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Abstract—In this paper, we propose a method to recognize
human body movements and we combine it with the contextual
knowledge of human-robot collaboration scenarios provided by
an object affordances framework that associates actions with its
effects and the objects involved in them. The aim is to equip
humanoid robots with action prediction capabilities, allowing
them to anticipate effects as soon as a human partner starts
performing a physical action, thus enabling interactions between
man and robot to be fast and natural.

We consider simple actions that characterize a human-robot
collaboration scenario with objects being manipulated on a table:
inspired from automatic speech recognition techniques, we train
a statistical gesture model in order to recognize those physical
gestures in real time. Analogies and differences between the
two domains are discussed, highlighting the requirements of
an automatic gesture recognizer for robots in order to perform
robustly and in real time.

I. INTRODUCTION AND RELATED WORK

In recent years, there has been a surge of interest in in-

terfaces whereby users perform uninterrupted physical move-

ments with their hands, body and fingers to interact with

smartphones, game consoles, kiosks, desktop computer screens

and more [1]. At the same time, the number of autonomous

service robots integrated in society —as opposed to industrial

ones— is ever-increasing. During 2011, 2.5M such robots were

sold: 15% more than in the previous year.a

Given these premises, it is important to develop pattern anal-

ysis techniques suited for recognizing physical gestures in the

context of task-based human-robot collaboration. This article

presents a vision-based approach to classifying human task

actions toward enabling robots to provide appropriate support

to humans, as illustrated in Fig. 1, by using statistical models

based on training data for recognizing real-time continuous

gestures.b

This work is set within the object affordances frame-

work [2], [3], which encodes causality relations between

actions, objects and the effects of actions on objects. Our

contribution to this probabilistic framework is that of explicitly

modeling and measuring action variables, as shown in the

upper part of Fig. 2. For a more detailed explanation of object

affordances, see Sec. I-B.

ahttp://www.ifr.org/service-robots/statistics/
bIn this article, the term “gesture” refers to intentional physical actions (see

also Sec. I-A), and we will use it interchangeably with the term “action”.

Figure 1: A robot capable of recognizing human gestures can

intervene before the action is finished and provide help.

We argue that physical gestures give a hint of the intention

over human action or aim, and we wish to capture this predic-

tive power so that robots can exploit it for smoother interac-

tions with their human counterparts. Our proposed system aims

at equipping robots with the possibility of predicting human

intentions by analyzing natural, continuous bodily gestures

and the contextual knowledge expressed in object affordances,

such as object shape and relationships between objects and

movements with certain dynamics or trajectories. The whole

system is sketched in Fig. 2, and in this paper we focus on

the continuous gesture recognition aspect with analysis and

results, on our planned experiments with a humanoid robot

and on how gestures fit into the affordance network learned

in previous work. Other components of the system, such as

human-robot mimicking, will be discussed in future work.

In the remainder of this paper we outline the nature of

dynamic gestures and related work in the automatic gesture

recognition literature, we present our model and experimental

results, and we show the feasibility of the proposed system in

a possible human-robot interaction setting.

A. Automatic Gesture Recognition

In a broad sense, gesture is a component of human com-

munication that involves the movements of different body

parts: the whole body, hands, arms, fingers and/or face. It

constitutes a primary modality for humans, who learn to use

it as early as during their first year of age, before they learn

http://www.ifr.org/service-robots/statistics/
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Figure 2: Affordance learning schema, with the proposed

extension that takes human and robot movement into account.

Because human actions and robot actions can be mirrored,

the dotted line indicates a possible shortcut to connect hu-

man actions with action primitives directly. Square nodes are

discrete-valued, round nodes are continuous, shaded nodes are

observable through robot sensory data or computer vision, and

edges indicate Bayesian dependency.

to speak [4]. The nature of human gestures is ambiguous

and context-dependent [5]: there exist many-to-one mappings

between gestures and conveyed concepts. In previous work [6],

we studied human interpretation of robot gestures; in this work

we tackle the opposite problem of how robots can recognize

human gestures.

Different approaches have been proposed to design au-

tomatic gesture recognition systems, both to decide which

features are salient for recognition [7] and which model best

classifies them. For more comprehensive reviews of these

systems, we refer the reader to [8]–[10].

Designing an automatic gesture recognizer poses two main

issues:

1) spatio-temporal variability: the same physical gesture can

differ in shape and duration, even for the same gesturer;

2) segmentation: the start and end points of a gesture are

difficult to define and identify.

Common features for gesture recognition systems include:

skin color segmentation, optical flow (the apparent visual

motion caused by the relative motion of objects and viewer),

arm-hand tracking in 2D or 3D, full body tracking.

Many gesture classifiers are designed to work in a controlled

environment, or they make strong assumptions:

• limited and fixed lexicon of permitted gestures

• availability of the whole test data sequence to classify

(system only works offline)

• constrained physical space (hands must move only within

a certain region of upper body)

• unnatural interaction (isolated gestures, to be preceded

and followed by a relaxed pose lasting several seconds)

• users must wear expensive hardware tracking devices.

Neuroscience experiments [11] have suggested that the area

of the human brain responsible for gesture processing is also

employed for speech processing, functioning in fact as a

modality-independent semiotic system, connecting meaning to

various types of symbols: words, gestures, images, sounds, or

objects. In particular, we propose that the link between gesture

and speech justifies the usage of tools that, as in automatic

language recognition, (i) permit an abstraction hierarchy and

(ii) are suited for capturing time series data. Hidden Markov

Models, explained below, are one such statistical tool. We

adopt an HMM-based approach to recognize human or robot

gestures that follow temporally dynamic patterns.

Hidden Markov Models (HMMs) [12] are a statistical tool

for modeling time series data. They have been applied to the

segmentation and recognition of sequential data with spatial

and temporal variability such as speech, machine translation,

genomics and financial data. One of the advantages of HMMs

—and a reason behind their popularity— is the fact that they

are computationally tractable thanks to dynamic programming

techniques: marginal probabilities and samples can be obtained

from an HMM with the Forward–Backward algorithm, and the

most likely sequence of hidden states can be estimated with

the Viterbi algorithm.

A continuous-output HMM is defined by a set of states S =
{s1, . . . , sQ} and by a set of parameters λ = {A,B,Π},

where A = {aij} is the transition probability matrix, aij is

the transition probability from state si at time t to state sj at

time t + 1, B = {fi} is the set of Q observation probability

functions (one per state i) with continuous input and output,

Π is the initial probability distribution for the states.

Selected related works in the dynamic gesture recognition

literature are described in the remainder of this section.

The system by Yamato et al. [13] was among the first

to apply HMMs for the recognition of human gestures and

actions, using 25 × 25 pixel subsampled images of tennis

strokes as features. However, this model required many ad-

hoc pre-processing and filtering steps and the outputs were

discrete, making the system not feasible or robust to be used

in other domains. By contrast, our proposed approach does not

assume prior filtering of the gestural feature points to reduce

noise — in doing so, we preserve all the information contained

in the raw data points, and we input these points to HMMs

without pre-processing (noise is addressed by having enough

diverse data samples of the considered scenarios); this way,

we can execute the system in real time on a robot platform

observing a continuous stream of human actions, not having to

wait for the input gesture to be finished in order to recognize

it.

Wilson et al. [14] developed a parameterized gesture rec-



ognizer where people’s motion was recorded with a Polhemus

motion capture system. This work is notable because it not

only can detect a general pattern (e.g., human gait), but it

is also able to extract context-dependent components of that

pattern (e.g. speed, style). The main drawback lies in the high

computational cost induced by the Parametric Hidden Markov

Model and Generalized Expectation-Maximization algorithm

during recognition. Our approach uses standard HMMs and

EM, making it more feasible to be run online by a robot; in

addition, the users of our human-robot interaction scenarios do

not have to wear motion capture devices, but they can perform

actions naturally in their everyday clothes.

Starner et al. [15] proposed a system to recognize sign

language, where each sign word is associated to an HMM

with an ad-hoc structure that fits their data (four states, each

state can cycle to itself or proceed to the next one, and state 1
can jump to state 3 directly), features are determined with

computer vision (users wear colored gloves), and a semantic

grammar is used to check the validity of phrases. Our system

does not require human users to wear colored attire or special

hardware, and our HMMs can have a varying number of

states with homogeneous transitions, as in Fig. 5b: not having

skip transitions between particular state pairs permits us to

modulate HMM parameters easily, handling gestural data of

different nature, for example with different temporal durations.

Alon et al. [16] also addressed the sign language recognition

problem, using sophisticated visual motion features and a

dynamic programming approach to prune multiple hypotheses,

thus taking into account concurrent subgesture relationships;c

their hand features are normalized with respect to the location

and scale of the human’s face, whereas our proposed approach

centers them around the torso (human center of gravity),

making it more versatile to recognize two gestures of the same

class that occur at different horizontal distance from the face.

Another interesting work is the one by Lee and Kim [17],

which analyzes gestures performed with one hand on a simple

visual background, introducing the notion of a nongesture

garbage threshold, similar to silence models in speech. How-

ever, their garbage model is ergodic (it is built by fully

connecting all the states from all the gesture models in the

system) and as such can incur in excessive computational

burden, due to the high number of model parameters to

optimize. Our proposed garbage model is more compact, being

trained with a low number of states, just like another gesture

model.

The article by Yang et al. [18] aims at recognizing complex

actions (e.g. sitting on the floor, jumping) using angles be-

tween human body parts as features, then clustering them with

Gaussian Mixture Models, partitioning the physical space into

regions and then training HMMs for gestures and between-

gesture transitions (garbage). One limitation of this approach

is that the HMM states are tied to the pre-defined physical

cluster or regions, thus this system cannot deal well with scale

cFor example, the “5” shape can also be interpreted as the first part of an
“8” shape.

variations (e.g. two gestures conveying the same message, one

with wide arms and the other one with narrow, less emphatic

movements). Our approach is less sensitive to scale, because

we train each gesture class with varying amplitude degrees and

we let the model assign states to spatial points automatically,

without clustering into regions.d

B. Object Affordances

The robot object affordances framework [2] takes its inspi-

ration in psychology, and considers affordances as a mapping

between actions, objects and the effects of actions on objects,

as displayed in Fig. 2. Such mapping can be hand-coded,

learned by demonstration, learned by robot self-exploration,

or by a combination of these methods. Using inferential

reasoning and Bayesian Networks (BNs, a probabilistic model

that represents random variables and conditional dependencies

on a graph), this framework allows robots to recognize objects

or actions (intentions) given the observations of object features

and motions, to predict the outcome of an action given the

observation of an effect, or to plan actions in order to achieve

a desired object/effect configuration.

Because the affordance network of Fig. 2 encodes the

dependency relations between the variables, we can compute

the marginal distribution of one or more variables, given the

values of the other ones (it is not necessary to know the

values of all the variables, in order to perform inference).

An affordance network can be seen as a knowledge system

which can be queried and contains three types of variables:

A (actions), observed object features (Fi) and observed object

effects (Ei). For example, to predict the resulting effects

when observing an action ai being performed on visual object

features fj , we have to compute p(E|A = ai, F = fj).
In [3], the robot affordance network of [2] was augmented

with spoken word nodes, where each word may depend on any

subset of A, Fi and Ei. This extension permits to associate

words to meanings in robotic manipulation tasks in the event

of co-occurrence between actions and verbal description of

actions, object properties and resulting effects.

In [2] and [3], actions were not measured explicitly in the

model: in fact, looking at the lower part of Fig. 2 (below the

dashed line), the “action” node does not have any output edge

that directly leads to an observation node. In this paper we

present a possible way to extend robot affordances, improving

action (intention) inference quality by the means of perceived

gesture motion (above the dashed line). In previous work, the

action (intention) could be inferred only indirectly through

the observation of the effect – and after it had occurred. In

the proposed approach, the action (intention) can be inferred

before it completes, therefore giving the robot the opportunity

to anticipate its effect and help the human accordingly. For

dWe rely on gestural data to be diversified enough in amplitude (e.g. each
movement having wide, narrow and medium-width examples), so that the
trained Gaussian probabilities will cover the physical space reasonably well for
the interaction scenarios that we consider. In the current version of our work,
we do not claim real robustness to scale, which would require a feature space
capable of interpolating between narrow and wide gestures (see Sec. II-A).



(a) Tap. (b) Grasp. (c) Push.

Figure 3: Some iCub robot gesture actions for object ma-

nipulation, with one hand reaching for an object for touch-

ing/grasping from different directions.

(a) RGB view. Hand trajectory
shown in green, elbow trajectory
in red.

(b) Depth skeletal view. Hand trajec-
tory shown in green, elbow trajectory
in light blue.

Figure 4: A dynamic human gesture, with temporal trajectory

of selected joints being highlighted. The 3D coordinates of the

joints of interest constitute the inputs of our statistical models

of Fig. 5.

humanoid robots with morphology and motion capabilities

similar to humans, we also consider the possibility to learn

the gesture recognition model from movements of the robot

itself. In that case, when observing the human, a map from

human motion to robot motion must be taken into account,

mimicking the role of mirror neurons [19] and allowing the

robot to automatically imitate the human.

Some robot actions are shown in Fig 3, as performed by the

iCub [20], a child-sized humanoid robot, possessing 53 de-

grees of freedom, facial expressions, tactile touch sensors,

fully articulated eyes and head, and the ability to perform

dexterous manipulation and gestures.

II. PROPOSED APPROACH

In this section we will formulate the action recognition

model, its properties and training phase, and how to evalu-

ate the presented tests. For the initial experiments presented

hereafter, we assume:

• a human action vocabulary of three simple manipulation

gestures (plus the “garbage” or “nongesture” action) that

involve one arm, analogous to the ones of Fig. 3;

• a feature space containing the 3D position coordinates of

the hand joint in time, obtained with an RGB-D camera;

• inputs: sequences of observation vectors as described in

the previous points;

• outputs consisting of either (i) the recognized, most

likely single action within an observation sequence or

subsequence segment (Forward–Backward algorithm), or

(ii) the estimated sequence of actions (Viterbi algorithm).

A. Feature Selection

The features we use to train our gesture classifier are

computed directly from the spatial 3D coordinates of one or

more human(oid) joints being tracked (hands, optionally also

elbows, shoulders, torso, head), and they can be calculated

online without having to wait for an input sequence to be

finished. For this reason, we perform no normalization or

filtering that requires knowledge of the completed sequence

(e.g. global minima and maxima). The 3D joints coordinates

can be obtained with general-pupose RGB-D cameras like the

Microsoft Kinect or the Asus Xtion Pro, or with specialized

computer vision algorithms. Fig. 4 illustrates the idea of

extracting a time series of 3D coordinate features from a

dynamic gesture.

For the simple one-hand actions shown in Figs. 3 and 4,

tracking one hand/arm is sufficient. While we do not apply

normalization steps to the coordinates, we do apply a simple

geometric transformation to the coordinates obtained with

RGB-D cameras and skeleton recognition algorithms: we set

our reference frame to be centered on the human torso, instead

of the default sensor-centered reference frame. This transfor-

mation has two motivations, a theoretical and a practical one:

from a theoretic perspective, it is coherent with the “human-in-

the-loop” model, placing a virtual mobile point on the human

user, and not on a fixed point attached to a camera or to a

corner of an experiment room; from a practical perspective,

this transformation provides invariance to starting point of a

physical gesture. In other words, the user can perform actions

at any distance or angle from the robot sensors, and these

actions will always be measured with regards to his torso

coordinate.

To disambiguate the gestural “words” of a domain, it is

sometimes beneficial to enrich the feature space to include

not only raw 3D coordinates of the joints of interest, but also

their first and second derivatives [7], curvature, other structural

geometric representations, and context-specific features (e.g.

distance to interaction partner, distance to object to manip-

ulate). In our current scenarios, however, we simply employ

the 3D coordinates of the most meaningful joint (the hand),

because it yields the highest recognition rate in initial tests.

B. Trained Models

We now present three different graphical models that were

used in our experiments. The first two models serve as a

baseline, while the third one is the final proposed approach,

because it is powerful enough to capture a continuous (unin-

terrupted) sequence of actions, with permitted passages from

one action to another being defined in its transition rules.

The first statistical model that we defined for our ex-

periments (“Model 1”) consisted of a Gaussian Mixture

Model (GMM: a linear superposition of Gaussian components)

–either trained with all the data, both gestural and nongestural,

or trained with nongestural data only– and several HMMs,



hmm1 1 2 . . . Q

hmm2 1 2 . . . Q

hmm3 1 2 . . . Q

garbage 1

(a) Model 1.

hmm1 1 2 . . . Q

hmm2 1 2 . . . Q

hmm3 1 2 . . . Q

garbage 1 2 . . . Q

(b) Model 2.

gesture1 (tap)

gesture2 (grasp)

gesture3 (push)

garbage

(c) Model 3.

Figure 5: “Model 1”: Hidden Markov Models trained with data from specific gestures, Gaussian Mixture Model trained with

garbage (non-gesture) data.

“Model 2”. Hidden Markov Models trained, respectively, with first gesture data, with second gesture data, with third gesture

data and with nongesture (garbage) data. Each model is independent from the other ones, therefore it can have arbitrary state

indexes 1, . . . , Q, with Q not necessarily the same number for all the models.

“Model 3”. Hidden Markov Models (previously trained, respectively, with first gesture data, with second gesture data, with

third gesture data and with nongesture/garbage data) after being merged. Each rectangle represents a gestural HMM like the

ones shown in Fig. 5b, however in this case the states must be uniquely numbered.

each one trained for one gesture, as illustrated in Fig. 5a.

This type of model allows to quickly test a gesture recognizer,

clearly separating between the garbage part from the gesture

part of a data sequence. On the other hand, the GMM nature

of the garbage model does not allow to capture the dynamic

nature which is also present in between-gesture transitions.

A second statistical model that we trained, “Model 2”,

improves on the previous model in the gesture/nongesture

separation criterion. Here, the garbage model consisted of an

HMM trained with garbage data, and other HMMs for actual

gestures, as in Fig. 5b. In the current version of our work, for

simplicity we have fixed the number of states Q to be equal

for all gestures.

So far, we have considered the models of Fig. 5b to be

independent from each other: each of them has its start, inter-

mediate and final states, as well as its own prior probabilities,

state transition probabilities and observation probabilities. In

Fig. 5c, we have merged those models into one HMM with

many states and appropriately combined probability matrices

(“Model 3”). Merging the previously trained statistical models

into one new HMM entails the following steps:

• weights matrix, means matrix, covariance matrix: con-

catenation of previous models’ matrices along the Q di-

mension;

• initial probability vector: stochastic concatenation of pre-

vious models’ priors, i.e., a column vector with (Q ·
#gestures) entries, all set to zero except for the first state

of each gesture, set to 1/#gestures;

• transition matrix: (Q · #gestures)× (Q · #gestures) block

diagonal matrix built from the previous (Q×Q) matrices,

allowing transitions from each of the previous HMMs’

end states into the first state of any previous HMM (this

allows the continuous gesture recognition algorithm to

enter a sequence j at the end of any finished sequence i).

In all of the models described above, HMMs were trained

with the incremental mixture splitting technique, inspired from

speech recognition, in order to obtain the desired number of

output Gaussians Mdes. Initially the mixture has M = 1 Gaus-

sian (with mean initialized to empirical mean and covariance

initialized to empirical covariance of gesture data, respec-

tively); we run the Baum–Welch algorithme to improve HMM

parameter estimates; then we enter a cycle, in which we run

UPMIX (adapted from [21, Sec. 10.6], sketched in Alg. 1) and

Baum–Welch, increasing the counter M ; the cycle terminates

when the weights matrix contains Mdes Gaussians as desired.

This technique allows us to achieve higher likelihoods than

with simple Baum–Welch (EM), as shown in Fig. 6.

In the current version of our work, we collected training

data of one person performing actions similar to the robot

gestures depicted in Fig. 3 without the manipulated objects

(because they are not considered at this stage), in other words

we trained the action recognizer with action pantomimes. Each

action was performed in three different amplitude classes: wide

gestures (emphatic arm movements), medium-width gestures

and narrow gestures (subtle movements). Each amplitude class

was acquired multiple times (12–14 times), thus providing

around 40 training repetitions for each of the manipulation

actions considered. This data set was used to train all the

statistical models described in this section.

In the next section, we show recognition results ob-

tained by employing common HMM inference methods [12]:

(i) Forward–Backward algorithm for isolated gesture recogni-

eThe Baum–Welch algorithm is an instance of the Expectation–
Maximization (EM) algorithm used to estimate HMM parameters.



Algorithm 1 Gaussian mixture splitting.

1: procedure UPMIX(weights, means, covariances)

2: weights: split heaviest entry

3: means: duplicate corresponding entry

4: means: perturb new entries to be means1,2(i)±=
√

cov(i, i) · pertDepth ⊲ pertDepth = 0.2

5: covariances: duplicate corresponding entry

6: M := M + 1 ⊲ M: current no. of Gaussians

7: end procedure
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Figure 6: Evolution of the likelihoods of the models, com-

paring Expectation–Maximization algorithm when initialized

with M=3 Gaussian outputs from the headstart (dashed red

line) and when employing the mixture splitting technique

(solid blue line, with points where the number of mixtures

was incremented being highlighted). This affects the whole

model, because the splitting applies to each GMM, but the

retraining requires the full HMM. With the exception of the

“push” gesture class, our method achieves a higher likelihood

than simple EM.

tion, which computes the most likely single action recognized

from a test data sequence; the major downside of this tech-

nique is that it requires the segmentation of test data, thus the

availability of all test data offline; (ii) Viterbi algorithm for

continuous gesture recognition: this method does not require

prior segmentation of test data, and it outputs the estimated

sequence of actions (state path) that best explain the test data

sequence.

III. EXPERIMENTAL RESULTS

Gesture recognition tests for the different models and al-

gorithms are shown in Figs. 7 for the baseline Models 1

and 2, in Figs. 9 and 10 for the proposed approach which

uses Model 3. Both training and test sequences were collected

by the authors using an RGB-D camera recording gestures

from one person. While we have yet to test how robust the

system is to people with different heights and sizes, we expect

it to be robust because we are applying a normalization step

in all the observed measurements, dividing them by average

shoulder width after a few frames (this can be done in real

time). The feature space that we use in the current version of

the work coincides with the 3D position coordinates of the

hand joint in time; enriching the space with the coordinates

of other joints such as shoulder and elbow actually decreased

the recognition performance in our tests.

Forward–Backward classification results with “Model 1” are

shown in Fig. 7a. The test sequence consists of nine continuous

gestures, specifically three triplets (tap, grasp, push), the first

triplet occurring at slow speed, the next one at medium speed,

and the final one at fast speed. In this experiment, the test

sequence was segmented similarly to how training data was

segmented. In general, this is not safe to assume in a real

time scenario, unless a delay is added. The problem here

is that the gesture threshold is “too strict”, voiding many

HMM assignment classifications, even where they are correct.

In the “Model 1” experimental setup described above,

gesture recognition performs poorly, with a recognition rate

below 50%, mainly due to the fact that the garbage GMM

cannot learn the temporal nature of nongesture (between-

gesture) transitions.

Taking “Model 2” (Fig. 5b) into account, Fig. 7b displays

improved Forward–Backward classification results. Compared

to “Model 1”, this model is better in correctly separating

garbage segments from gesture ones, which we expected

because the gesture classifier is richer here, being able to

capture the dynamic nature of between-gesture transitions with

its dedicated HMM. However, classification still suffers during

probabilistic gesture class assignment, confusing taps with

grasps for all velocities of the input sequence.

“Model 3” (Fig. 5c) allows us to illustrate the performance

of our system with the Viterbi algorithm results of Figs. 9 and

Fig. 10. The algorithm reconstructs the optimal (most likely)

gesture state path resulting from a given test sequence. In

these experiments, we assume that the context is described

as the human-robot manipulation scenario shown in Fig. 8,

whereby a user has to correctly move and grasp an object

on a table, without making it collide with other objects: the

correct strategy (intention) corresponds to the Push-Tap-Grasp

sequence, a fact known a priori by the system. In Fig. 9 (left),

the recognition accuracy is high (actions are detected in the

correct temporal regions, and they are classified correctly 3/3

times) and the intention of the user is inferred to be coincident

to the correct Push-Tap-Grasp strategy. On the other hand,

Fig. 9 (right) shows a case where the recognition is still correct

(the action sequence is correctly identified as Tap-Push-Grasp),

but the wrong intention or strategy on the part of the user

can be detected – thus allowing the robot to intervene, as

motivated by the scope of this paper. Finally, Fig. 10 shows a



(a) Initial configuration. (b) Intermediate configuration. (c) Final configuration.

Figure 8: Example scenario to be applied in a human-robot collaboration setting: a human user sitting on the left has to move

the mug next to the bottle, avoiding the red obstacle on the table, so that a robot bartender can fill the mug. The repertoire of

permitted actions corresponds to the three gestures of Fig. 3. Without delving into the planning problem, which is out of the

scope of this paper, we assume that the robot system knows that Push-Tap-Grasp is the correct strategy considering the initial

table configuration, while for instance Tap-Push-Grasp is an incorrect strategy due to constraints. Fig. 9 (left) and Fig. 9 (right)

reflect these two situations from the pattern recognition perspective.
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Figure 9: Two results of the proposed human-robot manipulation scenario of Fig. 8. Red plus signs: tap states, green stars:

grasp states, blue crosses: push states, rectangles: human-labeled ground truth segmentation.

Left: a Push-Tap-Grasp action sequence performed by the user is correctly recognized (3/3 score), the user intention is found

to be correct too, meaning that it is feasible given context and a table/object configuration. Right: a Tap-Push-Grasp action

sequence is correctly recognized (3/3 score), although the user intention can be detected by the system as being incorrect

considering the current context – allowing the system to alert the user.

test sequence which the system failed to recognize correctly

as Push-Tap-Grasp (the order of actions actually performed

by the user), due to limitations in training data, in the sensor

we use and in the general statistical robustness of our current

model.

IV. CONCLUSIONS

Gestures are a paramount ingredient of communication,

tightly linked with speech production in the brain: the ability

to interpret the physical movements of others improves the

understanding of their intentions and thus the efficiency of

interactions. We propose a method to recognize gestures in a

continuous, real time setting with statistical methods, and we

discuss how to incorporate the predictive power supplied by

human actions into robot affordance learning, ultimately al-

lowing robots to anticipate others’ intentions while interaction

partners are still performing their actions.

This article laid the foundations for adding action knowl-

edge in interactive affordance scenarios. Different probabilistic

models for gesture recognition were discussed and tested in

an object manipulation scenario, with encouraging results.

Future work includes performing tests in human-robot object

manipulation tasks, enriching the actions repertoire with more

complex gestures taken from contexts different than object

manipulation (e.g. kitchen activities), and mirroring human

and robot actions through optical flow methods.
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(a) Model 1 (Fig. 5a) performance on segmented input sequence.
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Figure 7: Likelihood computed with Forward–Backward al-

gorithm.
√

: correct gesture classification, ×: wrong classifi-

cation, (
√
): classification is correct but is voided by GMM

nongesture threshold.
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