
Robot Docking Based on Omnidirectional Vision
and Reinforcement Learning

David Muse, Cornelius Weber and Stefan Wermter
Hybrid Intelligent Systems, School of Computing and Technology

University of Sunderland, UK. Web: www.his.sunderland.ac.uk

Abstract

We present a system for visual robotic docking using an
omnidirectional camera coupled with the actor critic reinforcement
learning algorithm. The system enables a PeopleBot robot to locate
and approach a table so that it can pick an object from it using the
pan-tilt camera mounted on the robot. We use a staged approach to
solve this problem as there are distinct sub tasks and different
sensors used. Starting with random wandering of the robot until the
table is located via a landmark, and then a network trained via
reinforcement allows the robot to turn to and approach the table.
Once at the table the robot is to pick the object from it. We argue that
our approach has a lot of potential allowing the learning of robot
control for navigation removing the need for internal maps of the
environment. This is achieved by allowing the robot to learn
couplings between motor actions and the position of a landmark.

Keywords: Reinforcement Learning; Robot Control; Robotics; Neural
Networks

1 Introduction
Navigation is one of the most complex tasks currently under development in
mobile robotics. There are several different components to navigation and many
different sensors that can be used to complete the task, from range finding sensors
to graphical information from a camera. The main function of robot navigation is
to enable a robot to move around its environment, whether that is following a
calculated or predefined path to reach a specific location or just random wandering
around the environment. Some of the components involved in robotic navigation
are (i) localisation, (ii) path planning and (iii) obstacle avoidance. For an overview
of localisation and map-based navigation see [5 & 6]. When discussing robot
navigation, simultaneous localisation and map building should be included (see [3,
10 & 17] for some examples).

There has been a lot of research and systems developed for robot navigation using
range finding sensors (sonar, laser range finders etc) [1, 2 & 14] but there has been
less research into visual robotic navigation. There are recent developments in the
field of visual navigation mainly concentrating on omnidirectional vision (see [4,
11 & 15] for examples).

Many of the navigation systems implemented for robot navigation still use hard
coding which causes a problem with the lack of adaptability of the system.
However, some systems have included learning (see [8 & 9] for examples). A
common training method used for the learning systems are various forms of

1

reinforcement learning, [16] provides a good overview. These learning algorithms
overcome the problem of supervised learning algorithms as input output pairs are
not required for each stage of training. The only thing that is required is the
assignment of the reward which can be a problem for complex systems as
discussed in [20]. However, for systems where there is just one goal this does not
pose a problem as the reward will be administered only when the agent reaches the
goal.

The focus on this paper is to extend the system developed in [19] where
reinforcement learning is used to allow a PeopleBot to dock to and pick an object
(an orange) from a table. In this system neural vision is used to locate the object in
the image, then using trained motor actions (via the actor critic learning algorithm
[7]) the aim is to get the object to the bottom centre of the image resulting in the
object being between the grippers of the robot.

There are some limitations to the system which need to be overcome to improve its
usefulness. For example, the docking can only work if the object is in sight from
the beginning which results in the system being confined to a very small area. Also
the system fails if the object is lost from the image. Finally, the angle of the robot
with respect to the table is inferred from the odometry, which makes it necessary to
start at a given angle. None of these are desirable and it is the aim of this work to
address some of the limitations and extend the range that the robot can dock from.

The system proposed in this paper will make use of an omnidirectional camera to
locate and approach a table in an office environment. The use of an
omnidirectional camera allows the robot to continuously search the surrounding
environment for the table rather than just ahead of the robot. Here the extended
system will use the omnidirectional camera to locate the table via a landmark
placed beneath it. Once located the robot is to turn and approach the table using a
network trained by reinforcement.

The remainder of the paper is structured as follows; Section 2 discusses the task,
the overall control of the system and what triggers the shifts between the different
phases. The first phase uses an omnidirectional camera to detect any obstacles and
take the necessary action to avoid them and is discussed in Section 2.1. The second
phase uses the omnidirectional camera to locate the position of the landmark in
relation to the robot, which it then passes to a neural network to produce the
required motor action on the robot and is discussed in Section 2.2. The final phase
uses a neural system with the pan tilt camera mounted on the robot to allow the
robot to dock with the object on the table and pick it up; this is discussed in Section
2.3. Section 3 covers the algorithm used for the table approaching phase of the
extended scenario. The experimentation of the extended scenario is then described
in section 4. Finally, Sections 5 and 6 cover the discussion and summary
respectively.

2 The Scenario
The overall scenario is illustrated in Figure 1. It starts with the robot being placed
in the environment at a random position away from the table. The robot is then to
wander around the environment until it locates the table (Phase I). This phase uses
conventional image processing to detect and avoid any obstacles. Once the table is
located via a landmark placed beneath it the robot is to turn and approach the table

2

Figure 1 - Scenario

(Phase II). Then once at the table the robot is to pick the object from the table
(Phase III), this system is discussed in [19]. Both Phase II & III use neural
networks trained with the Actor Critic learning algorithm.

The first two phases of the system use an omnidirectional camera illustrated in
Figure 2 and the final phase uses the pan tilt camera mounted on the robot.

Figure 2 – (Left) PeopleBot Robot with mounted omnidirectional camera, (Right) Close up

of the Omnidirectional Camera

Conical Mirror

Camera

3

To enable the integration of the three phases an overall control function was
needed to execute the relevant phases of the system depending on the
environmental conditions. Figure 3 shows the control algorithm.

While the robot is not at the table

 Take a picture (omnidirectional)
 Check if the landmark is in sight
 If the landmark is not in sight
 Wander
 Else the landmark is in sight
 Pass control to the actor critic and get exit status
 If exited because landmark is lost
 Go back to Wandering
 Else exited because robot is at the table
 Pass control to the object docking
 End if
 End if

End While

Figure 3 - Syst

When the robot is not at the table, or the
for the landmark at each iteration through
looks for is produced by a board of red LE
table as illustrated in Figure 4.

While the robot has not located the lan
executed. If the landmark has been loc
approaching behaviour which runs to com
for the table approaching which are; (i) L
the table. If the landmark has been lost th
otherwise it has reached the table and con
completes the task.

Landmark

Figure 4 - Setup of the Environment: The lan
tab

4

em Algorithm
landmark is not in sight, the robot checks
 the system. The landmark that the robot
D’s which is located directly beneath the

dmark the random wandering system is
ated then control is passed to the table
pletion. There are two possible outcomes

ost sight of the landmark and (ii) Reached
en the robot starts to search for it again,

trol is passed to the object docking which

dmark is used to identify the position of the
le

2.1 Phase I – The Random Wandering
This behaviour allows the robot to move around the environment while avoiding
obstacles. The system uses an omnidirectional camera (Figure 2 right) to get a view
of the environment surrounding the robot. From this image the robot is able to
detect obstacles and produce the required motor action to avoid them. To perform
this detection the behaviour uses classical image processing to remove the
background from the image and leave only perceived obstacles, as seen in Figure
5. Here the original image taken by the omnidirectional camera is in the left of the
figure, with different stages of the image processing shown in the centre and right.

Figure 5 – Obstacle Detection

The centre image is the intermediate stage where just the background of the image
has been removed; this is achieved by colour segmentation of the most common
colour from the image. To find the most common colour in the image a histogram
is produced for the RGB values of each pixel. Then the value with the largest
density is found and any colour within the range of +/- 25 of the most common
colour is removed. This removes the carpet from the image (assuming that the
carpet is present in the majority of the image) which leaves the obstacles and some
noise. Also at this stage the range of the obstacle detection is set removing any
noise from the periphery of the image. Then the noise is removed by image erosion
followed by dilation. The erosion strips pixels away from the edges of all objects
left in the image. This removes the noise but it also reduces the size of any
obstacles present. To combat this once the erosion has been performed, dilation is
performed to restore the obstacles to their original size, the shape of the obstacles
are slightly distorted by this process. However, the obstacles left in the final image
are still suitable to produce the required motor action to avoid them. The last stage
of the image processing is to use edge detection to leave only the outlines of the
obstacles (Figure 5 right).

The robot always tries to move straight ahead unless an obstacle is detected in the
robot’s path. When this happens the robot turns the minimum safe amount allowed
to avoid the obstacles. In the example provided in Figure 5, the robot cannot move
straight ahead so the robot would turn to the left until it can avoid the obstacle on
the right of the image. As the image is a mirrored image of the environment the
objects which appear on one side of the image are physically to the other side of
the robot. Once the robot has turned the required amount it would start to move
straight and the obstacle detection would then be performed again.

2.2 Phase II – The Table Approaching Behaviour
This phase of the system allows the robot to approach the table (landmark) once
detected. This has two exit statuses which are (i) the robot lost sight of the

5

landmark or (ii) the robot has reached the table. If the robot looses sight of the
table it goes back to the wandering phase until it locates the landmark again. This
can happen if the landmark moves behind one of the supporting pillars of the
conical mirror. If the robot reaches the table, control will be passed to the final
stage of the system which is to dock to and pick up the object.

To allow the robot to move to the table a network was trained using the Actor
Critic reinforcement learning rule [7]. The state space was the image with the goal
set to where the landmark is perceived to be in front of the robot. The motor action
that the network performs is to rotate the robot to the left or to the right depending
on where the landmark is perceived in relation to the robot. The input to the
network is the x y coordinates of the closest point of the perceived landmark. Once
the landmark appears to be ahead of the robot, the robot then moves forward,
checking that the landmark is still ahead of it. Once the landmark is ahead of the
robot and less than the threshold distance of 1 meter the robot then moves directly
forward until the table sensors located on the robot’s base are broken. When this
happens the robot is at the table and control is given to Phase III.

The robot only looks for the landmark in the range that the robot can detect directly
ahead (as the webcam produces a rectangular image, more can be seen to the sides
of the robot. The range is set to the maximum distance the image can detect ahead
of the robot; this is roughly 2m). If the landmark is detected outside this range
when the robot turned it would lose sight of the landmark, therefore anything
outside this region is ignored. If the landmark appears in the right side of the
detectable range then the robot should rotate to the left as the image is mirrored, if
it appears in the left the robot should rotate to the right and if it is straight ahead of
the robot then it should move forward.

LANDMARK DETECTED
LANDMARK

Figure 6 - Landmark Detection

To detect the landmark classical image processing is once again employed to detect
the landmark as shown in Figure 6. The original image is in the left of Figure 6
with the landmark highlighted and the detected landmark is highlighted in the right
of Figure 6. The first stage to the image processing is to perform colour
segmentation where it segments any colour that is the designated colour of the
landmark. Once this process is complete edge detection is used to leave just the
edges of the remaining objects. Then it is assumed that the largest object left in the
image is the landmark. The last stage of the image processing is to locate the
closest point of the landmark to the robot. This point is then fed into the network to
produce the required action by the robot.

6

2.3 Phase III – Docking
This phase allows the robot to dock to and pick an orange from the table. The
functionality of the system is described in [19]. However, there is a problem with
this system for the integration into the extended scenario; the odometry of the robot
is set to 0 and the robot must start parallel to the table to allow the robot to dock to
the orange. With the table approaching system it cannot be guaranteed that the
robot will be parallel to the table and hence the robot will not know the relationship
between the odometry and the angle of the table.

Before this system is integrated it is required that the angle of the table to the robot
is calculated. To solve this it is planned to use image processing to detect and
calculate the angel of the table in relation to the robot. Once the robot reaches the
table a picture will be taken using the conventional pan tilt camera mounted on the
robot. The edge of the table will then be detected using colour thresholding and
edge detection.

The thresholding will be performed in the same way as in Phase I with the most
common colour being removed. It is assumed that the most common colour will
either be (i) the colour of the table itself or (ii) the colour of the carpet beneath the
table. In both cases the edge between the removed colour and the remaining colour
will be the edge of the table. Using edge detection the coordinates of the two end
points of this line can be found and from this the angle of the table calculated and
used with the odometry to get the robot to dock to the orange.

Figure 7 - Edge Detection of the Table

α

a) b)

c) d)

Figure 7 demonstrates this image processing using the artificial image (a), here the
white is thought to be the most common colour so will be removed and the
remaining components of the image are changed to white (b). The next stage is to
perform the edge detection (c). With this done the angle can be calculated (d) and
used to alter the odometry of the robot. This is to remove the constraint that the
robot must arrive parallel to the table.

7

3 Actor Critic Algorithm
The developed network is an extension of the actor critic model used in [7]. Here
the system has been adapted to work with continuous real-world environments. We
have used this algorithm in two phases of the scenario: first, the approach to the
table (Phase II), and then to perform the docking at the object. In Phase II, the
input to the network is the position in the omnidirectional image where the
landmark appears as opposed to the location of the agent in the environment. In
Phase III, the input is the perceived location of the object of interest from the
standard robot camera.

For the architecture of the network developed for Phase II, it was decided that there
would be two input neurons; one for the x and y coordinates respectively, 50
hidden units to cover the state space of the image and two output neurons one for
each of the actions to be performed and one neuron for the critic. The architecture
is illustrated in Figure 8. The hidden area covers only the detectable region of the
image with each neuron covering roughly 40mm2 of actual space. This results from
the fact that the detectable range of the environment is roughly a radius of 2m from
the robot. All units are fully connected to the hidden layer. Initially the critics’
weights are set to 0 and are updated by Equation 4. The Actor weights (Motor
Action units) are initialised randomly in the range of 0 – 1 and are updated via
Equation 7. Finally, the weights connecting the input units to the network (High
level vision) are set to 1 and these weights are not updated.

Equation 1 describes the firing rate of the “place cells” (here the term place cell is
used loosely as they encode a perceived position of a landmark in the image) to be
calculated. The firing rate is defined as:

Figure 8 - Architecture of the Network. The nodes are fully connected, the input for the x, y
coordinates are normalised into the range 0-50 and the output of the network generates the

motor action to rotate the robot

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
−= 2

2

2
exp)(

σ
i

i

sp
pf (1)

8

where p is the perceived position of the landmark, si is the location in the image
where neuron i has maximal firing rate and σ is the radius of the Gaussian of the
firing rates covering the image space of each neuron. This was set to 0.75 during
the experiments. The firing rate C of the Critic is calculated using Equation 2 and
has only one output neuron as seen in Figure 8. The firing rate of the critic is thus a
weighted sum of all of the firing rates of the place cells.

(2) () ()pfwpC
i

ii∑=

To enable training of the weights of the critic some method is needed to calculate
the error generated by the possible moves to be made by the robot. This is made
possible by Equation 3 and the derivation of this equation can be found in [7].

() ()tttt pCpCR −+= +1γδ (3)

However as Rt only equals 1 when the robot is at the goal location and C(pt+1) is 0
when this occurs and vice versa they are never included in the calculation at the
same time. γ is the constant discounting factor and was set to 0.7 for the
experiments. With the predicted error, the weights of the critic are updated
proportionally to the product of the firing rate of the active place cell and the error
(Equation 4).

()titi pfw δ∝∆ (4)

This concludes the equations that were used for the place cells and the critic,
finally there are the equations used for the actor. There were two output neurons
used in this experiment, one to make the robot rotate to the left and the other to
make the robot rotate to the right. The activation of these neurons is achieved by
taking the weighted sum of the activations of the surrounding place cell to the
current location as illustrated in Equation 5.

(5) () ()∑=
i

ijij pfzpa

()
()∑

=

A probability is used to judge the direction that the robot should move in, this is
illustrated in Equation 6. Here the probability that the robot will move in one
direction is equal to the firing rate of that actor neuron divided by the sum of the
firing rate of all the actor neurons. To enable random exploration when the system
is training, a random number is generated between 0 and 1. Then the probability of
each neuron is incrementally summed; when the result crosses the generated value
that action is executed. As the system is trained the likelihood that the action
chosen is not the trained action decreases. This is because as the network is trained
the probability that the trained action will occur will approach 1.

9

k
k

j
j a

a
P

2exp
2exp (6)

Ultimately, the actor weights are trained using Equation 7 in a modified form of
Hebbian learning where the weight is updated if the action is chosen and not
updated if the action is not performed. This is achieved by setting gj(t) to 1 if the
action is chosen or to 0 if the action is not performed. With this form of training
both the actor and the critics weights can be bootstrapped and trained together.

() ()tgpfz jtitji δ∝∆ (7)

4 Experimentation and Results
To train and test the network separate training and test data sets were produced.
The training set contained 1000 randomly generated samples and the test set
contained 500 randomly generated samples. These samples were stored in separate
vectors and contained the following information (i) the normalised x coordinate of
the landmark, (ii) the normalised y coordinate of the landmark, (iii) the angle of the
landmark in relation to the robot and (iv) the distance of the landmark from the
robot. During training each sample was fed into the network and it ran until the
goal was achieved. Therefore, after each epoch there would be 1000 successful
samples and the testing data was fed into the network without any training taking
place.

The trained weights of the critic are shown in Figure 9 (d), which took 50 epochs
to get the training to the level shown. It would have been impractical to train the
network on the robot due to the time it would require, so a simple simulator was
employed which used the training set to perform the action recommended by the
network (this used the same data that would be generated from the image
processing). This was achieved by calculating the next perceived position of the
landmark. This greatly reduced the time needed to train the network, for the 50
epochs it took roughly 5 hours to train (including the testing after each epoch) on a
Linux computer with a 2GHz processor and 1 Gigabyte of ram. Figure 9 also
shows the untrained weights (a), the weights after the presentation of 1 training
sample (b) and the weights after the presentation of 500 training samples (c). Here
it can be seen that the weights spread from the goal location around the network
during the training. There is a ‘V’ section of the weights that remain untrained, this
relates to the goal location (see Figure 8) so no training is needed in this section of
the network as the required state is reached.

d) c)

b) a)

Figure 9 - Strength of Critic Weights During Training. (a) untrained weights, (b) weights

after presentation of 1 sample, (c) weights after presentation of 500 samples and (d) weights
after 50 epochs of training

10

Moves Training Run 1

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

No of epochs

N
o

of
 m

ov
es

Testing Set Training Set
% of Correct Moves - Run 1

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100

No of epochs

%

Testing Set Training Set

Figure 10 shows the statistics gathered during the training of the network. After
each epoch of training the network is tested both with the training data and the
testing data. Here the samples are presented to the network and data gathered
about (i) number of steps needed to reach the goal and (ii) the percentage of correct
moves made by the network at each step. During this testing of the network
training was prohibited and the relevant statistics gathered. This was done three
times with all results being similar. Figure 10 (top) shows the average number of
moves needed after each epoch for the goal to be reached. An average is taken for
both the test and training set so the test value is averaged over the 500 test samples

Figure 10 - Training Stats (Top) average number of steps required to reach the goal location

during the testing of the network. (Bottom) percentage of correct moves made during the
testing of the network.

11

and the training over the 1000 training samples. Initially, with no training, it takes
on average approximately 650 steps for the agent to reach the goal location. This
rapidly decreases and settles to about 10 steps after roughly 30 epochs, the number
of steps required for the testing and training sets are very similar and the
performance is as good on the testing set as the training set.

Figure 10 (bottom) illustrates the percentage of correct moves made at each step
during the testing of the network. As expected initially, as the agent moves
randomly the number of correct moves is roughly 50%, as there are two actions to
be performed. This steadily rises during training, however, this doesn’t stabilise
after 30 epochs like the number of moves does. The performance keeps improving
although the rate of improvement does decrease after approximately 60 epochs. In
addition, the testing set doesn’t perform as well as the training set does during the
testing; this doesn’t affect the average number of moves required to reach the goal.

5 Discussion
The developed system has been successful in allowing the robot to approach the
table from random places in the environment. Once the orange docking is linked,
the scenario will be complete. Reinforcement learning has been successfully used
in two of the phases of this application. This illustrates that reinforcement learning
is a viable option for use in robot navigation tasks.

This poses quite an interesting question; humans can easily see distinctive
differences in tasks; would we be able to train a computer to do a similar thing?
Instead of the programmer splitting the state space, could the computer
automatically partition the state space? This has been approached in [12 & 13]. In
these papers different techniques are adopted to partition the state space. Simple
portioning of the state space would not have been a viable option in our approach
as one network would be needed for the entire system. However, this would result
in a large state space covering in our application the visual inputs of the
omnidirectional camera as well as the pan-tilt camera. Therefore we have
addressed this “curse of dimensionality” problem by segmenting the task into
phases resulting in two smaller manageable state spaces.

Investigation could be made into improvements in the network to enhance the
percentage of correct moves made. Some possibilities could include increasing the
number of samples in the training set to increase the coverage of the training,
allowing more starting locations to be trained. Another possibility could be to
adjust the training algorithm to allow a smoother degrade in the strength of the
critics weights. As the agent move away from the goal location there are large
decreases in the strength of the weights to the extent that when the landmark
appears behind the agent the critic’s weights are very weak so the agent may still
be moving randomly in this section. A smoother decrease in the critic’s weights
would allow this section of the network to have stronger weight connections and
thus improve the performance of the network. There is one method that could be
used to improve the network instantly which would be to switch from exploration
of the environment to exploitation. Here the actor unit would be chosen which
would give maximum reward. This however could lead to suboptimal solutions if
used too early in training.

An alternative to the developed system could be to pan and tilt the camera that is
supplied with the robot to find the target from a large distance and perform the

12

whole action based on this visual information. So instead of keeping the camera in
a fixed position the camera could be moved to locate the table and object. This
requires a coordinate transform to allow the calculation of the angle to the object
given the odometry of the robot, the perceived position of the orange on the camera
image and the pan of the camera. This is also an approach which we are currently
pursuing [18] While such an approach enhances the range of an action strategy that
relies on a single state space, there will remain situations in which a multi-step
strategy has to be employed, such as if the target object is not visible from the
starting point. Without the object visible, again one strategy is needed to get the
robot close to the table and another for the docking to the object.

6 Summary
This paper has discussed the navigation system developed to allow the robot to
firstly locate and dock to a table via a landmark. This greatly extended the range of
docking of the system developed in [19]. Both systems (the original docking and
the extended navigation) used the actor critic reinforcement technique to train the
networks they used to achieve their goals. The extended navigation system trained
its own network to allow the robot to move to the table, which has been
demonstrated to work effectively. Once at the table the docking phase is able to
complete the task. The navigation system developed has shown that reinforcement
learning can successfully be applied to a real world robot navigation task. This
system shows great potential for the development of a more advanced navigation
system.

Acknowledgements
This is part of the MirrorBot project supported by the EU, FET-IST programme,
grant IST-2001-35282, coordinated by Prof. Wermter.

References

[1] R. Carelli and E.O. Freire. Corridor navigation and wall-following stable

control for sonar-based mobile robots. Robotics and Autonomous Systems,
45:235-247, 2003.

[2] E. Delgado and A. Barreiro. Sonar-based robot navigation using nonlinear
robust observers. Automatica, 39:1195-1203, 2003.

[3] M.W.M.G. Dissanayake, P. Newman, S. Clark, H.F. Durrant-White, and
M.A. Csorba. A solution to the simultaneous loacalization and map building
(SLAM) problem. IEEE Transactions on Robotics and Automation,
17(3):229-241, 2001.

[4] M. Fiala and A. Basu. A. Robot navigation using panoramic tracking.
Pattern Recognition, 37:2195-2215, 2004.

[5] D. Filliat and J.A. Meyer. Map-based navigation in mobile robots. I. A
review of localization strategies. J. of Cognitive Systems Research,
4(4):243-282, 2003.

[6] D. Filliat and J.A. Meyer. Map-based navigation in mobile robots. II. A
review of map-learning and path-planning strategies. J. of Cognitive Systems
Research, 4(4):283-317, 2003.

13

[7] D.J. Foster, R.G.N. Morris, and P. Dayan. A model of hippocampally
dependent navigation, using the temporal learning rule. Hippocampus, 10:1-
16, 2000.

[8] P. Gaussier, C. Joulain, J.P. Banquet, S. Lepretre, and A. Revel. The Visual
Homing Problem: An Example of Robotics/Biology Cross Fertilization.
Robotics and Autonomous Systems, 30:155-180, 2000.

[9] P. Gaussier, A. Revel, C. Joulain, and S. Zrehen. Living in a Partially
Structured Environment: How to Bypass the Limitations of Classical
Reinforcement Techniques. Robotics and Autonomous Systems, 20:225-250,
1997.

[10] J.E. Guivant, F.R. Masson, and E.M. Nebot. Simultaneous localization and
map building using natural features of absolute information. Robotics and
Autonomous Systems, 40:79-90, 2002.

[11] M. Jogan and A. Leonardis. Robust localisation using an omnidirectional
appearance-based subspace model of environment. Robotics and
Autonomous Systems, 45:51-72, 2003.

[12] T. Kondo and K. Ito. A reinforcement learning with evolutionary state
recruitment strategy for autonomous mobile robot control. Robotics and
Autonomous Systems, 46:11-124, 2004.

[13] I.S.K. Lee and A.Y.K. Lau. Adaptive state space partitioning for
reinforcement learning. Engineering Applications of Artificial Intelligence,
17:577-588, 2004.

[14] H. Maaref and C. Barret. Sensor-based navigation of a mobile robot in an
indoor environment. Robotics and Autonomous systems, 38:1-18, 2002.

[15] E. Menegatti, M. Zoccarato, E. Pagello, and H. Ishiguro. Image-based
Monte Carlo localisation with omnidirectional images. Robotics and
Autonomous Systems, 48:17-30, 2004.

[16] R.S. Sutton and A.G. Barto. Reinforcement Learning An Introduction. MIT
Press, 1998.

[17] N. Tomatis, I. Nourbakhsh, and R. Siegwart. Hybrid simultaneous
localization and map building; a natural integration of topological and
metric. Robotics and Autonomous Systems, 44:3-14, 2003.

[18] C. Weber, D. Muse, M. Elshaw, and S. Wermter. Neural robot docking
involving a camera-direction dependent visual-motor coordinate
transformation. AI 2005 (submitted).

[19] C. Weber, S. Wermter, and A. Zochios. Robot docking with neural vision
and reinforcement. Knowledge Based Systems, 12:165-72, 2004.

[20] F. Wörgötter. Actor-Critic models of animal control – a critique of
reinforcement learning. Proceeding of Fourth International ICSC
Symposium on Engineering of Intelligent Systems, 2004.

14

	Robot Docking Based on Omnidirectional Vision and Reinforcem
	Introduction
	The Scenario
	Phase I – The Random Wandering
	Phase II – The Table Approaching Behaviour
	Phase III – Docking
	Actor Critic Algorithm
	Experimentation and Results
	Discussion
	Summary

	Acknowledgements
	References

