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We propose a biologically inspired model that enables a humanoid robot to learn how

to track its end effector by integrating visual and proprioceptive cues as it interacts with

the environment. A key novel feature of this model is the incorporation of sensorimotor

prediction, where the robot predicts the sensory consequences of its current bodymotion

as measured by proprioceptive feedback. The robot develops the ability to perform

smooth pursuit-like eye movements to track its hand, both in the presence and absence

of visual input, and to track exteroceptive visual motions. Our frameworkmakes a number

of advances over past work. First, our model does not require a fiducial marker to indicate

the robot hand explicitly. Second, it does not require the forward kinematics of the robot

arm to be known. Third, it does not depend upon pre-defined visual feature descriptors.

These are learned during interaction with the environment. We demonstrate that the use

of prediction in multisensory integration enables the agent to incorporate the information

from proprioceptive and visual cues better. The proposed model has properties that are

qualitatively similar to the characteristics of human eye-hand coordination.

Keywords: active efficient coding, developmental robotics, sensorimotor prediction, generative adaptive

subspace self-organizing map, reinforcement learning

INTRODUCTION

To perform complex manipulation tasks, conventional robotic systems require precise calibration,
which must be repeated when their physical configuration changes. In contrast, humans
learn manipulation skills autonomously, and automatically recalibrate in response to physical
configuration changes, e.g., due to growth and injury. Eye-hand coordination is a key skill required
for these tasks. It requires the integration of multiple sensory modalities, such as vision and
proprioception. Human infants appear to learn to develop a sense of themselves through observing
the temporal contingency and spatial congruency of the sensory (e.g., visual, auditory, and
proprioceptive) feedback received during self-produced motion, such as motor babbling (Rochat,
1998). One goal of cognitive developmental robots is to endow robots with this capability so that
they will not require any manual calibration before acting in a new environment (Asada et al.,
2009).

The mismatch between the motion of objects in the environment and the eye’s rotational
velocity creates retinal slip. During tracking motions, such as smooth pursuit, the brain attempts to
minimize this slip by adapting the eye rotational velocity. Motion in the environment is generated
by either self-motion (e.g., of the hand) or exteroceptive motion. When the hand moves, its motion
can be sensed via two sensory modalities: retinal slip caused by the relative motion between the
hand and eye and proprioceptive sensing of the position and movement of the arm. In contrast,
an external object moving in the environment only generates a retinal slip. Moreover, hand motion
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in total darkness only provides proprioceptive information to the
brain. In such conditions, the human brain has the ability to
generate eye movements to follow the hand or an external target
using smooth pursuit like eye movements.

In this paper, we propose a novel predictive model for learning
robotic visuomotor control. The proposed system model is
inspired by recent findings that neurons in the primary visual
cortex (area V1) are driven not only by visual but also by the
motor input. Activity in V1 was long believed to be driven only
by visual inputs. However, recent findings on visual perception in
awake mice have suggested that this is not true. For example, the
responses in V1 depend on behavioral state (Niell and Stryker,
2011). Experiments conducted in darkness revealed that motor
activity alone could trigger responses in V1 neurons (Saleem
et al., 2013). The development of V1 depends upon visuomotor
coupling (Attinger et al., 2017). Most relevant to this work is
the discovery of cells that respond to the mismatch between the
actual and predicted visual flow (Keller et al., 2012; Zmarz and
Keller, 2016). This suggests that visual areas predict the sensory
consequences of motor actions.

Our model takes in visual input from a camera and
proprioceptive inputs from the encoders of the robot arm, and
produces eye motor actions to track the moving robot hand.
The model is based upon the hypothesis that the brain utilizes
proprioceptive inputs to predict the visual consequences ofmotor
actions. In line with other work in predictive coding, we use the
term “predict” to refer to the process of generating an estimate
of one sensory input from the values of other inputs, which
may occur at the same time, rather than a more strict definition
where future values are estimated from past and present values.
The prediction is often used to generate a mismatch signal by
comparison with the actual input. For example, Srinivasan et al.
(1982) explain center-surround antagonism in the retina using
predictive coding, where the predicted intensity at the center
based on the surround is subtracted from the actual center
signal. Rao and Ballard (1999) predict lower level cortical outputs
from higher level cortical outputs. Zmarz and Keller (2016) find
mismatch neurons that respond to the difference between the
actual visual flow and the prediction of visual flow from self-
motion. Our model is most similar to the latter work, where
prediction is across sensory modalities.

There are several important novel attributes of the learning
methodology compared to similar work in the literature. First,
the learning does not depend on any fiducial visual marker to
identify the end effector of the robot. Second, the model does not
require the forward kinematics of the arm to be known. Third,
pre-defined visual feature descriptors are not required, but rather
are learned. Finally, our experimental results with this model
suggest that the use of prediction enables the model to better
integrate proprioception and vision.

The rest of the paper is organized as follows. In section
Related Work, we place our work into the context of past
work. Section Materials and Methods describes the model,
experimental setup and learning algorithms. Then in section
Results, we present experimental results comparing the tracking
performance. We also compare our model characteristics with
human psychophysical data. Finally, in section Discussion,

we further discuss the results presenting the corresponding
conclusions.

RELATED WORK

The problem of learning end effector tracking is a part of the
larger problem of autonomous learning of the body schema. The
body schema is a sensorimotor representation of the body that
can be used to direct motion and actions. It integrates multiple
cues, including proprioception, vision, audition, vestibular cues,
tactile cues, and motor cues, to represent the relations between
the spatial positions of the body parts. Knowledge of the body
schema can be used in a number of different tasks, e.g., end
effector tracking, reaching, posture control and locomotion.

The review by Hoffmann et al. (2010) classifies body schema
representations used in robotics into two classes: explicit and
implicit. Both have been used to address the problem of end
effector tracking. In the explicit approach (e.g., Bennett et al.,
1991; Hollerbach and Wampler, 1996; Gatla et al., 2007),
transformations between sensory and motor coordinates are
broken down into a chain of closed form transformations where
each link corresponds explicitly to part of the robot structure.
The work we present here falls into the class of implicit models,
where an implicit representation (e.g., a look up table or neural
network) is used.

Past work has often used a point representation of the end
effector, where artificial markers (e.g., color blobs) have been used
to enable easy identification of the end effector (Hersch et al.,
2008; Sturm et al., 2009). For example, a biologically inspired
model to learn visuomotor coordination for the robot Nao was
proposed in Schillaci et al. (2014). Learning occurred during
motor babbling, which is similar to how infants may learn early
eye-hand coordination skills. The proposed method used two
Dynamic Self Organizing Maps (DSOMs) to represent the arm
and neck position of the robot. The connections between the
DSOMs were strengthened if the robot was looking at a fiducial
marker positioned on the end effector. After learning, the robot
had the ability to track the end effector by controlling the neck
joints. One advantage of this model is that the method has
no assumption that the forward arm kinematics of the robot
is known. However, one limitation of the approach is that it
required a fiducial marker.

Subsequent work has relaxed the assumption that the end
effector is a point and removed the requirements for explicit
markers. However, it has still required hard-coded visual feature
descriptors. For example, an algorithm to learn the mapping
from arm joint space to the corresponding region in image
space containing the end effector was proposed in Zhou and Shi
(2016), based on a measure of visual consistency defined using
SIFT features (Lowe, 2004). This algorithm did not require prior
knowledge of the arm model, and was robust to changes in the
appearance of the end effector. Other marker-less approaches
have relied upon knowledge of a 3D CAD model of the end
effector (Vicente et al., 2016; Fantacci et al., 2017). Vicente
et al. (2016) eliminated calibration errors using a particle filter.
The likelihood associated with each particle was evaluated by
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comparing the outputs of Canny edge detectors applied to both
the real and simulated camera images. Fantacci et al. (2017)
extended this particle filter and 3D CAD model based approach
to estimate the end effector pose. The likelihood was evaluated
using a Histogram of Oriented Gradient (HOG) (Dalal and
Triggs, 2005) based transformation to compare the two images.
The approach to bootstrap a kinematic model of a robot arm
proposed in Broun et al. (2014) does not require a priori
knowledge of a CAD model, as it constructs a model of the end-
effector on the fly from Kinect point cloud data. However, it still
requires a hard-coded optical flow extraction stage to identify the
arm in the image through visuomotor correlation.

Some of the limitations in the aforementioned research (e.g.,
the requirement for a marker and/or hard-coded image features)
were addressed in our prior work (Wijesinghe et al., 2017), which
proposed a multisensory neural network that combined visual
and proprioceptive modalities to track a robot arm. Retinal slip
during the motion was represented by encoding two temporally
consecutive image frames using a sparse coding algorithm where
the basis vectors were learned online (Zhang et al., 2014). The
sparse coefficients were combined with proprioceptive input to
control the eye to track the arm. This paper extends our previous
idea by introducing a new model following the hypothesis that
the brain generates internal predictions for consequences of
actions.

MATERIALS AND METHODS

Our approach is based on the Active Efficient Coding (AEC)
framework (Zhao et al., 2012; Teulière et al., 2015), a
generalization of the efficient coding hypothesis to active
perception. Under the efficient coding hypothesis, the sensory
data is encoded efficiently by exploiting redundancies in the
statistics of the sensory input signals. In AEC, movements of the
sensory organs are also learned so that the inputs can be coded
efficiently. In the proposed model, visual, and proprioceptive
stimuli are jointly encoded. This perceptual representation is
used to generate eye movements for tracking the robot arm.
Simulation of the model is performed using the iCub humanoid
robot simulator, an open source robot simulator for the iCub
robot (Tikhanoff et al., 2008). We provide more detail in the
following subsections.

Model Architecture
Figure 1 illustrates the architecture of the proposed model,
which evolves in discrete time. We assume that each iteration
corresponds to 40ms.

At each iteration, the right eye of the iCub captures an image
with 320 × 240 pixel resolution. Two foveal subwindows are
extracted from the center of this image: a smaller 55 × 55 pixel
fine scale image, Ifine (t), and a larger 110 × 110 pixels coarse
scale subwindow, Icoarse (t), which is subsampled horizontally
and vertically by a factor of two. These subwindows cover 11o

and 22o, respectively, horizontally and vertically.
The visual stimuli are encoded using Generative Adaptive

Subspace Self Organizing Maps (GASSOMs) (Chandrapala and
Shi, 2015). Proprioceptive inputs include the arm position,

velocity, and acceleration (θa (t) ∈ R
4, θ̇a (t) ∈ R

4, θ̈a (t) ∈ R
4)

and the eye position and eye velocity (θe (t) ∈ R
2, θ̇e (t) ∈ R

2) as
reported by the motor encoders. The prediction module predicts
the sensory consequences of the arm and eye motions based
on proprioceptive inputs. This enables the model to reduce the
correlation between the visual features and the proprioceptive
inputs during self-motion. Finally, the visual and proprioceptive
inputs are integrated using an Artificial Neural Network (ANN)

to generate pan and tilt eye acceleration commands,
¨̂
θe (t) ∈ R

2 ,
enabling the right eye to track the robot arm. The “∧” symbol
is added to distinguish motor commands from proprioceptive
information.

Given the eye acceleration command, the eye velocity is
obtained by;

˙̂
θe (t + 1) =

˙̂
θe (t) +

¨̂
θe (t) . (1)

Equation (1) is similar to the model for the maintenance of
pursuit described in Lisberger (2010), where an efference copy
of the eye velocity command is fed back in order to determine
the current command for eye velocity in the immediate future.
This enables eye velocity to be maintained automatically. In our
model, both image motion and arm motion can drive changes in
eye velocity through the eye acceleration command.

The model presented here uses only afferent information
to determine the eye acceleration. In biological systems, both
afferent and efferent signals from the arm are involved in arm-eye
coordination control. For deafferented monkeys, smooth pursuit
eye movements disappeared while tracking a target moved by
active arm movements in darkness (Gauthier and Mussa Ivaldi,
1988). Steinbach (1969) found differences in ocular tracking of
active and passive hand motions, which suggest that efference
commands also play a crucial role. Gauthier and Mussa Ivaldi
(1988) and Gauthier et al. (1988) suggested that efferent signals
serve to synchronize the onsets of arm and eye motions, whereas
proprioceptive signals serve to couple the eye and hand motor
signals once movement has started. Subsequent experiments
have provided additional support for this hypothesis (Vercher
et al., 1996). Since we use only afferent information, the model
may provide an account for differences in performance once
movement has started. We leave the integration of an efference
copy to future extensions of the model.

During training, we control four degrees of freedom (DoF)
among the seven DoF in the iCub robot arm. The three joints in
the wrist are fixed, and the remaining four joints (the shoulder
pitch, shoulder roll, shoulder yaw, and the elbow joint) are
controlled. We fix the wrist angles so that the palm of the
iCub robot remains approximately parallel to the image plane.
As described below, one assumption of our approach is that
the retinal flow is uniform across both fine and coarse foveal
image regions. Keeping the wrist angle fixed ensures that the
image of the palm covers the foveal images when the gaze vector
intersects the center of the palm. Modifying the algorithm so
that the image region used to generate motor commands vary
in size automatically may enable the algorithm to allow all DoF
to vary. During testing, we allow the wrist to move (see section
Qualitative Evaluation of Performance).
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FIGURE 1 | The model takes as input images at two scales and proprioceptive readings from the encoders. The eye controller represented by the neural network

maps the perceptual representation to motor actions.

In the following, we describe the model components in more
detail.

Visual and Proprioceptive Features
The model encodes the visual stimuli in two stages. In the first
stage, each foveal image is divided into a 10× 10 array of 10× 10
pixel overlapping patches, x1,s,i(t) ∈ R

100, with a stride of 5 pixels,
where s indexes scale and i ∈ {1, 2, . . . , P} indexes the patch
(P = 100). The subscript “1” indicates the stage.

Patches are encoded using GASSOMs (Chandrapala and Shi,
2015). The GASSOM is a probabilistic generative extension of
the Adaptive Subspace Self OrganizingMap (ASSOM) (Kohonen,
1996). It assumes that each input vector x1,s,i(t) is generated by
one of N = 256 nodes. The generating nodes evolve according
to a first order Markov process. Each node is associated with
a two dimensional subspace spanned by basis vectors specified
by the orthogonal columns of the matrix B1,s,n ∈ R

100×2. The
input is generated by the node by choosing a Gaussian distributed
vector lying on the subspace plus a small noise vector lying in
the orthogonal complement of the subspace. Using the algorithm
described in Chandrapala and Shi (2015), both the transition
matrix of the Markov process and the node subspaces are learned
so as to maximize the likelihood of the input sensory data. The
learned transition matrices have high self-transition probability,
which implies that the node generating input t − 1 is likely to
generate the input at time t, a property we refer to as “slowness.”

The output of the GASSOM is the set of projections of the
input vector onto the N subspaces.

p1,s,n,i(t)=BT
1,s,n x1,s,i(t). (2)

When the eye is viewing the end effector, these projections change
in a regular manner, which depends upon the movement of the
arm and the eye.

Each node at each scale has an associated prediction
module, which predicts the projection of the input at time t,
p1,s,n,i (t), given the input at time t − 1, p1,s,n,i(t − 1) and the
proprioceptive signals encoding the arm/eye position/velocity
(θa (t) , θ̇a (t) , θe (t) , θ̇e (t)). Figure 2 indicates the projections of
the patch x1,s,i at times t and t − 1 and the corresponding
transformation in the subspace. The prediction module assumes
the transformation can be modeled as a linear mapping, where
the predicted projection at time t is given by;

p̂1,s,n,i (t)=

[

αs,n βs,n

γs,n δs,n

]

p1,s,n,i (t − 1) , (3)

where the α, β , γ and δ parameters for each scale s and
node n depend upon the arm/eye position/velocity. These
parameters are computed using a neural network with four
inputs (θa (t) , θ̇a (t) , θe (t) , θ̇e (t)), one hidden layer containing
25 hidden units with tanh activations, and four linear output
neurons. Since all patches share the same α, β , γ , and δ

parameters, we are assuming that the retinal flow is uniform
across the foveal images. By performing the prediction in the
projected subspace, rather than the original high dimensional
pixel space, we simplify the task of prediction.

The parameters of the 512 (2 scales × 256 nodes) neural
networks are learned online using stochastic gradient descent,
where the weights are updated every iteration. Since each foveal
image contains 100 patches, we average the gradients of the
prediction error across the 100 patches, and update the weights
of each neural network with the average gradient.

The second GASSOM encodes the concatenated vectors
p1,s,n,i(t) and p̂1,s,n,i(t) corresponding to all the nodes n ∈

{1, 2, . . . , 256} in the first GASSOM. Hence, the input vector
to the second GASSOM is x2,s,i(t) ∈ R

1024 for a given scale
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FIGURE 2 | (A) Projections at time t and t− 1 for a given node n, scale s and patch i. (B) The transformation matrix projecting current projection at time t, given the

projection at time t− 1 with the proprioceptive input.

s and patch i. The second GASSOM also contains M =

256 nodes, each with an associated 2-dimensional subspace
spanned by the columns of the matrix B2,s,m ∈ R

1024×2 where
m ∈ {1, 2, . . . , 256} indexes the node. As in Equation (2), the
projections are computed by;

p2,s,m,i(t) = BT
2,s,m x2,s,i(t). (4)

Both the transition matrix and the node subspaces are learned
online as the iCub behaves in the environment.

From the projections p2,s,m,i(t) ∈ R
2 at each node, we

compute a feature vector φs(t) ∈ R
256 for each scale of the foveal

image by computing the average squared length of the projections
over all the patches.

φs (t) =











1
P

∑P
i=1

∥

∥ p2,s,1,i(t)
∥

∥

2

1
P

∑P
i=1

∥

∥ p2,s,2,i(t)
∥

∥

2

. . .
1
P

∑P
i=1

∥

∥ p2,s,256,i(t)
∥

∥

2











. (5)

The final feature representation of the visual stimuli is the
concatenation of the feature vectors at the two scales.

φv (t) =

[

φfine (t)
φcoarse (t)

]

. (6)

The proprioceptive feature vector φp (t) ∈ R
16 concatenates

the arm position, velocity and acceleration measurements from
the encoders, θa (t) , θ̇a (t) , θ̈a (t) ∈ R

4 and the eye position
and velocity θe (t) , θ̇e (t) ∈ R

2. Each proprioceptive input is
normalized by subtracting the mean and dividing by the standard
deviation computed over the training data set.

Eye Motor Controller
The eye controller maps the visual φv (t) ∈ R

512 and
proprioceptive φp (t) ∈ R

16 feature vectors to an eye acceleration

command
¨̂
θe(t) using the artificial neural network shown in

Figure 1. Only one network is shown, corresponding to the

generation of the acceleration command for one axis (pan or tilt).
The other axis is controlled by a network with the same structure,
but different weights.

Each neural network has 11 output neurons, corresponding
to 11 possible acceleration actions, ai ∈ A for i ∈ {0, 1, . . . , 11},
where;

A = {−1.6,−0.8,−0.4,−0.2,−0.1, 0, 0.1, 0.2, 0.4, 0.8, 1.6} deg/sample2.

(7)
The outputs of each neural network, πk,i (t) where k ∈ {pan, tilt}
and i ∈ {0, 1, . . . , 11} encode the probabilities that the actions are
chosen at each time t. Mathematically;

P
[

¨̂
θ e,k (t) = ai

]

= πk,i (t) , (8)

where
¨̂
θe (t) =

[

¨̂
θ e,pan (t)

¨̂
θ e,tilt (t)

]T
. The eye acceleration

command is generated by sampling from this probability
distribution.

Within the neural network, the visual input first passes
through a single fully connected 50 neuron hidden layer and
the proprioceptive input first passes through two fully connected
25 neuron hidden layers with tanh activations before the two
pathways are combined at the output layer, which is fully
connected with a softmax output non-linearity. Mathematically;

πk,i(t) =
exp(zk,i(t)/τ )

∑11
j=1 exp(zk,j(t)/τ )

, (9)

where τ = 1 is a temperature parameter. The vector, zk (t) ∈ R
11,

is given by;

zk (t) = WT
k,2 tanh

(

WT
k,1φv (t)

)

+WT
k,5 tanh

(

WT
k,4 tanh

(

WT
k,3φp (t)

))

,

(10)
where Wk,1 ∈ R

512×50,Wk,2 ∈ R
50×11,Wk,3 ∈ R

16×25,Wk,4 ∈

R
25×25 and Wk,5 ∈ R

25×11 are weight matrices. Our
implementation includes constant bias terms at all layers, which
we have not shown explicitly in the notation to avoid clutter.
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The weights of the eye motor controller are learned online as
the iCub behaves in the environment, using the natural actor-
critic reinforcement learning algorithm (Bhatnagar et al., 2009).
The network generating the probabilities described above is the
actor (policy) network. The actor-critic algorithm also requires
a second network to approximate the value function, which
depends upon both φv (t) and φp (t). We use a single layer
linear network with 528 inputs feeding into a single linear output
neuron for the critic network.

The instantaneous reward is given by;

r (t) = −
1

2
(efine (t) + ecoarse (t)) , (11)

where;

es (t) =
1

P

∑P

i=1
max
n

∥

∥ p1,s,n,i(t)− p1,s,n,i(t − 1)
∥

∥

2
, (12)

for s ∈ {fine, coarse}. This reward penalizes changes in the patch
projections, which should be constant if the image of the end
effector is stabilized.

Training and Testing Environment
Training runs for a total of 400,000 iterations. It interleaves
two different types of sessions (Figure 3), each lasting 5,000
iterations at a time. For both session types, the environment
contains a planar object mapped with a natural image texture
chosen at random from the (Olmos andKingdom, 2004) database
of size 2142 × 1422 pixels located at 0.4–0.8m distance in
front of the iCub. When placed directly in front of the robot,
the plane subtends 136◦ of visual angle horizontally and 118◦

of visual angle vertically. The texture is changed every 500
iterations. In session type 1, the arm remains stationary in a
position where it is outside the field of view of the robot. Only
the textured plane, which moves randomly horizontally and
vertically, is visible. In session type 2, the robot arm babbles
so that the end effector moves randomly in front of the iCub.
Depending on the eye and arm position, the center of the
eye gaze may fall on the robot arm or on the resting plane.
If the eye gaze falls on the center of the palm of the iCub,
the hand fills both the coarse and fine scale foveal windows,
but this is not always the case. This training setup is intended
to mimic a general environment, where an agent is exposed
to both self-generated and exteroceptive motion in the visual
environment.

In session type 2, we use motor babbling to generate the visual
and proprioceptive data for the learning algorithm. The arm
babbles around a home pose θha = [−82o 22o 40o 90o], which is
chosen so that the center of the iCub’s hand falls on the image
center of the right eye when its pan and tilt angles are zero.

The arm moves through a randomly generated trajectory (θ̂a (t)
in Figure 1) in the arm joint space. The babbling trajectory is
generated by feeding a set of via points sampled from a uniform
distribution [θha,i − 12o, θha,i + 12o] for i ∈ {1, 2, 3, 4} into
the “mstraj” function of the Robotics Toolbox (Corke, 2017) to
generate a trajectory consisting of linear segments connected by
polynomial blends.

In session type 1, the planar object follows a trajectory created
by first generating an arm trajectory as described above, and then
moving the plane so that its center point follows the same angular
trajectory as the center of the iCub’s hand. This ensures that the
statistics of the visual motion induced by the plane are similar to
the statistics of those induced by the hand.

The eye rotational angles are restricted to ±40o and ±30o in
pan and tilt, respectively. The rotational velocity of the eye is also
limited to ±3 deg/sample in both pan and tilt. During training,
we reset the eye position to a “home” position θhe = [0o 0o] and
the velocity to zero every 500 iterations. This ensures the eye
orientation does not drift off so far that the eye never sees the
hand. For each trajectory during testing, we initialize the eye
velocity to zero and the eye position so that the gaze vector
intersects the center of the palm.

We chose this method of random babbling and trajectory
generation for its simplicity. There are a number of ways we
can make the motion more biologically realistic, e.g., through
the use of dynamic movement primitives (Schaal, 2006) for
trajectory generation, or through the use of goal babbling (von
Hofsten, 2004) to choose the via points. The use of dynamic
movement primitives would alter the statistics of the image
motion induced by the hand, which might change the smooth
pursuit performance. The use of goal babbling might improve the
speed of learning (Baranes and Oudeyer, 2013). These would be
interesting extensions of the model to investigate. However, we
do not expect their incorporation to change the main qualitative
findings we report here.

For the sake of simplicity in our simulations, we use the iCub
robot simulator to take into account the kinematics of the iCub
robot as well as to model the geometry and appearance of the
visual environment. We do not take into account the dynamics of
the robot, nor do we incorporate a biologically realistic model for
the eye movement dynamics. Rather, in each iteration, we move
the robot arm to the configuration determined by the random
babbling arm motion via position control. We assume that the
eye velocity command is executed perfectly, by determining the
location of the eye in the next iteration as the sum of the encoder
measurement of the current position plus the velocity command
in Equation (1), and move the eye there via position control. The
images taken by the iCub in the new arm/eye positions determine
the next visual input to the model. The proprioceptive input is
determined from the motor encoders and their first and second
differences in time. We believe that incorporating more realistic
models of arm and eye dynamics are a natural next step. If these
models aremore biologically realistic, themodelmay give a better
quantitative account of the performance of human subjects.

RESULTS

Learned Visual Representation
The basis vectors in the first stage GASSOM are analogous
to the receptive fields of orientation-tuned simple cells in the
human primary visual cortex (Chandrapala and Shi, 2015). As
shown in Figures 4A,B, the basis vectors of the first GASSOM
are tuned to specific orientations and spatial frequencies. The
basis vectors corresponding to fine and coarse scales have similar
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FIGURE 3 | The two-session types used in training, In session type 1, the arm rests in a fixed position outside the field of view of the robot while a textured plane

moves in the background. In session type 2, the arm babbles in front of the robot with the textured plane remains stationary.

characteristics. The corresponding basis vectors associated with
a node in the first GASSOM have a phase difference close
to 90o to represent the two orthogonal basis vectors. We
initialize these basis vectors with the basis vectors learned on
natural images. In addition, the parameters corresponding to
the first GASSOM are fixed during the visual representation
learning.

The predictionmodule predicts the projections at time t of the
first stage GASSOM given the projections at time t − 1 and the
proprioceptive inputs. We evaluate the accuracy of the prediction
module using the average cosine similarity between p̂1,s,n,i(t)
and p1,s,n,i(t). For this test, the eye and the arm are moved
independently of each other. The eye velocities are sampled
from Gaussian distributions fitted to the distribution of the eye
velocity during training in both pan and tilt directions. The
standard deviations of the fits are σθ̇e,pan

= 0.7337 deg/sample

(r2 = 0.982) and σ θ̇e,tilt
= 0.6387 deg/sample (r2 = 0.989).

Arm trajectories are generated in a similar way to the training.
In order to maintain the gaze on the robot hand, we execute
a saccade to bring the eye gaze back to the center of the
hand once the eye gaze drifts outside of the arm region. We
evaluate the predictors over 10,000 iterations. The basis vectors
from the subspaces with the highest and lowest average cosine
similarity for two scales are outlined in green and blue in
Figures 4A,B.

We fit a two-dimensional Gabor function to each basis
vector to identify the factors influencing the prediction accuracy.
Figures 4C,D show that the average cosine similarity of a
predictor is related to the spatial frequency ( 1

λ
; where λ is the

spatial wavelength) of the basis vector. Higher spatial frequencies
have a lower cosine similarity for predictors in both fine
and coarse scales. Intuitively, basis vectors with higher spatial
frequencies are more sensitive to retinal motion than those
with low spatial frequencies. The transformations associated with
higher spatial frequency basis vectors aremore difficult to predict.
The cluster of data points close to 1

λ
= 0 in Figures 4C,D are

basis vectors whose fitted Gabor functions had very long spatial
wavelengths. These typically corresponded to basis vectors with
main support near the edges of the patch.

The second stage GASSOMs jointly encode the actual and
predicted projections onto the subspaces of the first GASSOM.
If the predictions from knowledge of the proprioception are
accurate, there should be little difference between the actual
and predicted projections. Differences between the two arise
due to exteroceptive motion, which cannot be predicted from
proprioception, as well as inaccuracy in the predictor. The basis
vectors in the second GASSOM encode these differences and
inherit orientation and spatial frequency tuning from the first
stage. Encoding only the residual motion after prediction helps
to reduce correlation between the visual and proprioceptive cues.

We examine the tuning of the basis vectors in the second
GASSOM using drifting two-dimensional cosine gratings in 10×
10 pixel image patches. For this test, we fix the proprioceptive
input to zero self-motion. We record the responses from the
subspaces of the second GASSOM to all combinations of motion,
spatial frequency and orientation, where spatial wavelengths
varied from 3 to 20 pixels, motion from −2 to 2 deg/sample,
orientation from 0◦ to 180◦. For each subspace, we determine
the preferred tuning from the combination that resulted in the
maximum magnitude response.

The tuning characteristics for the fine scale basis vectors are
provided in Figures 5A,B. Here, we also present the tuning
statistics corresponding to a model without the prediction
module shown in Figures 5C,D. The majority of the basis
vectors are tuned to zero velocity for both architectures as
shown in Figures 5A,C. The tuning velocities of the architecture
with, without prediction have a variance of 0.3660, 0.4286
(deg/sample)2 . The tuning orientations are distributed close
to a uniform distribution as shown in Figures 5B,D. The KL
divergence with the uniform distribution of orientations for the
architecture with, without prediction is 0.0113, 0.0397. Hence,
the two architectures prefer zero retinal slip for all the tuning
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FIGURE 4 | (A,B) One out of each pair of basis vectors spanning the 256 subspaces in the fine (A), and coarse (B) scale GASSOMs. The basis vectors are shown as

a 16× 16 array of 10× 10 images. In each subplot, the twenty six basis vectors of the subspaces with the highest (lowest) average cosine similarity between the

predicted and actual outputs are outlined in green (blue). (C,D) Scatter plots of the average cosine similarity of the prediction vs. best-fit spatial frequency for the fine

(C), and coarse (D) scale basis vectors.

orientations. For the architecture with prediction, the variance of
the tuning velocities is lower compared to the other architecture.

Learning the Eye Motor Controller
The eye controller is tested by evaluating the tracking
performance for a set of 10 different arm trajectories, each lasting
1,000 iterations. The trajectories are generated in the same way
as in training. The performance is measured by computing the
root mean squared error (RMSE) between the target and actual
eye velocities.

We compare the performance of the system in three different
scenarios. In all cases, the robot attempts to track the end
effector of the robot. In the first case, the model is driven by
both visual and proprioceptive stimuli. In the second case, the
model is purely driven by vision, with illusory proprioceptive

input being provided that suggests that the arm is fixed
at the resting position outside the field of view used in
training session type 1. In the third case, the model is purely
driven by proprioception, with the visual feature φv(t) replaced
by the expected value computed over time E[φv(t) ]. This
approach allows us to compare the three cases by providing
the same visual stimuli (the robot hand) in distinct scenarios.
Figure 6 depicts the learning progress recorded at 6 checkpoints
occurring every 80,000 iterations. The RMSE for both pan
and tilt angular velocities are averaged over 30 different trials
comprising 10 trajectories and 3 different training trials. The
learning curves in Figure 6 illustrate that in steady state, using
both visual and proprioceptive stimuli is much more accurate
than using either stimuli alone. This is typical of multimodal
integration.
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FIGURE 5 | Tuning statistics for the second stage GASSOM. (A,B) (Velocity, Orientation) statistics for the architecture with the prediction module. (C,D) (Velocity,

Orientation) statistics for the architecture without prediction. The majority of the basis vectors in the second GASSOM are tuned in to zero retinal slip in both cases.

Comparison With Psychophysical
Experiments
In this section, we compare the eye movements generated by
the model to that of the human oculomotor system using an
experimental protocol similar to that described in Vercher et al.
(1993), which is illustrated in Figure 7. Vercher et al. measured
the frequency responses of the human oculomotor plant during
visual tracking for five subjects (4 males and 1 female) in two
different cases. In the first case, the subject was tracking a target
moving in a sinusoidal trajectory as shown in Figure 7A. In the
second case, the target trajectory was controlled by the subject
using his/her arm while tracking the corresponding target with
the eyes as shown in Figure 7B. The eye movements in these two
cases were compared to understand the role of proprioception in
oculomotor control.

In our experiment, with the model to generate comparable
data, we use the end effector of the robot arm as the target.
The end effector is moved in a sinusoidal trajectory between
−6o and +6o in the pan direction with respect to the eye. The
frequency of the motion varies from 0.5 to 2Hz in 0.5Hz steps.
Sample trajectories generated by the model at 1Hz frequency are
shown in Figure 8. We fit a sine function to the eye velocity to

compute the velocity gain and phase difference with reference
to the target trajectory. The eye trajectory in Figure 8A shows a
higher gain and a lower phase delay compared to the trajectory
in Figure 8B. Hence, the addition of proprioceptive information
improves the velocity gain in comparison to vision alone. The
addition of proprioception also reduces the phase delay. Our
system is also able to move the eye solely with the proprioceptive
input as illustrated in Figure 8C.

We compare the results of our model with human
performance, by extracting the frequency response data from
Figures 2, 3 in Vercher et al. (1993), which show the eye
velocity gains and phase delays averaged across the five subjects.
Figure 9 compares the frequency responses. The model and
human data have qualitative similarities. According to the gain
plots in Figures 9A,C, both responses have a higher gain in
the presence of both vision and proprioception. In addition,
proprioception combined with vision has a lower phase delay
as shown in Figures 9B,D. For the subjects in this study, both
efferent and afferent information is available during tracking
of the self-moved target, whereas our model only includes
afferent information from proprioception. Vercher et al. (1996)
studied the role of proprioception in eye-hand coordination
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FIGURE 6 | Learning curves corresponding to three testing scenarios. The

performance for pan and tilt angular velocities are averaged. The black solid

line shows the learning curve corresponding to the system using both visual

and proprioceptive inputs to track the robot hand. The red dashed line shows

the learning curve corresponding to the system using the pure visual input to

track the robot hand. The blue dash-dot line shows the learning curve

corresponding to the system using pure proprioceptive input.

by comparing the behavior between deafferented and control
subjects. The deafferented subjects showed little difference in
performance between tracking a self-moved target and an
external target. This highlights the importance of proprioception
as a non-visual signal for smooth pursuit control.

Qualitative Evaluation of Performance
To observe the tracking performance qualitatively, we generate
a video comparing the eye trajectories as the arm moves
randomly for the three different combinations of cues1 This
video demonstrates the performance by projecting the gaze
position to an image frame obtained from a fixed camera for
three different testing cases. The right eye camera is moving
differently in all three testing cases. Relating the gaze to a
reference camera frame makes it easier to compare the different
cases. From the video, the pure proprioception based tracking
underperforms in comparison to the other two cases. This is
consistent with the velocity gain and phase delay responses in
Figure 9.

The performance in the video can be summarized by
projecting the gaze vectors to the end effector coordinate system.
The origin of this coordinate system is located on the palm
of the robot end effector. Figure 10 shows distributions of the
intersections between the eye gaze direction and the plane
passing through the origin parallel to the palm surface over the
entire tracking trajectory as two-dimensional heat maps, one for
each of the testing cases. In comparison to Figures 10A,B, 10C

shows larger variability in the gaze position on the end effector.

1The video is available online at https://youtu.be/PPb7KwWefBI

This is consistent with the poorer tracking performance for
proprioception alone than in the other two cases. The model
does not explicitly define a precise end effector location to be
tracked. Since only acceleration commands are generated, the
gaze position can drift. Thus, the mean gaze position projected
to the palm varies across different training trials for the three
different testing cases.

We also illustrate the system’s robustness to changes in the
visual appearance of the robot end effector qualitatively through
an accompanying video2 We change the appearance by moving
the wrist and fingers of the iCub with sinusoidal joint trajectories.
No information about finger and wrist motion is provided to
the system. When eye acceleration is driven by vision alone, the
eye drifts away faster from the end effector. The changes in the
appearance of the end effector introduce visual perturbations,
which are challenging to follow in comparison to changes due
to translation of the end effector. For the other two cases,
the proprioceptive inputs, which are not altered due to the
changes in the visual appearance of the robot end effector,
enable the robot to maintain the gaze on the palm for a longer
time.

Importance of the Prediction Module
To identify the role of the prediction module in the proposed
model, we compare the performance of three different models.
Figure 11A shows a general architecture that covers the three
models compared in this study. The three models differ only in
their visual pathways. The proprioceptive features and the eye
controller neural network are identical. Figure 11B illustrates
the prediction based visual pathway proposed in this paper. The
pathway in Figure 11C has a very similar structure, except that
the prediction module is removed. Comparing these two models
enables us to identify the benefit of the prediction module.
The pathway shown in Figure 11D is the sparse coding based
visual representation used in our earlier work (Wijesinghe et al.,
2017).

To compare the performance, each model is tested for 20
different testing trials (10 different trajectories for each of the two
training scenario types). Figure 12 shows the RMSEs between
the target and actual eye velocities. We perform paired sample
t-tests to compare the RMSE of the model with prediction with
the RMSEs of the other two. The effect size is also computed
according to the Cohen’s d formula. The Differences between the
performance of the models in Figures 11B,C are not statistically
significant for vision and proprioception (p= 6.27× 10−1, effect
size = −0.0876) nor vision alone (p = 4.40 × 10−1, effect
size= 0.1619). The model with prediction performs significantly
better for proprioception alone (p = 6.16 × 10−10, effect size
= 4.2334). We have similar findings for the Sparse Coding
based model in Figure 11D. Differences in performance are not
significant for vision and proprioception (p= 7.29× 10−2, effect
size = 0.6531) nor vision alone (p = 1.49 × 10−1, effect size
= −0.4611). The model with prediction performs significantly
better with proprioception alone (p = 5.94 × 10−15, effect size
= 4.7588).

2The video is available online at https://youtu.be/RsGTmbb0cf0
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FIGURE 7 | Psychophysical experiment (Vercher et al., 1993). (A) The target was controlled externally. The subject was asked to track the target using direct visual

input. (B) The target was controlled by the subject using a lever. The subjects simultaneously tracked the target ulitlizing both visual and proprioceptive inputs.

FIGURE 8 | Eye velocity trajectories corresponding to the eye responses for different sensory modalities: (A) Vision and Proprioception, (B) Vision, (C) Proprioception.

Each figure contains a trajectory (red) indicating the target velocity, the respective eye velocity (blue) and the sinusoidal fit (black) for the eye velocity.

These results demonstrate that the proposed prediction
based model exhibits superior performance compared to models
without prediction. We attribute this to reduced correlation
between the visual and proprioceptive features in the prediction-
based model.

DISCUSSION

In this article, we propose a model based on the Active Efficient
Coding (AEC) framework that enables a robot to learn to track
its end effector using a combination of visual and proprioceptive
cues. Rather than simply concatenating the two sets of features,

the proposed model predicts visual consequences of actions,
which removes information correlated with proprioception from
vision. The model enables a robot to learn to track an object
for three cases: using both visual and proprioceptive cues
corresponding to the typical case of end effector tracking,
using only visual cues corresponding to tracking of an external
independently moving object, and using pure proprioception
corresponding to tracking of the end effector in darkness.

The incorporation of prediction is motivated by recent studies
on neural responses in V1 of mice during locomotion (Niell
and Stryker, 2011; Keller et al., 2012; Attinger et al., 2017).
These studies suggest that the responses of cells in the V1
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FIGURE 9 | The frequency response of the human oculomotor system compared with the frequency response of the proposed model. (A) The velocity gain of the

proposed system. (B) The phase delay of the proposed system. (C) The velocity gain of the human oculomotor system. (D) The phase delay of the human oculomotor

system.

FIGURE 10 | The heat map illustrating the distribution of eye gaze intersection with a plane parallel to the palm of the robot hand. The robot hand is superimposed to

each image to have a qualitative comparison: (A) Vision and Proprioception (B) Vision (C) Proprioception.

depend upon predictions of the sensory consequences of motor
actions. In fact, locomotion improves the encoding of visual
stimuli (Dadarlat and Stryker, 2017). In our model, the visual

representation encodes the residual motion after removing the
predicted effects of self-motion from the observed visual flow.
We show that the proposed prediction module has the ability
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FIGURE 11 | (A) A general architecture representing all of the architectures compared in this study. (B) The prediction based visual pathway proposed in this paper.

(C) The visual pathway without the prediction module. (D) A Sparse Coding based visual pathway.

FIGURE 12 | The RMSE (mean ± standard deviation) of the eye velocity

compared to a target velocity for three different architectures and three

different combinations of sensory modalities. For the paired t-test

comparisons, no mark indicates differences are not statistically significant (p >

0.05), ***indicates statistical significance (p < 0.001).

to predict the visual sensory consequences of proprioceptive
inputs (Figure 4). Specifically, the visual sensory consequences
for subspaces with low spatial frequency basis vectors in the first

stage GASSOM are easier to predict compared to higher spatial
frequencies.

The incorporation of learning into both the perception
and action components of the perception-action loop in
this model allows the sensory representation and the action
generation network to co-adapt as the agent behaves in
the environment. We characterized the performance of the
eye controller both quantitatively and qualitatively. Using
both visual and proprioceptive sensory stimuli to drive
eye motion results in more accurate tracking of the end
effector compared to using either sensory stimulus alone.
Moreover, the inclusion of proprioception also makes the
model more robust to changes in the appearance of the end
effector.

We compare predictions of our model with findings from
human psychophysical experiments studying the contribution
of proprioception to human oculomotor control. Our results
in Figure 9B suggest that incorporating proprioception reduces
phase delay. This characteristic of the human oculomotor system
has been found repeatedly. First, early work analyzing self-
moved targets showed that the information about arm motion
plays an important role in self-motion tracking (Steinbach and
Held, 1968). The eye motion lagged behind target motion less
for active arm motions than passive arm motions. Second,
active and passive hand motion tracking along with tracking of
external visual targets were qualitatively compared in Mather
and Lackner (1980). External target tracking used a larger
number of saccades per cycle and had larger latency compared
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to the oculomotor tracking of the hand. The external target
tracking was more challenging since the target motion was
unpredictable. Third, experiments conducted by Gauthier et al.
(1988) quantitatively compared eye tracking of an external
object and of the subject’s hand. The average latency when
the eye tracked an external object (150 ± 30ms) was much
longer than the average latency when the eye tracked the
hand (30 ± 10ms). This delay was also prominent in the
onset of smooth pursuit eye motions (Domann et al., 1989).
Finally, Chen et al. (2016) showed that eye precedes a target
controlled by the finger in congruent pursuit in comparison to
opposite movements. However, our model does not exhibit this
property.

Our results qualitatively agree with multiple psychophysical
studies showing that proprioception can also change the velocity
gain of the human oculomotor plant. During eye tracking
of an external object, the eye velocity saturated at very low
velocities around 40 deg/s compared to 100 deg/s during eye
tracking of the hand (Domann et al., 1989). As shown in
Figure 9A, velocity gains are larger at higher frequencies when
the robot tracks its hand compared to an external object. Our
model demonstrates that with the assistance of proprioception,
the model is capable of maintaining a higher tracking gain
for high frequency stimuli. This property is qualitatively
consistent with the human oculomotor system (Vercher et al.,
1993).

Human eye motion is mainly driven by visual stimuli.
However, non-visual signals can also drive eye motion in
certain tasks (e.g., in the darkness). Figure 8C illustrates
that for our model proprioception alone has the capability
to elicit eye movements. Several articles have studied the
contribution of non-visual signals to oculomotor control. First,
Steinbach (1969) showed that proprioceptive inputs alone were
sufficient to generate smooth pursuit eye movements. Second,
smooth pursuit movements generated by non-visual stimuli
were studied in Berryhill et al. (2006). Tracking a pendulum
in the darkness, proprioceptive stimuli had a velocity gain
close to 0.3. On the other hand, with direct visibility of the
pendulum, the subject had the ability to track the pendulum
more accurately with a velocity gain of 0.7. Our model
exhibits similar qualitative changes in visual vs. proprioceptive
gain.

Although ourmodel exhibits similar qualitative characteristics
as human oculomotor tracking, it does not match quantitatively.
In particular, the velocity gain of the model is much higher
than that of the human oculomotor system (Figure 9). This
mismatch may arise because we assume in our simulations that
the eye velocity command generated by the model is executed
perfectly by the eye. A more realistic model would include
processing and propagation delays, a more realistic model of
the neural control of eye velocity, as well as a dynamical model
of the physical oculomotor plant. For example, the cerebellum
is a part of the neural circuit for eye-hand coordination for
oculomotor control (Miall et al., 2001), but this is not reflected
in the proposed model. We anticipate that the incorporation
of these elements into future extensions of the model would
degrade the velocity gain observed during tracking, bringing

the model simulations into closer quantitative agreement with
human performance.

This work can be extended in several directions. First, the
model could be extended to include saccadic eye movements.
Tracking targets with the eyes typically consists of a combination
of pursuit and saccadic eye movements. For example, the
majority of the eye movements when humans tracking the arm
in darkness are saccades (Dieter et al., 2014).

Second, new sensory modalities might be added to the
proposed model. The proposed model is only a first step toward
integrating cross-sensory prediction. While a straightforward
extension might be to add additional inputs to the predictor
network, consideration of the problem of adding new sensory
modalities raises a number of intriguing questions. For
example, which sensory inputs should be predicted from
which others? Here we have considered prediction in only
one direction. Another question is how to deal with the
different possible combinations of sensory cues that might be
available.

Third, the arm trajectory generation could be made more
biologically realistic, e.g., through the use of dynamical
movement primitives for trajectory generation (Schaal, 2006),
or through the use of goal babbling to choose the via points
(von Hofsten, 2004). In this work, we used random babbling
and trajectory generation for its simplicity. The use of dynamic
movement primitives would alter the statistics of the image
motion induced by the hand, which might change the smooth
pursuit performance, e.g., the final steady state error in Figure 6

or the shape of the frequency response curves in Figure 9. The use
of goal babbling might improve the speed of learning (Baranes
and Oudeyer, 2013). These would be interesting extensions of
the model to investigate. However, we do not expect that their
incorporation to change the main qualitative findings we report
here, e.g., the ordering of the degradation in performance and
proprioceptive or visual cues are removed.

Finally, the model might be integrated into a more
comprehensive framework for hand-eye coordination that would
include other tasks, such as reaching. In a sense, reaching is
the inverse of the problem studied here. Our model generates
commands to change eye gaze based on visual information and
arm motion. Visually guided reaching involves the generation
of an arm motion command to move the end effector to a
visual target. The required mappings, e.g., between gaze direction
and/or visual target location and end effector motion are often
learned using a motor babbling process similar to that used here,
where the end effector is tracked as the arm moves (Burger
et al., 2018). In other cases, gaze is controlled to bring the target
object or end effector to the image center (Huelse et al., 2010;
Jamone et al., 2012; Savastano and Nolfi, 2013). In these works,
the problem of tracking the end effector/target was simplified by
attaching a marker to the end effector/target. Since our model
does not require explicit markers, it might be used to relax
some of the assumptions made by prior work. Because the
location of the eye gaze drifts on the palm area (Figure 10),
gaze direction does not directly correspond to a specific position
on the end effector in trajectories generated by the model.
However, the model could be used to generate data to learn an
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approximate mapping between gaze direction and end effector
position.
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