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A major challenge in modern robotics is to liberate robots from controlled industrial settings,

and allow them to interact with humans and changing environments in the real-world. The

current research attempts to determine if a neurophysiologically motivated model of cortical

function in the primate can help to address this challenge. Primates are endowed with cog-

nitive systems that allow them to maximize the feedback from their environment by learning

the values of actions in diverse situations and by adjusting their behavioral parameters (i.e.,

cognitive control) to accommodate unexpected events. In such contexts uncertainty can

arise from at least two distinct sources – expected uncertainty resulting from noise during

sensory-motor interaction in a known context, and unexpected uncertainty resulting from

the changing probabilistic structure of the environment. However, it is not clear how neuro-

physiological mechanisms of reinforcement learning and cognitive control integrate in the

brain to produce efficient behavior. Based on primate neuroanatomy and neurophysiology,

we propose a novel computational model for the interaction between lateral prefrontal and

anterior cingulate cortex reconciling previous models dedicated to these two functions.We

deployed the model in two robots and demonstrate that, based on adaptive regulation of a

meta-parameter β that controls the exploration rate, the model can robustly deal with the

two kinds of uncertainties in the real-world. In addition the model could reproduce monkey

behavioral performance and neurophysiological data in two problem-solving tasks. A last

experiment extends this to human–robot interaction with the iCub humanoid, and novel

sources of uncertainty corresponding to “cheating” by the human. The combined results

provide concrete evidence for the ability of neurophysiologically inspired cognitive systems

to control advanced robots in the real-world.
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INTRODUCTION

In controlled environments (e.g., industrial applications), robots

can achieve performance superior in speed and precision to

humans. When faced with limited uncertainty that can be char-

acterized a priori, we can provide robots with computational

techniques such as finite state machines that can address such

expected uncertainty. But in the real-world, robots face unexpected

uncertainty – such as new constraints or new objects in a task –

and need to be robust to variability in the world.

Exploiting knowledge of primate neuroscience can help in the

design of cognitive systems enabling robots to adapt to varying task

conditions and to have satisfying, if not optimal, performance, in

a variety of different situations (Pfeifer et al., 2007; Arbib et al.,

2008; Meyer and Guillot, 2008).

We have previously characterized the functional neurophys-

iology of the prefrontal cortex as playing a central role in the

organization of complex cognitive behavior (Amiez et al., 2006;

Procyk and Goldman-Rakic, 2006; Quilodran et al., 2008). The

goal of the current research is to test the hypothesis that indeed,

a model based on this architecture can be used to control

complex robots that rely on potentially noisy perceptual–motor

systems.

Recent advances in the neurophysiological mechanisms of

decision-making have highlighted the role of the prefrontal cortex,

particularly the anterior cingulate cortex (ACC) and dorsolat-

eral prefrontal cortex (LPFC), in flexible behavioral adaptation

by learning action values based on rewards obtained from the

environment, and adjusting behavioral parameters to varying

uncertainties in the current task or context (Miller and Cohen,

2001; Koechlin and Summerfield, 2007; Rushworth and Behrens,

2008; see Khamassi et al., in press for a review). Both the ACC and

LPFC appear to play crucial roles in these processes. They both

receive inputs from dopamine neurons which are known to encode

a reward prediction error coherent with reinforcement learning

(RL) principles (Schultz et al., 1997). The LPFC is involved in

action selection and planning. The ACC is known to monitor feed-

back as well as the task and is considered to modulate or “energize”

the LPFC based on the motivational state (Kouneiher et al., 2009).
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However, there is a contradiction between current models of

the ACC–LPFC system, which are either dedicated to reward-

based RL functions (Holroyd and Coles, 2002; Matsumoto et al.,

2007) or are focused on the regulation of behavioral parameters

by means of conflict monitoring and cognitive control (Botvinick

et al., 2001; Cohen et al., 2004). Here we propose a novel compu-

tational model reconciling these two types of processes, and show

that it can reproduce monkey behavior in dealing with uncer-

tainty in a variety of behavioral tasks. The system relies on RL

principles allowing an agent to adapt its behavioral policy by trial-

and-error so as to maximize reward (Sutton and Barto, 1998).

Based on previous neurophysiological data, we make the assump-

tion that action values are learned and stored in the ACC through

dopaminergic input (Holroyd and Coles, 2002; Amiez et al., 2005;

Matsumoto et al., 2007; Rushworth et al., 2007). These values are

transmitted to the LPFC which selects the action to perform. In

addition, the model keeps track of the agent’s performance and

the variability of the environment to adjust behavioral parame-

ters. Thus the ACC component monitors feedback (Holroyd and

Coles, 2002; Brown and Braver, 2005; Sallet et al., 2007; Quilo-

dran et al., 2008) and encodes the outcome history (Seo and Lee,

2007). The adjustment of behavioral parameters based on such

outcome history follows meta-learning principles (Doya, 2002)

and is here restricted to the tuning of the β meta-parameter which

regulates the exploration rate of the agent. Following previous

machine learning models, the exploration rate β is adjusted based

on variations of the average reward (Auer et al., 2002; Schweighofer

and Doya, 2003) and on the occurrence of uncertain events (Yu

and Dayan, 2005; Daw et al., 2006). The resulting meta-parameter

modulates action selection within the LPFC, consistent with its

involvement in the exploration–exploitation trade-off (Daw et al.,

2006; McClure et al., 2006; Cohen et al., 2007; Frank et al., 2009).

The model was tested on two robot platforms to: (1) show its

ability to robustly perform and adapt under different conditions of

uncertainty in the real-world during various neurophysiologically

tested problem-solving (PS) tasks combining reward-based learn-

ing and alternation between exploration and exploitation periods

(Amiez et al., 2006; Quilodran et al., 2008); (2) reproduce monkey

behavioral performance by comparing the robot’s behavior with

previously published and new monkey behavioral data; (3) repro-

duce global properties of previously shown neurophysiological

activities during these tasks.

The PS tasks used here involve a set of problems where the

robot should select one of a set of targets on a touch screen. Each

problem is decomposed into search (exploration) trials where the

robot identifies the rewarded target, and exploitation trials where

the robot then repeats its choice of the “best” target. We will see

that the robot solved the task with performance similar to that

of monkeys. It properly adapted to perceptual uncertainties and

alternated between exploration and exploitation.

We then generalized the model to a human–robot interaction

scenario where unexpected uncertainties are introduced by the

human introducing cued task changes or by cheating. By cor-

rectly performing and autonomously learning to reset exploration

in response to such uncertain cues and events, we demonstrate

that neurophysiologically inspired cognitive systems can con-

trol advanced robotic systems in the real-world. In addition, the

model’s learning mechanisms that were challenged in the last

scenario provide testable predictions on the way monkeys may

learn the structure of the task during the pre-training phase of

Experiments 1 and 2.

MATERIALS AND METHODS

GLOBAL ROBOTICS SETUP

In each experiment presented in this paper, we consider a

humanoid agent – a physical robot or a simulation – which inter-

acts with the environment through visual perception and motor

commands. The agent perceives objects or geometrical features

(i.e., cubes on a table or targets on a screen) via a camera-based

vision system described below. The agent is required to choose one

of the objects with the objective of obtaining a reward. The reward

is a specific visual signal (i.e., a triangle presented on a screen)

supposed to represent the juice reward obtained by monkeys dur-

ing these experiments. For simplicity, perception of the reward

signal is hardcoded to trigger an internal scalar reward signal in

the computational model controlling the robot. Thus all external

inputs are provided to the robot through vision. Experiments 1 and

2 are inspired by our previous monkey neurophysiology experi-

ments (Amiez et al., 2006; Quilodran et al., 2008). They involve

interaction with a touch-sensitive screen (IIyama Vision Master

Pro 500) where different square targets appear. The agent should

search for and find the target with the highest reward value by

touching it on the screen (Figure 1). Experiment 3 extends mon-

key experiments to a simple scenario of human–robot interaction

that involves a set of cubes on a table. A human is sitting near the

table, in front of the robot, and shuffles the cubes. The robot has

to find the cube with a circle on its hidden face, corresponding to

the reward.

GLOBAL STRUCTURE OF THE EXPERIMENTS

The three experiments have the same temporal structure. Here we

describe the details of this structure, and then provide the specifics

for each experiment.

All experiments are composed of a set of problems where

the agent should search by trial-and-error in order to find the

most rewarding object among a proposed ensemble. Each prob-

lem is decomposed into search (exploration) trials where the agent

explores different alternatives until finding the best object, and rep-

etition (exploitation) trials where the agent is required to repeat

choice of the best object several times (Figure 2). After the repeti-

tion, a problem-changing cue (PCC) signal is shown to the agent to

indicate that a new problem will start. In 90% of the new problems

the identity of the best object is changed. In Experiments 1 and 2,

the PCC signal is known a priori. Experiment 3 tests the flexibility

of the system, as the PCC is learned by the agent. Experiment 1

is deterministic (only one object is rewarded while the others are

not). Experiment 2 is probabilistic (each object has a certain prob-

ability of association with reward) and thus tests the ability of the

system to accommodate such probabilistic conditions.

EXPERIMENT 1

The first experiment is inspired by our previous neurophysiolog-

ical research described in (Quilodran et al., 2008). Four square

targets are presented on the touch screen (see Figure 2). At each
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FIGURE 1 | Lynxmotion SES robotic arm in front of a touch screen

used for Experiment 1. The screen is perceived by a webcam. The arm has

a gripper with a sponge surrounded by aluminum connected to the ground.

This produces a static current when contacting the screen and enables the

screen to detect when and where the robot touches it. This setup allows us

to test the robot in the same experimental conditions as the non-human

primate subjects in our previous studies (Amiez et al., 2006; Quilodran

et al., 2008).

problem, a single target is associated with reward with a probabil-

ity of one (deterministic). At each trial, the four targets appear on

the screen and remain visible during a 5-s delay. The robotic arm

should touch one of the targets before the end of the delay. Once

a touch is detected on the screen, the targets disappear and the

choice is evaluated. If the correct target is chosen, a triangle appears

on the screen, symbolizing the juice reward monkeys obtain. For

incorrect choices, the screen remains black for another 5-s delay

and then a new search trial starts. Once the correct target is cho-

sen through a process of trial-and-error search, a repetition phase

follows, lasting until the robot performs three correct responses,

no matter how many errors it made. At the end of the repetition

phase, a circle appears on the screen, indicating the end of the

current problem, and the start of a new one. Similarly to mon-

key experiments, in about 90% cases, the correct target is different

between two consecutive problems, requiring a behavioral shift

and a new exploration phase.

EXPERIMENT 2

Experiment 1 tests whether the model can be used under deter-

ministic conditions, but leaves open the question as to whether

it can successfully perform under a probabilistic reward distribu-

tion. Experiment 2 allows us to test the functioning of the model in

such probabilistic conditions, directly inspired by our neurophys-

iological research described in (Amiez et al., 2006). In contrast

with Experiment 1, the agent can choose only between two tar-

gets. In each problem, one target has a high probability (0.7) of

producing a large reward and a low probability (0.3) of produc-

ing a small one. The other target has the opposite distribution

(Table 1). Problems in this task are also decomposed in search and

repetition trials. However, in contrast to Experiment 1, there is no

sharp change between search and repetition phases. Instead, tri-

als are a posteriori categorized as repetition trials, as follows. Each

problem continues until the agent makes five consecutive choices

of the best target, followed by selection of the same target for the

next five trials or five of the next six trials. However, if after 50

trials the monkey has not entered the repetition phase, the cur-

rent problem is aborted and considered unsuccessful. Similarly to

Experiment 1, the end of each problem is cued by a PCC indi-

cating a 90% probability of change in reward distribution among

targets.

EXPERIMENT 3

The third experiment constitutes an extension of Experiment 1

to a simple human–robot interaction scenario. The experiment is

Table 1 | Reward probabilities used in Experiment 2.

Amount of “juice” dispensed as reward Target A Target B

1.2 mL 0.7 0.3

0.4 mL 0.3 0.7

FIGURE 2 |Task used in Experiment 1. Four targets appear on the screen. Only one is associated with reward. The robot searches for the correct target. When

the correct target is found, three repetitions of the correct choice are required before a problem-changing cue (PCC) appears. ERR, error; COR1, first correct

trial; COR, subsequent correct trials.
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performed with the iCub, a humanoid robot developed as part of

the RobotCub project (Tsagarakis et al., 2007). The task performed

by the iCub robot is illustrated in Figure 3 and its temporal struc-

ture is described in Figure 4. In this task, four cubes are lying on a

table. One of the cubes has a circle on its hidden face, indicating a

reward. The human can periodically hide the cubes with a wooden

board (Figure 4D) and change the position of the rewarding cube.

This mimics the PCC used in the previous experiments. The dif-

ference here is that the model has to autonomously learn that

presentation of the wooden board is always followed by a change

in condition, and should thus be associated with a shift in target

choice and a new exploration phase.

FIGURE 3 | iCub robot performing Experiment 3. The robot chooses

among four cubes on a table. The left screen tracks simulated activity in the

neural-network model. The right screen shows the perception of the robot.

MONKEY BEHAVIORAL VALIDATION

To validate the ability of the neurocomputational model to con-

trol the robot, we compared the robot’s behavioral performance

with monkey data previously published as well as original monkey

behavioral data. Average behavioral performances of Monkeys 1

and 2 performing Experiment 2 were taken from (Amiez et al.,

2006). Trial-by-trial data of monkey M performing Experiment 1

were taken from (Quilodran et al., 2008). In addition, we analyzed

unpublished data performed by three other monkeys (G, R, S) on

Experiment 1 in our laboratory.

NEURAL-NETWORK MODEL DESCRIPTION

Action selection is performed with a neural-network model1

whose architecture is inspired by anatomical connections in the

prefrontal cortex and basal ganglia in monkeys (Figure 5). The

model was programmed using the neural simulation language

(NSL) software (Weitzenfeld et al., 2002). Each module in our

model contains a 3 ∗ 3 array of leaky integrator neurons whose

activity topographically encodes different locations in the visual

space (i.e., nine different locations on the touch screen for Exper-

iments 1 and 2, or on the table for Experiment 3). At each time

step, a neuron’s membrane potential mp depended on its previous

history and input s:

τ
∂mp

∂t
= −mp + s (1)

where τ is a time constant. The average firing rate output of the

neuron is then generated based on a non-linear (sigmoid) function

of the membrane potential. We used ∂t = 100 ms, which means

that we simulated 10 iterations of the model per second of real

1The source code of the model and a tutorial document can be downloaded at:

http://chronos.isir.upmc.fr/∼khamassi/projects/ACC-LPFC_2011/

FIGURE 4 | Scenes perceived through the eyes of the iCub robot during

Experiment 3. Labeled green rectangles indicate visual features recognized

by the robot. The robot chose (by pointing to) one of four cubes on a table

(A,B). The human revealed the hidden side of the indicated cube. One of the

cubes had a circle on its hidden face, indicating a reward (C). At the end of a

problem, the human could hide the cubes with a wooden board (D), and

changed the position of the rewarded cube. In early stages, this was followed

by an error (E). Once the robot learned the appropriate meta-value of the

board, the human could cheat by unexpectedly changing the reward location

(F–H).
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FIGURE 5 | Neural-network model. Visual input (targets seen on the screen

or cubes on the table) is sent to the posterior parietal cortex (PPC). The

anterior cingulate cortex (ACC) stores and updates the action value associated

with choosing each possible object. When a reward is received, a

reinforcement learning signal is computed in the ventral tegmental area (VTA)

and is used both to update action values and to compute an outcome history

(COR, correct neuron; ERR, error neuron) used to modulate the exploration

level β∗ in ACC. Action values are sent to the lateral prefrontal cortex (LPFC)

which performs action selection. A winner-take-all ensures a single action to

be executed at each moment. This is performed in the cortico-basal ganglia

loop consisting of striatum, substantia nigra reticulata (SNr), and thalamus

(Thal) until the premotor cortex (PMC). Finally, the output of the PMC is used

to command the robot and as an efferent copy of the chosen action sent to

ACC.

time. A parameter table is provided in the appendix, summariz-

ing the number of neurons and parameters in each module of the

model. Here we describe the role of each of these modules.

VISUAL PROCESSING

Visual information perceived by the camera is processed by a

commercial object recognition software (SpikeNet; Delorme et al.,

1999). Prior to each experiment, SpikeNet was trained to recognize

a maximum of four different geometrical shapes (square, triangle,

circle in Experiments 1 and 2; cube, wooden board, hands, circle in

Experiment 3). During the task, perception of a particular shape

at a particular location activates the corresponding neuron in the

4 ∗ 3 ∗ 3 input matrix in the visual system of the model.

A time persistence in the visual system enables the perception of

an object to progressively vanish instead of instantaneously disap-

pear. This is necessary for robotic tests of the model during which

spurious discontinuities in the perception of an object should not

influence the model’s behavior.

CORTICAL MODULES

In order to decide which target to touch or cube to choose,

the model relies on the estimation of action values based on a

Temporal-Difference learning algorithm (Sutton and Barto, 1998).

In our model, this takes place in ACC, based on three princi-

pal neurophysiological findings: First – anatomical projections of

the dopaminergic system that have been demonstrated to have

greater strength to ACC than to LPFC (Fluxe et al., 1974). Sec-

ond – the observed ACC responses to reward prediction errors

(Holroyd and Coles, 2002; Amiez et al., 2005; Matsumoto et al.,

2007). Third – the observed role of ACC in action value encoding

(Kennerley et al., 2006; Lee et al., 2007; Rushworth et al., 2007).

For Experiments 1 and 2, these action values are initialized at the
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beginning of each new problem, after presentation of the PCC

signal. This is based on the observation that, after extensive pre-

training, monkeys show a choice shift after more than 80% of

the PCC presentation (mean for Monkey G: 95%; M: 97%; R:

61%; S: 77%). In Experiment 3, the model autonomously learns

to reinitialize action values (Experiment 3 Results, below).

Anterior cingulate cortex action value neurons project to LPFC,

and to dopamine neurons in the ventral tegmental area (VTA)

module to compute an action-dependent reward prediction error:

δ = r − Q(ai) (2)

where ai, i∈{1..4} is the performed action, and r is the reward set

to 1 when the corresponding cue is perceived.

In the neuroscience literature of decision-making, subjects’

behavior can be well captured by RL models by computing a

reward prediction error once every trial, at the feedback time, even

in the case where no reward is obtained (Daw et al., 2006; Behrens

et al., 2007; Seo and Lee, 2007). Here, we wanted to avoid such

ad hoc informing of the model when the absence of reward should

be considered as a feedback. Thus, dopamine neurons of the model

produce a reward prediction error signal in response to any salient

event (appearance or disappearance of a visual cue). In addition

to being more parsimonious with respect to robotic implementa-

tion of the model, this is consistent with more general theories of

dopamine neurons arguing that dopamine neurons respond to any

task-relevant stimulus to prevent sensory habituation (Horvitz,

2000; Redgrave and Gurney, 2006). This reinforcement signal is

sent to ACC and affects synaptic plasticity of an action value neu-

ron only when it co-occurs with a motor efference copy sent by

the premotor cortex (PMC):

The reinforcement signal δ is sent to ACC which updates synap-

tic weights associated to the corresponding action value neuron:

Q(ai) ← Q(ai) + α · δ · trace(ai) (3)

where trace is the efferent copy sent by the PMC to reinforce only

the performed action, and α is a learning rate.

While ACC is considered important for learning action values,

decision on the action to make based on these values is known to

involve the LPFC (Lee et al., 2007). Thus in the model, action values

are sent to LPFC which makes a decision on the action to trigger

(Figure 5). This decision relies on a Boltzmann softmax function,

which controls the greediness versus the degree of exploration of

the system:

P(ai) =
exp(β · Q(ai))

∑

j

exp(β · Q(aj))
(4)

where β regulates the exploration rate (0 < β). A small β leads

to almost equal probabilities for each action and thus to an

exploratory behavior. A high β increases the difference between

the highest action probability and the others, and thus produces

an exploitative behavior. As shown in Figure 5, such action selec-

tion results in more contrast between action neurons’ activities in

LPFC than in ACC during repetition phases where β is high, thus

promoting exploitation.

As we wanted to adhere to the mathematical formulation

employed for model-based analysis of the prefrontal cortical data

recorded during decision-making (Daw et al., 2006; Behrens et al.,

2007; Seo and Lee, 2007), the activity of leaky integrator neurons in

our LPFC modules is algorithmically filtered at each time step by

Eq. 4. We invite the reader to refer to (McClure et al., 2006; Krich-

mar, 2008) for a neural implementation of this precise mechanism

of decision-making under exploration–exploitation trade-off.

BASAL GANGLIA LOOP

In order to prevent the robot from executing two actions at the

same time when activity in LPFC related to non-selected action

remains non-null, we finally implemented a winner-take-all mech-

anism in the basal ganglia. It has been proposed that the basal

ganglia are involved in clean action selection so as to permit a

winner-takes-all mechanism (Humphries et al., 2006; Girard et al.,

2008). Here we simplified our previous basal ganglia loop models

(Dominey et al., 1995; Khamassi et al., 2006) to a simple relay of

inhibition which permits the neurophysiologically grounded dis-

inhibition of a single selected action in the Thalamus at a given

moment (Figure 5).

COGNITIVE CONTROL MECHANISMS

In addition to RL mechanisms, we provide the system with cog-

nitive control mechanisms which will enable it to flexibly adjust

behavioral parameters during learning. Here this is restricted to

the dynamical regulation of the exploration rate β used in Eq. 4

based on the outcome history, following meta-learning principles

(Schweighofer and Doya, 2003).

A substantial number of studies have shown ACC neural

responses to errors (Holroyd and Coles, 2002) as well as positive

feedback, a process interpreted as feedback categorization (Quilo-

dran et al., 2008). In addition, neurons have been found in the ACC

with an activity reflecting the outcome history (Seo and Lee, 2007).

Thus, in our model, in addition to the projection of dopaminergic

neurons to ACC action values, dopamine signals also influence

a set of ACC feedback categorization neurons (Figure 5): error

(ERR) neurons respond only when there is a negative δ signal; cor-

rect (COR) neurons respond only when there is a positive δ signal.

COR and ERR signals are then used to update a variable encoding

the outcome history (β∗):

COR(t ) = δ(t ), if δ(t ) ≥ 0

ERR(t ) = − δ(t ) if δ(t ) < 0

β∗(t ) ← β∗(t ) + α+ · COR(t ) + α− · ERR(t ) (5)

where α+ = −2.5 and α− = 0.25 are updating rates with β∗

(0 < β∗ < 1). Such a mechanism was inspired by the concept of

vigilance employed by Dehaene and Changeux (1998) to modu-

late the activity of workspace neurons whose role is to determine the

degree of effort in decision-making. As for the vigilance which is

increased after errors, and decreased after correct trials, the asym-

metrical learning rates (α+ and α−) enables sharper changes in

response to either positive or negative feedback depending on

the task.

β∗ is then transferred to LPFC where it regulates the exploration

rate β. In short, β∗ is algorithmically filtered by a sigmoid function
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which reverses its sign, and constraints it to a range between 0

and 10:

β =
ω1

(1 + exp(ω2 · [1 − β∗] + ω3))
(6)

where ω1 = 10, ω2 = −6 and ω3 = 1. This equation represents

a sigmoid function that produces a low β when β∗ is high

(exploration) and a high β when β∗ is low (exploitation).

Finally, the ACC module also learns meta-values associated

with different perceived objects which represent how each of these

objects is associated with variations of average reward. This will

enable the robot to learn that, during Experiment 3, presentation

of the wooden board is always followed by a drop in the average

reward, and thus should be associated with a negative meta-value.

This part of the model represents the learning process that takes

place in monkeys during pre-training phases preceding Experi-

ments 1 and 2. During such pre-training, monkeys progressively

learn that different problems are separated by a PCC signal.

In the model, a reward average is computed and meta-values

of objects that have been seen during the trial are updated based

on variations in the reward average as computed at the end of the

current trial:

M(oi , t ) ← M(oi , t ) + η · θ(t ) (7)

where η is a learning rate and θ(t ) is the estimated reward average.

When the meta-value associated with any object is below a

certain threshold (empirically fixed to require approximately 10

presentations before learning; see parameter table in Appendix),

presentation of this object to the robot automatically triggers a

reset of action values and β∗ variable – action values are reset to

random values while β∗ is increased so that it produces a low β

(corresponding to exploration). As a consequence, the robot will

display exploratory behavior after such reset.

MOTOR COMMANDS

Motor output from the model’s PMC module is sent to the robotic

devices via port communication with YARP (Metta et al., 2006).

RESULTS

EXPERIMENT 1

We first performed a first series of 11 sessions with the Lynx-

motion SES 5DOF robotic arm (http://www.lynxmotion.com) on

the problem-solving task described above. This corresponded to

a total of 112 problems and 717 trials. Figure 6 shows a sample

performance of the model on two consecutive problems – corre-

sponding to 14 trials. Each trial lasted a few seconds and resulted

in the selection of one of the four targets – corresponding to dif-

ferent colors on the third chart of Figure 6. At the beginning of a

trial, the perception of the onset of the four targets on the screen

produced an increase of activity of ACC and LPFC neurons (first

two charts on Figure 6). The neuron with the highest activity acti-

vated a selection of the corresponding target by the robot. At the

end of the trial, the offset of the targets with or without reward

(depending on the correctness of the robot’s choice) resulted in

a drop of ACC and LPFC activity and return of the robot’s arm

to its initial position (end of target choice on the third chart of

FIGURE 6 | Simulation of the model on two consecutive problems

during Experiment 1. Each color represents a different target chosen by

the robot. The black triangle above the “chosen target” chart indicates the

presentation of the Problem-Changing Cue before the start of a new

problem. The x -axis represents time. The first chart shows the activity of

ACC action value neurons. The second chart shows LPFC action neurons.

The fourth chart shows ACC feedback categorization neurons, indicating

errors (ERR) and correct (COR) trials, and induced by dopaminergic reward

prediction error signals. The last chart shows the evolution of the

exploration rate β in the model. This simulation illustrates the correct

execution of the task by the robot and shows the incremental variation of

the exploration rate in response to positive and negative feedback.

Figure 6). During the first problem, the robot selected three suc-

cessive targets (indicated by the green, blue and brown blocks in

Figure 6) corresponding to error trials until the correct target was

chosen (the target illustrated as orange in Figure 6) and a reward

was obtained (ACC COR neuron Figure 6). The errors lead to

a progressive increase of activity of β∗ along the search phase –

producing more exploratory behavior – and a drop of β∗ after

the first reward – promoting exploitation during repetition (Fifth

chart of Figure 6). Such activity may explain our finding that

many ACC neurons respond more during the search phase than

during the repetition phase (Procyk et al., 2000; Quilodran et al.,

2008).

In the model, we made the hypothesis that feedback categoriza-

tion responses in the ACC would emerge from reward prediction

error signals (Eq. 5; Holroyd and Coles, 2002). Interestingly, the

high learning rate α suitable for the task produced a positive reward

prediction error (and thus a COR response of ACC feedback cat-

egorization neurons) only at the first correct trial, and not at

subsequent correct trials during repetition where the reward pre-

diction error in the model was null (Figure 6). This may explain

why, in monkeys, ACC neurons responding to positive feedback in

the same task mainly responded during the first correct trial and

less to subsequent correct trials (Quilodran et al., 2008). Indeed,

these neurons have been interpreted as responding to dopamine

reward prediction error signals. Validating this interpretation, the

explanation emerging from the model for the precise pattern of

response of these neurons is that subsequent correct trials dur-

ing repetition were correctly expected and thus did not produce a

reward prediction error.

In terms of behavior, the robot quickly adapted to feedback

obtained at each trial and rarely repeated choice errors. The second
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half of the session shown on Figure 6 illustrates a case where the

robot adapted to uncertainty emerging from perceptual ambigu-

ities. Around time step 3900, a new problem started, cued by the

PCC, and the model thus resets its exploration rate and action

values. The robot searched for the new correct target (the tar-

get illustrated as blue in Figure 6), and once found, repeated

the correct choice. However, due to visual ambiguity that could

occasionally take place during such physical interaction with the

environment the robot interpreted the trial as incorrect. Specifi-

cally, in this case, while touching the correct target the robot’s arm

hid the targets on the screen and the system thus perceived targets

as vanishing long before reward occurrence. As a consequence, the

model generated a negative reinforcement signal which reduced

the action value associated with the correct target (time step 4300

on Figure 6). This lead to the choice of a different target on the

next trial, and finally a return to the correct choice, to properly fin-

ish the repetition phase. This demonstrates that perceptual noise

inherent in robotic systems can be accommodated by such type of

neurophysiologically inspired model.

We next compared the robotic results with real monkey data

collected in the same task and tests of the same model in sim-

ulation, to assess robustness in real-world conditions and vari-

ations in performance due to embodiment. Monkey behavioral

data were collected in four monkeys for a total of 7397 prob-

lems and 46188 trials. Figure 7A shows the average errors during

search versus repetition phases. Similar to monkeys, the robot pro-

duced approximately 60% errors during the search phase, which

is close to optimality (considering that in 90% of new problems,

the correct target was different from the previous problem, there

were 2/3 = 66.67% chances of choosing a wrong target). During

the repetition phase, the robot made approximately 85% correct

responses, which was similar to monkeys. In contrast, simulation

of the same model made no error during repetition, as task-related

perception in the simulation was always perfect.

Performance of the robot was also similar to monkeys when

considering the average duration of search and repetition trials

(Figure 7B). The search phase for the robot lasted 2.5 trials on aver-

age which was not different from that of monkeys (Kruskal–Wallis

test, p > 0.31). The repetition phase lasted less than four trials,

again not different from monkeys (Kruskal–Wallis test, p > 0.78).

The robot’s behavior thus did not differ from that of the monkeys.

In contrast, the simulation always took exactly three trials dur-

ing repetition, which was the smallest possible duration and was

statistically different from monkey performance during repetition

(Kruskal–Wallis test, p = 1.6e-12).

Thus, in addition to respecting known anatomy and repro-

ducing neurophysiological properties observed in the monkey

prefrontal cortex during the same task, the model could reproduce

global behavioral properties of monkeys when driving a robot2.

EXPERIMENT 2

In order to test the ability of our neuro-inspired model to gen-

eralize over variations in task conditions, we next tested it in

simulation on a stochastic version of the problem-solving task

2A video of the SES robotic arm performing the PS task can be downloaded at:

http://chronos.isir.upmc.fr/∼khamassi/projects/ACC-LPFC_2011/

FIGURE 7 | Comparison of simulation results, robotics results and

behavioral data obtained in monkeys performing Experiment 1. The

percentage of errors (A) and the duration of problems (B) performed by the

robot were not different from that of monkeys. In contrast, simulation of

the model provided perfect performance. S/SEA, search; R/REP, repetition.

Errorbars: SEM. “*” Indicates significant difference via Kruskal–Wallis test,

p < 0.05.

used in monkeys (Amiez et al., 2006). The reward distribution

was stochastically distributed over two possible targets, and so

obtaining the largest reward value was possible even when choos-

ing the wrong target (see Table 1). Thus a single correct trial was

not sufficient to know which target had the highest value. As a con-

sequence, we predicted that the same model with a smaller learning

rate α (used in Eq. 3) would better explain monkeys’ behavior, as a

reduced learning rate would require several successful trials before

convergence.

Consistent with our prediction, a naive test on the stochas-

tic task with the parameters used with Experiment 1 and a fixed

exploration rate β – that is, without the β∗-mechanism for explo-

ration regulation (α = 0.9, β = 5.2) – elicited a mean number of

search trials of 13.3 ± 12.3 with only 87% successful problems

– problems during which the most rewarded target was found

and correctly repeated (“Model no-β∗” on Figures 8A,B). This

represented poor performance compared to monkeys. In the orig-

inal experiment, the two monkeys found the best target in 98%

and 94.5% of the problems. The search phase lasted on average

6.4 ± 5.6 and 5.6 ± 6.9 trials respectively (Amiez et al., 2006).

We then explored different values of the learning rate com-

bined with a flexible adaptation of the exploration rate β regulated

by the modulatory variable β∗. This provided results closer to
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FIGURE 8 | Comparison of simulated results and monkey performance in

Experiment 2. (A) Percentage of problems where the agent did eventually

find the correct target and passed the criterion for a correct repetition phase.

(B) Performance during search trials. (C) Percentage of Successful problems

for different values of α tested with the model with β∗. (D) Duration of the

search phase for the same tests. Without the dynamic regulation of the

exploration level computed with β∗, the model produced worst performance

than monkeys. Errorbars: SD.

monkey performance. Roughly, monkeys’ performances could be

best approximated with α between 0.3 and 0.6 (Figures 8C,D).

This produced a mean number of search trials of 5.5 and 99%

successful problems (“Model β∗” on Figures 8A,B).

Interestingly, monkey performance could be best approximated

with a mean α around 0.5 during Experiment 2, while a higher

mean α (0.9 on average) better explained monkey behavior dur-

ing Experiment 1. This is consistent with theoretical propositions

for efficiently regulating the learning rate α based on the volatility

of the task (Rushworth and Behrens, 2008). Indeed, in Experi-

ment 1 the correct target changed every seven trials on average (as

illustrated in Figure 7) which was more volatile than Experiment

2 where changes of reward distribution occurred less frequently:

every 16 trials (∼six search trials as illustrated in Figure 8, and 10

repetition trials imposed by the task structure).

Concerning the optimization of β, it is remarkable that the

more exploitative the better the performances (low β induced a

too lengthy search phase because the model was too exploratory).

Unlike our initial hypothesis, this was in part due to the nature of

Experiment 2 in which only two targets were available, decreasing

the search space, so the best strategy was clearly exploitative. In

accordance with this finding, β was systematically adjusted with

β∗ to its highest possible value allowed here (around 10). The

optimized model with a fixed exploration rate β reached a nearly

optimal behavior – in the sense of reward maximization. In con-

trast, the model with a dynamic exploration rate achieved good

performance (although not as good) but nevertheless closer to

monkeys’ performance in this task. This suggests that such brain

inspired adaptive mechanisms are not optimal but might have been

selected through evolution because they can produce satisfactory

performance in a variety of different conditions.

EXPERIMENT 3

The last experiment was implemented for two purposes:

• In the previous experiments the model knew a priori that a par-

ticular signal called PCC was associated with a change in the

task condition, and thus a shift in the rewarded target. Here we

wanted the model to autonomously learn that some cues are

always followed by errors and thus should be associated to an

environmental change that requires a new exploration.

• We also wanted to test our neuro-inspired model on a humanoid

robot performing a simple human–robot interaction scenario

where the human can introduce unexpected uncertainty or cheat,

showing the potential applications of the model to more complex

situations.

During the course of eight experiment sessions, the robot per-

formed a total of 151 problems and 901 trials. Figure 9 shows a

sequence of 14 problems performed by the model on the iCub

robot during Experiment 3. Similar to Experiment 1, the robot

searched for the correct cube and repeated its choice once that

cube had been determined.

Also similarly to Experiment 1, we used a“PCC”which was here

a wooden board used to hide the cubes while the human changed

the position of the rewarded one (Figure 4D). An important dif-

ference with Experiment 1 was that the model did not a priori

know what this signal meant and made errors following its pre-

sentation during the first part of a session. Since the wooden board

was always associated to an error, the robot learned by itself to shift

its behavior and restarted to explore when it was later presented.

This was achieved by learning meta-values associated to different

perceived objects: each time the perception of a given object was
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FIGURE 9 | Example session comprising 14 consecutive problems

performed by the iCub robot during Experiment 3. The different parts of

the figure follow the same legend as Figure 6. This session illlustrates that

after many presentations of the wooden board (triangles) followed by errors,

the robot learned to associate it with a condition change. This happened

around time step 12000 (labeled as “SHIFT”) where the apparition of the

wooden board successfully triggered a reset of action values and of the

exploration rate.

followed by a variation (positive or negative) of the average reward

obtained by the robot, the meta-value of this object was slightly

modified (Eq. 7). With this principle, the robot learned that pre-

sentation of the board was always followed by a drop in the average

reward. Thus the board acquired a negative meta-value. When the

meta-value of a given object became significantly low, the robot

systematically shifted its behavior and restarted to explore each

time the object appeared again.

Figure 10A shows the evolution of the meta-values associated

with the board, the cubes and perception of the experimenter’s

hands grasping the cubes. We can see that the board’s meta-value

incrementally decreased – each time it was presented and followed

by an error. In the example session shown on Figure 9, the meta-

value of the board became sufficiently low to enable a behavioral

shift at the beginning of the 11th problem after about 12000 time

steps. At that moment, the human hid the cubes with the board,

changed the position of the rewarding cube, and the robot directly

chose a new cube (exploration).

When looking at all eight experiments performed by the robot,

among 55 presentations of the board that occurred in the first

10000 iterations of a session, the robot shifted only five times

(9.1% of the time). Among 37 presentations of the board that

occurred after the 10000 first iterations, the robot shifted 29 times

(78.4%). Thus the iCub robot learned to shift in response to the

board.

Such a learned behavioral shift produced an improvement in

the robot’s performance on the task. During the second part of

each session, the robot made fewer errors on average during search

phases, and required fewer trials to find the correct cube. Before

this shifting was learned, in 65 problems initiated by a board

presentation, the robot took on average 3.5 trials to find the cor-

rect cube. After shifting learned, in 36 problems initiated by a

board presentation, the robot took on average 2.2 trials to find the

correct cube. The difference is statistically significant (Kruskal–

Wallis test, p < 0.001).

Figure 10 also shows that the meta-value associated with the

cubes themselves fluctuated – because perception of the cubes was

sometimes followed by correct choices, sometimes by errors – but

remained within a certain boundary. As a consequence, the robot

did not unlearn the task. If the cubes’ meta-value had also sig-

nificantly declined, the robot would have reset action values at

each presentation of the cubes (i.e., at each trial), and would not

have been able to find the correct target. Thus, such meta-learning

mechanism may be a good model of how animals learn the struc-

ture of the task during the pre-training phase of Experiments 1 and

2: (A) Learning that some cues are sometimes followed by rewards,

sometimes by errors, and are thus subject to RL; (B) Learning that

some other cues such as the PCC are always followed by errors

and shall be associated with a task change which requires a reset

of action values and exploration each time they are presented.

We finally addressed an additional degree of complexity. Dur-

ing the second half of each experiment, once the robot had learned

to shift its choice in response to the wooden board, the human

introduced new unexpected uncertainty by occasionally “cheat-

ing” in the middle of a problem. The human put his hands on the

cubes, grasped them and changed their position without hiding

the cubes with the board (as illustrated on Figures 4F–H). The

robot saw such an event by recognizing the hands on the cubes.

This was a priori provided to the robot as a possible visual fea-

ture, but was not a priori associated with any meaning. In a first

stage, this event was systematically followed by an error from the

robot which selected the cube location associated to the highest

value (exploitation), though the human had “cheated” by moving

the rewarded cube to a different location. A first degree of flexi-

bility was enabled by the model’s RL mechanisms. This permitted

the robot to decrease the value of the cube location following this
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FIGURE 10 | Evolution of objects’ meta-values M(o, t ) associated to

the different perceived objects (cubes, board, and hands) and

computed with Eq. 7 (A) during a sample session; (B) averaged

over the eight experiments performed by the iCub robot (N = 8).

After about 10000 iterations of the model, the low meta-value of the

board allowed a high probability of triggering a new exploration

phase at subsequent presentation of that object to the robot (i.e.,

SHIFT event on Figure 9). Such probability was reached after about

20000 iterations for the hands perceived when the human cheated.

Errorbars: SEM.

error, and thus to avoid persistence in failure: among 37 times

where the human cheated followed by an error from the robot,

in 34 cases (91.9%) the robot shifted at the next trial. In addi-

tion and similar to the board, the meta-value of the perceived

hands incrementally decreased, finally producing a high probabil-

ity of triggering a new exploration phase each time it occurred

(Figure 10B). Thus the robot progressively learned to shift its

behavior in response to the human’s hands configuration during

cheating: Among 16 such events occurring after the 20000 first

iterations of a session, the robot shifted 10 times (62.5%) while

it shifted in only 3.0% (1/33) of the cases during the first 20000

iterations of each session3.

DISCUSSION

This work showed the application of a neuro-inspired compu-

tational model on a series of robotic experiments inspired by

monkey neurophysiological tasks. The last experiment extended

such tasks to a simple human–robot interaction scenario.

This demonstrates that a neuro-inspired model could adapt to

diverse conditions in a real-world environment by virtue of:

• Reinforcement learning (RL) principles, enabling the capabil-

ity to learn by trial-and-error, and to dynamically adjust values

associated to behavioral options;

• Meta-learning mechanisms, here enabling the dynamic and

autonomous regulation of one of the RL meta-parameters called

the exploration rate β.

The model synthesizes a wide range of anatomical and physi-

ological data concerning the Anterior Cingulate-Prefrontal Cor-

tical system. In addition, certain aspects of the neural activity

3A video of the iCub robot performing the cube game can be downloaded at:

http://chronos.isir.upmc.fr/∼khamassi/projects/ACC-LPFC_2011/

produced by the model during performance of the tasks resem-

bles previously reported ACC neural patterns that where not

a priori built into the model (Procyk et al., 2000; Quilodran et al.,

2008). Specifically, like neurons in the ACC, in the model ACC

feedback categorization neurons responded more to the first cor-

rect trial and not to subsequent correct trials, a consequence of

the high learning rate suitable for the task. This provides a func-

tional explanation for these observations. Detailed analysis of the

model’s activity properties during simulations without robotic

implementation provided testable predictions on the proportion

of neurons in ACC and LPFC that should carry information related

to different variables in the model, or that should vary their spa-

tial selectivity between search and repetition phases (Khamassi

et al., 2010). In the future we will test hypotheses emerging from

this model on simultaneously recorded ACC and LPFC activities

during PS tasks.

The work presented here also illustrated the robustness of bio-

logical hypotheses implemented in this model by demonstrating

that it could allow a robot to solve similar tasks in the real-world.

Comparison of simulated versus physical interaction of the robot

with the environment in Experiment 1 showed that real-world

performance produced unexpected uncertainties that the robot

had to accommodate (e.g., obstructing vision of an object with

its arm and thus failing to perceive it, or perceiving a feature in

the scene which looked like a known object but was not). The

neuro-inspired model provided learning abilities that could be

suboptimal in a given task but which enabled the robot to adapt

to such kind of uncertainties in each of the experiments.

By incorporating a model based on neuroscience hypotheses

in a robot, we had to make concrete hypotheses on the inter-

action between brain structures dedicated to different cognitive

processes. Robotic constraints prevented us from providing ad hoc

information often used during perfectly controlled simulations,

such as the information that the absence of reward at the end
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of a trial should be considered as a feedback signal for the RL

model (Daw et al., 2006; Behrens et al., 2007; Seo and Lee, 2007).

Instead, dopamine neurons of our model produced a reward

prediction error signal in response to any salient event (appear-

ance or disappearance of a visual cue) and could affect synaptic

plasticity of an action value neuron within ACC only when it

co-occurred with an efferent copy sent by the PMC. Interest-

ingly, dopamine neurons were previously reported to respond also

to salient neutral stimuli (Horvitz, 2000), which was interpreted

as a role of dopamine neurons in blocking sensory habituation

and sustaining appetitive behavior to learn task-relevant action-

outcome contingencies (Redgrave et al., 2008). Moreover, in the

case of dopaminergic signaling to the striatum, it has been reported

that a motor efference copy is sent to the striatum in conjunction

with the phasic response of dopaminergic neurons, which was

interpreted as enabling a specific reinforcement of relevant action-

outcome contingencies (reviewed in Redgrave et al., 2008). Thus,

an interesting neurophysiological experiment that could permit to

validate or refute choices implemented in our model would con-

sist in recording dopaminergic neurons during our PS task and

see whether: (1) they respond to neutral salient events; (2) their

response to trial outcomes is contingent with traced inputs from

PMC to ACC.

Importantly, our work demonstrated that the model could also

be applied to human–robot interaction. The model enabled the

robot to solve the task imposed by the human and to success-

fully adapt to unexpected uncertainty introduced by the human

(e.g., cheating). The robot could also learn that new objects intro-

duced by the human could be associated with changes in the

task condition. This was achieved by learning meta-values asso-

ciated with different objects. These meta-values could either be

reinforced or depreciated depending on variations in the aver-

age reward that followed presentation of these objects. The object

which was used to hide cubes on the table while the human

changed the position of the reward was learned to have a nega-

tive meta-value and triggered a new behavioral exploration by the

robot after learning. Such meta-learning processes may explain

the way monkeys learn the significance of the PCC during the pre-

training phase of Experiments 1 and 2. In future work, we will ana-

lyze such pre-training behavioral data and test whether the model

can explain the evolution of monkey behavioral performance

along such process.

Future work can also include a refinement of the β∗-based

regulation of exploration within the LPFC so as to take into

account noradrenergic neuromodulation within a network of

interconnected cortical neurons. Indeed, here we wanted to

evaluate mathematical principles of meta-learning for the reg-

ulation of exploratory decisions. As a consequence, we sim-

ply algorithmically transferred the outcome history computed

in ACC into the β variable used in the softmax equation for

action selection in LPFC (Eq. 4). This does not preclude a neural

implementation of such an interaction. It has previously been

shown that noradrenergic neurons in the locus coeruleus (LC)

shift between two modes of response between exploration and

exploitation phases, and that noradrenaline changes the signal-to-

noise ratio within the prefrontal cortex (Aston-Jones and Cohen,

2005). Given that ACC projects to LC and drives phasic responses

of LC noradrenergic neurons (Berridge and Waterhouse, 2003;

Aston-Jones and Cohen, 2005), our model is consistent with

such a configuration. A possible improvement of our model

would be to replace the algorithmic implementation of the soft-

max function in our LPFC module by a modulation of extrin-

sic and inhibitory synaptic weights between competing neurons

based on the level of noradrenergic innervation, as proposed by

(Krichmar, 2008).

On the robotic side, future work could involve autonomous

learning of the relevant objects of each experiment (i.e., those that

are regularly presented) and adaptive regulation of the learning

rate α when shifting between deterministic and stochastic reward

conditions (Experiment 1 and 2 respectively). The latter could be

achieved by extracting measures of the dynamics of the different

task conditions, such as the reward volatility which is expected to

vary between deterministic and stochastic conditions (Rushworth

and Behrens, 2008; see (Khamassi et al., in press) for a review of

this issue on PS tasks). We also plan to extend the model to social

rewards provided by the human to the robots by means of language

(Dominey et al., 2009; Lallée et al., 2010).

Such pluridisciplinary approaches provide tools both for a bet-

ter understanding of neural mechanisms of decision-making and

for the design of artificial systems that can autonomously extract

regularities from the environment and interpret various types of

feedback (rewards, feedbacks from humans, etc...) based on these

regularities to appropriately adapt their own behaviors.
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APPENDIX

ACC ACC LPFC PMC PPC Visual VTA Striatum SNr Thal

Number of
neurons

9 Qval 1COR,
1ERR,
1 β∗

9 Input,
9 out.

9 4 ∗ 9 (4
geomet-
rical
shapes)

4 ∗ 9 (4
geomet-
rical
shapes)

1 δ 9 9 9


t 100 ms 100 ms 100 ms 100 ms 100 ms 100 ms 100 ms 100 ms 100 ms 100 ms
τ (Eq. 1) 0.6 0.1 0.5 0.25 0.5 0.4 N.A. 0.5 0.5 0.5
α 0.9 for

Experi-
ment 1
and
Experi-
ment 3,
0.5 for
Experi-
ment
2

α+/α− −2.5/0.5
βinit/η 0.25/0.1
ω1/ω2/ω3 10/−6/1
Threshold
for reset of
exploration

−0.25

Threshold
salient
event

0.6

Input
threshold

0.75 0.75 0.75

Parameter table showing the number of neurons and the parame-

ter values of each module. Most modules contain nine neurons

(i.e., a 3 ∗ 3 array topographically encoding different locations in

the visual space). The ventral tegmental area (VTA) module con-

tains a single simulated dopaminergic neuron dedicated to reward

prediction errors computation (Eq. 2). 
t is the time separating

each iteration of the model. t is the time constant of leaky inte-

grator neurons used in Eq. 1. The anterior cingulate cortex (ACC)

also contains neurons categorizing feedback (COR: correct; ERR:

error) used to estimate the current performance of the agent by

means of β∗ and to regulate the exploration rate β through Meta-

Learning. Parameters are separately shown for the part of ACC

responsible for Reinforcement learning (RL) and the part of ACC

responsible for Meta-learning (ML). Since there is no learning in

other parts of the model, RL and ML parameters concern only

the ACC. α is the learning rate used for RL processes in Eq. 3.

α+ and α− are the specific learning rates used for the update of

β∗ (equation 5). βinit is the value to which the exploration rate is

reset in two cases: (1) in Experiments 1 and 2, reset is systematically

performed at the beginning of each new problem; (2) in Exper-

iment 3, reset is performed when the robot perceives an object

to which it has learned to associate a meta-value below a certain

negative threshold (“Threshold for reset of exploration” in the

parameter table). η is the update rate of meta-values (Eq. 7). ω1,

ω2, and ω3 are the parameters of the sigmoid used to translate β∗

(0 < β∗ < 1) into β(here, 0 < β < 10). In VTA, a reward prediction

error is computed only when a salient event is detected (i.e., when

a change concerning perceived objects in the visual space is above

a certain threshold, here written as “threshold salient event”).

Finally, reinforcement learning and action selection within ACC

and LPFC are permitted only when the robot perceives some

objects, that is when information about perceived objects in the

visual space is above a certain threshold, here written as “input

threshold.”
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