by both executives as
follows. IxTeT decides when to start or stop an action
in the plan and handles plan adaptations.OpenPRS ex-



pands the action into commands to the functional level6,
monitors its execution and can recover from specific fail-
ures. It finally reports to IxTeT upon the action comple-
tion.

This mission (the corresponding initial plan with 3DC+ is
shown in Fig. 7) has been executed by Dala under IxTeT
control (withµ = 1s and total cycle duration= 2s). The
initial plan with 3DC+ was produced in7.1s, and the plan
without 3DC+ was produced in4s. Each resulting run is
different.
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Figure 9. Cycle duration of plans with 3DC+ (top) and
without 3DC+ (bottom).

Figure 9 shows the duration of each phase of the cycle for
two different runs (one with 3DC+ and another without).
The two runs are different because the real execution lead
to more frequent failures of the MOVE action in the sec-
ond run. Yet, we see that using 3DC+ during execution
does not increase execution time too much.

5. DISCUSSION AND PROSPECTIVES

If one looks at the current state of the art, few high
level planning systems have been integrated onboard real
robots while running complex navigation software. Many
architectures (such as Claraty (Ref. 14)) provide a “deci-
sional” level for such components , but little has been

6For thedownload_images and communicate actions, specific pro-
cedures simulate the visibility windows and the gradual download of
images.

done as far as deploying them entirely on real systems.
The main reason is probably that despite the availabil-
ity of good planning systems, few of them integrate the
proper plan repair and replanning mechanisms. Still, the
ROGUE system (Ref. 15), for instance, performs plan-
ning for asynchronous goals and execution monitoring
enhanced with learning capabilities. In (Ref. 16), the au-
thors propose a different approach where the plans them-
selves specify the adaptation processes as subplans. In
any case, very few approaches explicitly handle time and
address the issue of temporal execution. The CASPER
system (Ref. 17) (part of Claraty) performs continuous
planning interleaved with execution. State and temporal
data are regularly updated and potential future conflicts
are incrementally resolved using iterative repair tech-
niques. However this approach does not handle conflicts
which appear within the replanning time interval. Other
approaches such as IDEA (Ref. 18) are more radical and
provide an architecture which seamlessly integrates tem-
poral planning and execution control: each component
can be seen as an agent running a reactive planner, and
sharing with the others parts of a global temporal model
specifying the “behavior” as well as the communication
between agents.

We have presented in this paper the IxTeT system which
combines a temporal lifted POCL planner with a tem-
poral executive to integrate deliberative planning, exe-
cution monitoring and replanning while respecting real-
time constraints. This approach cannot account for all the
possible execution failures in all their generality. Nev-
ertheless, in many situations where some temporal and
resource flexibility has been left,one can expect the pre-
sented repair techniques to greatly improve the overall
performance of the system by:

• reducing the number of complete replannings,

• improving the system reactivity to unexpected
events,

• taking into account new goals on the fly,

• managing the changes in the resources capacity,

• managing the uncertainty in the model de-
scription (actions duration, resources consump-
tion/production).

Moreover, by implementing 3DC+ in IxTeT, we have a
better handling of temporal controllability, and produce
plans which are more robust at execution time, without a
major degradation in performance.

We have conducted a number of field experiments. Al-
though preliminary, the current results are quite promis-
ing. First, we show that planning with time and resource
combined with execution control, plan repair and replan-
ning can be used on real world problem. Second it shows
that such an approach can be deployed on current hard-
ware along with the “state of the art” navigation soft-
ware (stereo vision, terrain mapping, path planning, vi-
sual odometry, etc).



Yet, IxTeT effectiveness can be increased by improving
replanning strategies (rejected goals selection, state up-
date requests).

Despite the obvious application of systems such as IxTeT
to exploration probes and rovers, one can easily see the
possibilities it opens for service robotics (with the added
value of human robot interactions and problem joint reso-
lutions) and fields robotics, where planning and execution
control problems are also present.
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