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Introduction 1

Robot Evidence Grids

Abstract

The evidence grid representation was formulated at the CMU Mobile Robot Laboratory in 1983 to turn
wide angle range measurements from cheap mobile robot-mounted sonar sensors into detailed spatial
maps. It accumulates diffuse evidence about the occupancy of a grid of small volumes of nearby space
from individual sensor readings into increasingly confident and detailed maps of a robot’s surroundings.
It worked surprisingly well in first implementation for sonar navigation in cluttered rooms. In the past
decade its use has been extended to range measurements from stereoscopic vision and other sensors,
sonar in very difficult specular environments, and other contexts. The most dramatic extension yet, from
2D grid maps with thousands of cells to 3D grids with millions, is underway.

This paper presents the mathematical and probabilistic framework we now use for evidence grids. It gives
the history of the grid representation, and its relation to other spatial modeling approaches. It discusses
earlier formulations and their limitations, and documents several extensions. A list of open issues and
research topics is then presented, followed by a literature survey.

1 Introduction

Early approaches to computer vision attempted to identify lines and vertices in images and infer the
boundaries of objects. Stereoscopic vision sometimes contented itself with identifying small distinc-
tive patches, presumed to be parts of object surfaces, in multiple views of scenes. The traditional ap-
proach suffers from brittleness, because the existence of objects is decided quickly, from small, noise
prone, quantities of data. All is well when these snap decisions happen to be correct, but frequently
chance properties of the signal produce incorrect indications, invalidating the entire subsequent
chain of inferences. Prior to devising the evidence grid approach, we guided mobile robots through
obstacle courses by stereoscopic patches, and experienced such brittle failures about every hundred
meters of travel.

We were forced to abandon the notion of locating object features as the initial step of sensory process-
ing when we decided to use inexpensive Polaroid sonar rangefinders to map robot surroundings.
These sensors register the distance of the nearest sound reflector within a wide 30 field of view, pro-
viding general information about the occupancy of large areas without localizing features. Represent-
ing the robot’s surroundings by a grid of small cells, enabled us to represent and accumulate the
diffuse information from sonar readings into increasingly confident maps. Occasional sensor errors
had little effect, and the approach did not exhibit the brittleness of the feature based methods.

We have found evidence grids generally useful with various sensors and tasks requiring detailed
geometric modeling of the world, but have applied them mostly to planning and traversing obstacle-
avoiding paths for mobile robots. We usually give the robot no a priori knowledge of the geometry of
its environment and assume that most of the world is static. We favor inexpensive sensors because
we anticipate applications in cost-critical near-future commercial robots. We are less sensitive to com-
puting cost because we anticipate continuing rapid declines in that component.

The evidence grid approach represents the robot’s environment by a two or three dimensional regu-
lar grid (see Figure 1). In each cell is stored the evidence (or probability), based on accumulated sen-
sor readings, that the particular patch of space is occupied. Many of our sensors report the distance
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FIGURE 1 Example evidence grids. The left grid is an ideal of a simulated room, similar to our own laboratory.
The right is the result of processing after a simulated traverse by a robot with a ring of 36 sonar
sensors. The path of the robot is superimposed on the grid. From [ Moravec-Blackwell93].

to the nearest object in a given direction. Given the robot’s position, we increase the probabilities in
the cells near the indicated object and decrease the probabilities between the sensed object and the
sensor (since it is the first object in that direction). The exact amount of increase or decrease to the var-
jous cells in the vicinity of the sight line forms the sensor model. Figure 2 shows an example sensor
model that might be appropriate for a Polaroid sonar rangefinder.

The evidence grid approach has proven itself especially useful with wide angle sonar range finders
that are among the least expensive and most practical sensors for industrial and perhaps home ro-
bots. One of our earliest runs is shown in Figure 3 (see [Elfes87]). It used the Neptune robot with a
Denning sonar ring with 24 sensors. In this run Neptune took a reading from each sensor, planned a
path to the goal, travelled 2 meters along the path and repeated until it reached the goal.

A brief overview of the remainder of the paper follows.

In Section 2, other methods are described and contrasted with evidence grids. The evidence grid approach,
although computationally expensive, provides more robust and reliable navigation than other meth-

ods used to date.

%

FIGURE 2 Example Sensor Model. A range reading reports the distance to the nearest object in a given direction.
For sonar, this object can be anywhere within a relatively wide beam. The sensor model describes
exactly how much to increase or decrease the probability at a given location relative to the position
and direction of the sensor and the reported range.




Introduction 3
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FIGURE 3 Overhead view of the evidence grid built by a sonar guided robot traversing out laboratory. The scale

marks are in feet. Each point on the dark trajectory is a stop that allowed the onboard sonar ring to
collect twenty four new readings. The forward paths were planned by an A* path planner working in
the grid as it was incrementally generated. From [Elfes87].

Section 3 presents the Bayesian probability framework for the approach. A representation for the probability
that simplifies computation is derived. Using this representation, we first precompute the sensor
model, storing it in a table. Then, to incorporate a new sensor reading we simply take values from the
table and project and add them to the evidence grid. We have also found a way of comparing two
maps: we calculate the logarithm of the probability that two maps represent the same situation.

Section 4 discusses previous formulations and their problems. The evidence grid framework has gone
through several changes since it was first introduced in 1983, and these previous formulations are
discussed, along with reasons for modifying them. Our lab and others at CMU have conducted many
runs in various conditions, each demonstrating competent navigation and the robustness of the ap-
proach.
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Section 5 explains several extensions which have been explored at CMU. This includes a sensor model de-
rived from a probabilistic model of wave propagation (the context sensitive method), the automatic
learning of sensor models, the explicit modeling of surface orientation and sensor fusion. Also dis-
cussed are path planning, autonomous exploration, matching evidence grids and visualization of 3D

evidence grids.

Section 6 details several open research topics These include the use of 3D evidence grids, the unsupervised
learning of sensor models, the use of stereo vision and other sensors with evidence grids, sensor fu-
sion, and a host of higher level navigation issues. Also mentioned are explicit models for systematic
errors, the use of evidence grids in position estimation, the matching of grids, object identification
and the incorporation of other object properties.

Finally, this report concludes with an annotated bibliography of all evidence grid related articles
known to the author.

Related Work in Robot Navigation

Current robot navigation algorithms can be divided into two categories, model based systems that
maintain internal representations of their surroundings, and reactive ones that act reflexively on their
current sensory input. Most present model-based systems are “geometric,” constructing point, line
or surface descriptions from sense data at an early stage of processing [Faugeras93]. They have the
disadvantage that decisions about surface existence and location must be made very quickly, from
small amounts of sense data collected in a short time interval, with a consequent high probability of
error. Errors are subsequently processed with too little extra information to weed them out reliably.
In our experience, geometric programs are brittle, working well for a while, then failing dramatically
when early incorrect identifications fool error checks, and amplify to a large effect. They do work ef-
fectively if the sensor data is very clean, lowering sensing uncertainties and consequent failure prob-
abilities. A number of partially successful, but error sensitive, geometric programs fed from sonar
data have appeared, for example [Crowley89], [Leonard90], and [Drumheller91].

The 1980s saw much effort and expense applied to obtaining clean navigational data from scanning
laser rangefinders (see, for example, [Hebert88], [Singh-Keller91], [Singh-West91]). These systems
quickly reduce the range data to topographic geometry of oncoming terrain, on which they evaluate
possible paths. Some even simulate simplified vehicle dynamics on each prospective path [Daily88].
As noise in the sensor data rises, geometric and range map methods become ineffective. Since they
draw conclusions about the world during early stages of processing, the probability of an incorrect
conclusion rises. Later stages of processing, working with an incorrect description of the world, often

fail spectacularly.

In reflexive controllers, local environmental cues trigger behaviors, and fast data flow dilutes tran-
sient sensory errors. Reflexive robots include almost all pre-computer machines and most practical
computer-controlled ones, including trolleys that are started and stopped by limit switches and wire,
and line and beacon following machines. They do many things very well, and have made a come back
with the realization of the problems of geometric model-based techniques. Even model-based robots
benefit from fast reflexive components [Brooks90], [Mataric92]. However, their willingness to change
behavior when new sensor information contradicts old is also their downfall. Their lack of any “big
picture” of where they are in relation to things in the world leads to simple behaviors which can get
them trapped by occasional unlucky arrangement of objects, and leave them literally going around
in circles.

We invented the evidence grid approach in 1983, to handle data from inexpensive Polaroid sonar de-
vices, whose wide beams leave angular position ambiguous. These sensors are notorious for their
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transient misreadings and for being confused by smooth surfaces such as walls, which act like mir-
rors. Instead of registering objects, the grid method accumulates occupancy evidence for an array of
spatial locations, slowly resolving ambiguities as the robot moves. This allows the robot to integrate
disparate readings over time, taken from different locations and even with different sensors. We first
used the method to interpret measurements from a ring of 24 Polaroid sonar transducers carried on
board a mobile robot autonomously navigating in a cluttered laboratory. It was surprisingly success-
ful compared with our earlier experiences in similar environments using stereo-vision based pro-
grams that mapped points on objects as error distributions in space. The method also worked on a
tree-lined path, in a coal mine, with stereo vision range data, and it successfully fused stereo and so-
nar. We are now able to learn the sensor model, and can train the program to work nicely in specular
surroundings, and superbly elsewhere.

The Mathematical Details of the Approach

Let p(A | B) represent our best estimate of the likelihood of situation A given that we have received
information B. A and B mean either “a certain region of space is occupied” (written o), “a certain re-
gion of space is unoccupied” (written &), or they represent a sensor reading. By definition,
p(A|B) = p(A A B)/ p(B). Plain p(A) represents our estimate of A given no new information. The al-
ternative to situation A is written A (not A).

For the two occupancy cases of a cell, o (the cell is occupied) and & (the cell is empty), and new in-
formation M (say, derived from a sensor measurement), the above definition immediately gives us:

p(o|M) _ p(M|0) p(o)
pGIM) ~ pM|3)p(@)

This easy-to-prove formula is related to Bayes theorem. Now suppose we have some information M,
that we’ve already processed into a map, i.e. we have p(o|M,), and we wish to integrate some new
measurement M, to find p(o|M, A M,). In order to make the analysis tractable we’ll assume the new
measurement is independent from all previous information. However, we don’t mean
p(M; A My = p(M,)p(M,), since if M, indicates that the cell is occupied then we would hope M;
would be more likely to indicate the same thing. Instead what we mean is, given that the cell is occupied,
the probabilities of getting reading M is independent of getting M, and similarly for the cell being
unoccupied:

(Equation 1)

p(My A Ms0) = p(M,|0)p(M,|0)

p(My A M,|5) = p(M,|5)p(M,|0) (Equation 2)

Another way to look at this assumption is that we only assume that the sensor’s errors are indepen-
dent from one reading to the next. Combining this with a double application of Equation 1, we get

plo|M AMy) _ plo|M)p(M5]0)  p(o|M,) p(o| M) p(5)

B = = Equation 3
pG|M; AMy) — pa|M)p(M,|5) — p@|My)p(6|M,)p(o) (Equation 3)

We generally assume that the 4 priori probability of cell occupation is 1/2,i.e. p(0) =p(2) = 0.5, so that
the last factor above cancels out. When the information M, is a sensor reading, the value p(M;|0)/
p(M; 1), for all cells and all possible readings, is called the sensor model. In other words, the sensor
model is a function which attaches a number ( p(M,10)/p(M;!8) ) to every combination of sensor
reading and cell location, relative to the sensor. Note that this assumes the sensor is isotropic in its
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3.1

world position and pointing direction; in general, the sensor model is a function of 1) the sensor read-
ing, 2) the location and orientation of the sensor and 3) which cell we’re updating. Also note that,
while the sensor reading M, may represent a continuous number indicating distance from the sensor,
in general we can say that each time we poll the sensor, it returns an element from some set, and that
M, ranges over all elements of that set.

The sensor model is usually independent of the current map and can be stored in tables. A further
speed up can be achieved if we use the logarithm of the above probability ratio (itself known as the
odds). In log odds, the combining formula is changed from a multiplication to a simple addition, and
the log odds can be considered weight of evidence. Properly scaled, eight bit integers appear adequate
for storing the sensor model’s weight-of-evidence values. That we only need a single addition per
cell, combined with the high regularity of the array structure of the grid, allows for very simple and

. fast evidence painting algorithms. We have incorporated these ideas into a very fast implementation

[Moravec92b] that has only three additions and a bounds test in the inner loop.

Match, Score and Entropy

For several reasons, we may wish to compare two maps to see how similar they are. For example, to
provide a merit value for the automatic learning of sensor models, we compare a reconstructed map
with a (usually hand made) ideal one. In the following we assume that the two maps are co-located,
that is they are aligned to the same position and orientation, so that cell A; from grid A and B; from
grid B both describe the same physical volume, for alli. Our match value is calculated in the following
way. The probability that two maps represent the same world is equal to the product of the proba-
bilities that each corresponding pair of cells represents the same value. Each number in our maps rep-
resents the probability that the cell is occupied. So the probability that two cells A; and B; are both

occupied is just A; x B;. The probability that they are both empty is A, x B;. The probability that they
are the same is the sum of these cases: A; X B; + A; X B;. The probability that two maps represent the

same thing is then the product H(A (X Bi+ A, x B;) over all the cells of the maps. Generally this will

be a ridiculously tiny number. To get a number of reasonable magnitude, and incidentally an infor-
mation measure in bits, we take log, of this probability. By adding 1 to each term, we see that two
cells that are identical and maximally confident (either exactly 1 or 0) score as 1, while a cell in an un-
known state (1/2), scores 0 when compared to any values. We call the sum of these logs the Match
between the maps.

Match = n+ logz(HAiBi +A;B)

= 3 [1+logy(A;B; + A;B)]
i (Equation 4)

Match is generally a small number that climbs slowly to the number of cells in the map as the maps
being compared both become more certain (the probabilities approach 0 or 1) and become identical

to each other.

When a Match is calculated between a reconstructed map and its perfect ideal (which contains either
0,1 or 1/2 in every cell), we call the result the Score. The perfect knowledge of the world this requires
is easily obtained in simulation, and can be available in physical runs if the environment is carefully
measured by hand, or by a very reliable and high resolution calibrated sensor. Even if the ideal is not
known, one can reason that if a reconstructed map has a probability of p in a cell, it should be the case
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that a fraction p of the time the ideal map should have a 1 in that place, and a 0 the other p of the time.
This reasoning allows us to calculate an average expected Score for a map, even when the ideal map
is unknown. We call this the Entropy. A bit of algebra reveals its equivalence to the classical definition:

Entropy = Y [1+ plogy(p) + pilogy(p)] (Equation 5)

If the probabilities in a reconstructed map are a completely accurate representation of the robot’s true
state of incomplete knowledge, then the map’s Score would be equal to its Entropy. If the magnitude
of Score is greater than Entropy, then the map can be said to be overconfident.

A totally undifferentiated map, where all the cells have the same probability value p, has maximum
Score when the p is equal to the number of cells in the ideal map that are 1 divided by the total number
of cells, i.e. when the probability is equal to the occupancy density of the ideal. But Entropy is maxi-
mum when p = 0.5 and drops towards 0 as p goes to either 0 or 1.

In summary, the Match between two maps (for a given relative displacement) is the log of the prob-
ability that the maps represent the same world. The Match of a map to an a priori ideal map is called
its Score; learning can be done by trying to maximize score. Match of a map with an ideal whose dis-
tribution of 1s and Os reflects the map’s probabilities gets the average expected Score, which we call
the Entropy. When an ideal map doesn’t exist, we can maximize Entropy instead, for example, during
exploration.

Evidence Grids at the Mobile Robot Laboratory

Between 1973 and 1984 the Mobile Robot Lab’s approach to robot navigation, rooted in a thesis at
Stanford University, used multibaseline stereo vision that tracked surrounding features to negotiate
and map obstacle courses. Our 1979 program drove the Stanford Cart robot through 30 meter obsta-
cle courses successfully about three times in four, consuming several hours of 1 MIPS processing en
route. Most failures were due to clusters of mismatched features which, by chance coincidence,
passed geometric consistency tests and confused navigational estimations. Inadequate modeling of
uncertainties, in too few basic measurements, made the program brittle.

We refined the approach between 1980 and 1984 at CMU, using new robots [Thorpe86], [Moravec85],
[Podnar84], [Moravec83]. Better algorithms for key steps boosted speed and navigational precision
[Matthies89], but the brittleness remained, indicating that our representations were incapable of ad-
equately modeling stereo mismatch errors.

In 1983 we accepted a contract from a small mobile robot company to navigate robots carrying inex-
pensive Polaroid sonar range sensors [Kadonoff86], [*Denning]. The sonar units’ range readings are
laterally ambiguous with a broad beam, making them unsuitable for pinpointing features, as re-
quired in the stereo based approaches. In response we invented evidence grids, which had several
advantages. Uncertainty from all sources, for instance both statistical range inaccuracies and totally
erroneous readings, could be implicitly represented in the complex evidence patterns, unlike the sim-
ple covariance ellipses in the old program. We hand-modeled sonar evidence patterns by crudely im-
itating the sensitivity diagrams in the Polaroid documentation. Despite this and many other ad-
hoceries, our first experiments with the approach yielded spectacular results.

After ten years of development, the Cart program was still unreliable at crossing a room, but the very
first grid program succeeded every time [Elfes87]. The approach worked indoors in rooms and cor-
ridors, and outdoors on a tree lined path [Elfes89b] (see Figure 4).
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FIGURE 4 Some early runs of using the evidence grid framework. The upper left shows a run in a hallway where

some of the doors are open. The upper right is in our lab. At the bottom is a run on a tree lined path;
the trees are clearly visible.

An early formulation [Moravec-Elfes] stored two numbers per cell, the certainty or confidence that a
cell was empty (Empty) and the certainty or confidence that it was occupied (Occupied). Both were
zero when nothing was known about the cell, and contradictory information would lead to both be-
ing near one. In this formulation the operations performed on the empty and occupied probabilities
are not symmetrical. The reason is that in the occupied ridge of a sonar reading (see Figure 2) all we
know is that there is at least one object somewhere in the ridge, whereas in the empty region we know
that there can’t be anything in any part of it. Therefore the Occupied values are scaled by 1-Empty and
normalized before being added to the map.

An analysis of the steps in this method, as well as the work of Ken Stewart of MIT and Woods Hole
[Stewart89], revealed that one number per cell, representing the probability that the cell is occupied,
will suffice. The only difference between the representations was the normalization step on the oc-
cupied ridge in the original formulation but not in the newer one. Experience has shown no signifi-
cant difference in performance.
When we first formulated evidence grids with one number per cell, we had an ad hoc combining for-
mula [Moravec88), namely that to increase the certainty in a cell we would use C, = C, + M, - C
M,, where C, is the certainty for cell x and M, is the sensor model. To decrease the certainty we used
C, := C, (1-M,). Extending and reasoning in this formulation was difficult because there was no
mental framework in which to proceed. Our new framework grounded in probability theory makes
this obsolete.
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5.1

The name of the approach has changed as well. First called occupancy grids, we realized that we
could store evidence for things other than occupancy information in the grid, things such as surface
orientation or color. So the name was changed to certainty grids. However, since the name for what
we store in the grids (the log of the odds) is “evidence”, we’ve renamed the approach yet again to
evidence grids.

In the current formulation we always initialize the map to a background probability of 0.5. In most
maps however, we expect there to be fewer occupied cells than empty ones, so we experimented with
the idea of initializing the map to a lower background value [Moravec88]. The drawback is that the
map combining formula becomes a little more complicated, because you must remember which maps
have this background probability, since the same background in two maps does 70t represent inde-
pendent information. As well, the first reading in any area swamps the very small amount of infor-
mation in the background, so the added benefit is negligible. A background probability of 0.5 has
proven to be much more convenient.

Extensions of the Evidence Grid framework explored at CMU

In 1988 we developed a sensor model using a probabilistic model of wave propagation which de-
pends on values already in the map. This context sensitive method is more computationally expensive
and exhibited no clear advantage in map quality.

Smooth surfaces can deflect sonar pulses, resulting in lost or improperly long ranges. This “specular
reflection” problem is the most serious systematic error encountered with sonar, affecting almost all
readings in confined spaces bounded by smooth walls. Our otherwise successful early grid pro-
grams, using hand-made sensor models, fail completely in highly specular conditions. We have
solved this problem in a number of ways.

One approach is to store in each cell, not just the probability that the cell is occupied, but rather k
probabilities corresponding to the hypotheses “this part of space contains a surface at angle 67, for k
discrete values of 6.

Another approach is to run the robot in an area with high specular reflection for which we have
ground truth, and then solve for the sensor model that produces the best map.

Accurate perception is only half the problem. Our goal is competent navigation, and we describe
work we have done on path planning by using an A* search that finds a path that minimizes the
probability of collision. After each move, new sensor data is acquired and the path replanned. Final-
ly, we describe some work in exploration, namely navigation and obstacle avoidance without any
pre-specified goal location.

The Context Sensitive Approach

In the context sensitive method [Moravec-Cho89] we calculate the sensor model from an incremental
description of the process of making a range measurement, for example, sonar wave propagation.
When we talk of calculating the sensor model, we mean calculating p(R|0;)/ p(R|o,) for every celliin
the path of the beam, where p(R | 0;) is the probability of getting the reading we got, given that the cell
is occupied (see the mathematical derivation in Section 3 above). We model our sensor as emitting a
signal which hits each of the cells in its path in order of their distance from the sensor, until it detects
an occupied cell. For now, assume that the identity of this cell is returned by the sensor. This detec-
tion isn’t perfect. There is a less than certain probability that a signal will halt at an occupied cell
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5.2

when it gets there (p(halt; | 0;, arrived at j)), and a “false alarm” probability that it halts at an empty
cell given that it got there (p(halt]- lo;, arrived at j)).

The first step is to sort the cells in order of their distance from the sensor. We know that the signal
went through all the cells from 1 to R-1 without halting, and then finally halted at cell R. So:

R-1 R-1
pR|o)) = [H p(rTéEIo,-)]mhaltR]o,-),and p(R|o)) = (H p(@lé)}p(halt,e@ (Equation 6)

i=1 i=1
Note that, when i#j, p(halt; | 0;) is independent of j. We can write p(halt; | o]-) = p(halt;) = p(halt; | 0;)p(0;)
+ p(halt;l 0,)p(o;). Although p(halt;lo;) and p(halt;| ;) are independent of the current map,
p(halt;10)) (= p(halt;)) isn’t (for i#}). Therefore, the value added into the grid depends on the current

content of the grid, hence the name context-sensitive.

So far we have assumed that we know the identity of cell R. However, in general we only know that
R is among some set of cells R; ... R, with associated probabilities p; ... p,. In this case Equation 6

becomes:

k
Rlo) Y pepthalt o) ] pthalt|o))
p(R|o)) _ ksn i=1 (Equation 7)

o(R|o ) e
! z pkp(haltk|oj)Hp(haltiloj)

k<n i=1

This formula is the context-sensitive method. In its stated form it takes time proportional to the cube
of the sensor volume, as opposed to the linear time of the context-free method. Algebraic simplifica-
tions reduce this time to linear outside of cells R; ... R,,, and quadratic within Ry ... R,,.

In our early experience, this method performed comparably to (actually a little worse than) the con-
text free approach. However, it has been extended by Lim and Cho outside our lab, who have
achieved much better results in highly specular environments ([Cho90],[Lim90], [Lim93], and

[Lim94]) .

The Automatic Learning of Sensor Models

The effect that most seriously limits robot sonar navigation is sonar’s tendency for specular reflection.
When a wave encounters a surface less rough than its wavelength, the wave will reflect like light off
amirror. In our early experiments we hand-constructed a sensor model from an ad hoc interpretation
of the technical specifications of our sonar sensors. In a cluttered room, where there was little spec-
ular reflection, this worked fine, but in the hallway outside it failed spectacularly (see the second map
in the left column of Figure 7). We have tried two approaches to dealing with specular reflection: the
automatic learning of sensor models [Moravec-Blackwell93] and learning in the context of explicitly
modeled surface orientation.

Recall (from the discussion of Equation 3) that the sensor model is a function of the sensor reading,
R, and the location of the cell relative to the sensor, which in our case is represented by a two dimen-
sional position (x, y). For each combination of reading and position, we associate a ratio of probabil-
ities. The position (x, y) is measured from the location of the sensor, with the y axis designating the
sensor’s direction. Initially we created a discrete sensor model, sampling the x, y and R values. Each
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FIGURE 5 This sensor model was produced from 740 readings between 10 and 11 feet, out of a total of 20,000
readings. The readings were collected by a simulated sonar transducer moving at random in a
simulated room. The transducer is located about 80% towards the left end of the diagram, looking
towards the right. See the text for more details.

Ideal Map 901022 2:03

Ideal Map Score 578.00

FIGURE 6 The layout of the simulated lab used to create the sensor model in Figure 5.

cell was a separate parameter to be adjusted by the learning algorithm. With this large a number of
parameters we needed a large amount of data, so we turned to simulation.

The probability profile in Figure 5 was produced from the 740 readings whose range was between 10
and 11 feet, out of 20,000 total readings of all ranges. The readings were collected by a simulated sonar
transducer moving at random in the space, resembling our 30 foot long laboratory, shown in Figure 6.
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The probability profile is a graph of x and y vs. probability, for a fixed value of R=10 feet. The trans-
ducer is located about 80% towards the left end of the diagram, looking towards the right. The hol-
low pit in front of the transducer represents the “probably empty” interior volume of a range reading.
The hump at the right edge of the pit is the range surface. The complete sensor model consists of
about 30 such probability distributions, each representing a different range interval from 1 to 30 feet.

This model-free learning approach has its problems. It needs a huge amount of data, gives a statisti-
cally noisy result, and does not in any way compensate for the fact that individual readings don’t give
entirely independent information. Its learns problematical quirks in the training sample, for instance
occupancy correlations outside the known field of view of the sensor.

In response we developed a parameterized closed form sensor model that incorporates what is
known a-priori. The detailed shape of the model is controlled by a small number of parameters in a
function that maps x, y and R to probability. For a given set of parameters, the sensor model would
be created, and would used to interpret data collected from a robot run down a hallway to produce
an evidence grid. By computing the match of this resulting grid with a hand-crafted ideal map, we’d
compute a score for the map (see Section 3.1). The parameters were adjusted to maximize this score.

Figure 7 shows maps produced from a data set of 648 sonar measurements collected with a Denning
sensor ring [Kadonoff86] mounted on our Uranus robot [Blackwell91]. A set of 27 readings was taken
at each foot of travel down the center of a long narrow (28 foot by 4 foot) leg of an L shaped corridor.
For a particular set of parameters, a grid was created from the readings and the associated sensor
model. The accuracy of this grid was assessed by calculating the matching Score (see Section 3) be-
tween this map and a hand made ideal map created from measurements of the hallway.

The first map in the figure is this ideal map which has a perfect score: 578 correct bits. The robot tra-
versed the horizontal part of the L shape. The next map was constructed with a naive, ad hoc sensor
model that works well in our cluttered lab. The remaining maps are reconstructions with increas-
ingly good scores, excerpted from thousands encountered in our computer program’s search, which
took several days on a Sparc 2 workstation to search a 9 parameter space. The final map scores about
425, and is easily good enough for most navigational purposes.

Since that time (1990) we have made several advances. The learning technique used previously sim-
ply searched each axis in turn, by taking a number of evenly spaced samples. However, we realized
that we could compute the derivative of the score with respect to each parameter without much extra
work. And we found that, as a function of each parameter, the score was quite smooth, along most
axes looking simply like a parabola. This lead us to use the BFGS quasi-Newton optimization method
([Zhu95], [Dennis83]), which found the maximum score much more quickly, in hours rather than
days.

In an attempt to get a better score, we created anew parameterized formula for the sensor model. The
previous model was formulated in probability, i.e. as a function of x,y, 8 — [0,1]. However, during
the reformulation, several considerations led us to calculate the log odds directly. First, we want to
differentiate the formula with respect to log odds, which means the derivative will be simpler and,
hopefully, “smoother” if the formula is simple when expressed in log odds. Also, it’s more natural
to have formulae go to zero at infinity, rather than 0.5, and such formulae are easier to combine. Fi-
nally, we noticed a simple result when working in log odds: when scaling the sensor model in log
odds, the best match occurs when the match value equals the entropy.

The new sensor model (with 21 parameters), combined with conjugate gradient search, produced a
sensor model with a score of 551 out of a maximum of 578... but which overfit to the data (see
Figure 8)L. It could get away with this because the map calculation counted a probability of 0.5 in the
ideal map as a “don’t care”. In light of this, it appears that a better match value is the sum of squared
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FIGURE 8 A map with a score of 552 out of a possible 578, created with a new learning method. While correctly

53

declaring the hallway empty and walls occupied, it has overfitted to the data by declaring areas it can 't
sense as either occupied or empty instead of unknown. It could do this since the values it chooses for
“unknown” areas don’t affect the score.

differences in probability. The overfitting also demonstrates the importance of testing the new sensor
model on data separate from the test data.

Modeling of Surface Orientations

Specular reflection is a largely systematic effect. For a given surface, a proper sonar echo will be re-
ceived when the beam is close to the perpendicular, and not received at more glancing angles. These
different expectations can be separated if grid cells, instead of a single hypothesis of occupancy, rep-
resent multiple surface orientation hypotheses. In this approach [Takada93], a 2D grid of the envi-
ronment is augmented with an extra dimension, effectively associating a vector with each spatial
location. Each element of this vector is a probability that the area is occupied by a surface of a certain
orientation. Typically 8 or 16 angles were represented, ranging from 0° to 180°. 180 is sufficient since
a surface can only be viewed from only the front.

When the sonar beam is perpendicular to a surface it is much more likely to give an accurate reading
than when it strikes the surface at a glancing angle. Hence, the following sensor model was used:
o-90°1-90°

pe(M|0) = po(M|o) (Equation 8)

where 0 is the angle of the surface relative to the beam’s direction of travel (so that 8=0 represents a
perpendicular surface), k>1 controls the rate of drop off, and pg(M10) is the probability of getting
reading M, given that the cell under consideration is occupied by a wall of orientation 8. Two differ-
ent values of k were used, one in the empty hollow of the sensor model and one in the occupied ridge.

1. In fact, in one run a map with a score of 577.91 was found, but parameter values were lost.




14

Robot Evidence Grids

E==———x——=—===x ideal Map 901022 2:03 Ee————

A

\deal Map Score 578.00

Ee=— — Ll 901022 1:25 e

& 4 o
{0.80,0.80,0.90,1.89,2.78,7.56,30.00,10.00,20.00} Score 190.02 (*6.07032%

=————- L] 901027 11l e

Tw

O
{0.82,0.89,1.59,1.06,2.33,7.56,10.67,2.89

,3.11} Score 300.98 (*5930.25%)

{0.92,1.00,1.10,0.10,1 100,10.00,50.00,30.00,20.00} Score -70.59

(0.70,L00,0A0,0.!0,I.00,5.00,5.60,5.00,30.00) Score 43.92 (*6.120.18 %)

e Willmap 901022 1:28
.

el
0.80,1.29,2.90,1.28,1.00,27.22,5.00,2.00,19.70} Score 404.17

I8 :

(*5.80027%)

== Hilimap

910708 18:34 e

FIGURE 7 Maps produced from one data collection run of Uranus down the hallway. The first map is the ideal

map, the 50% checkerboard pattern representing “don’t know”. The one below it is the reconstruction
using our naive parameters for the sensor model. The remaining maps are reconstructions from the

program’s search, with the 9 parameters shown

compared to the ideal map is its score. From [Moravec-Blackwell93]

below in braces. The correctness of the reconstruction
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5.4

Learning was performed in this orientational framework just as in the pure occupancy framework,
only with the addition of the 2 “k” orientational parameters to the original 9.

To calculate the match value, a single occupancy probability for each cell was needed, which had
somehow to be derived from the 8 or 16 orientation probabilities. Two formulas were tried, the
“probabilistic union” and the “harmonic mean,” defined as:

(Probabilistic Union) (Equation 9)

plo|M) = 1= - pelo| M)
3]

N
1

5 1 - pglo|M)

In this experiment, modeling surface orientations didn’t significantly improve the best match score,
and in some cases the score was slightly worse. However, in one run, when the sensor model that
was trained in the specular environment was used in a non-specular environment, it did better than
the analogous model in the simple occupancy scheme. It was also shown that the probabilistic union
outperforms the harmonic mean.

plo|M) = 1- , (Harmonic Mean) (Equation 10)

Sensor Fusion

Sensor fusion, the combining of information about the same location from different sensors, is rather
difficult in most perception and navigation frameworks, but is very straightforward with evidence
grids. In fact, this is one of the framework’s major strengths. The combining equation is independent
of the particular sensor used, and the properties of associativity and commutativity make the order
of combination immaterial. A single, centralized map can be updated by measurements from both
sonar and stereoscopic vision range measurements, or separate maps can be maintained for each sen-
sor and integrated into a single map as needed. In our experiments the latter approach was used.

The individual and combined maps shown in Figure 9 illustrate three facets of the integration process
[Elfes-Matthies87], [Matthies-Elfes88], [Moravec88]. First, the sensors complement each other, with
one sensor providing information about areas inaccessible to the other sensor (Figure 9¢). Second,
the sensors can correct each other, when weak false inferences made by one sensor coincide with
strong true inferences made by the other. For example, sonar makes strong statements about empti-
ness of regions, but weaker statements about occupied areas. Stereo statements can be strong or
weak, depending on the distance to or distribution of features in the image. Figure 9(f) shows a case
where a region seen as occupied by sonar is correctly cleared by stereo. Similarly, sonar can recover
information about featureless areas, whereas stereo cannot. This is the case in Figure 9(f), where the
left edge of a barrel is invisible to stereo because of low contrast against the background; the barrel
is, however, detected by sonar.

Finally, the sensors can conflict by making strong statements about the same space. This moves the
region towards “unknown”, which is valuable for later planning, since it correctly signals the fact
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FIGURE 9 Fusion of Sonar and Stereo. Fusion is trivial in the evidence grid framework: we simply add the log
odds of corresponding cells. The “+” marks the location of the robot, which moved in a straight line
taking readings at evenly spaced intervals. From [Matthies-Elfes88], [Elfes-Matthies87], and

[Moravec88]




Extensions of the Evidence Grid framework explored at CMU 17

5.5

that sensor information does not provide an unambiguous interpretation for a given area. Future sys-
tems may detect such conflicts and use them to direct the attention of the sensors.

Path Planning

Given an evidence grid and start and end points, the goal of path planning is to find an efficient path
from the start to the goal that avoids obstacles. Early work in this domain [Thorpe84] concentrated
on path relaxation: given an existing path that’s longer than necessary or contains sudden, jerky move-
ments, find a similar path that’s better.

However, later work focused directly on path planning. To find a path we perform an A* search (see
any introductory Al textbook, such as [Luger89]), with the nodes of the search being the cells of the
grid. For the cost of the path we use the log of the probability of collision along the path plus a con-
stant times the path length,

g(path) = j (log(1-p)+k) , (Equation 11)
path
and for our heuristic estimate of the cost from some location to the goal we use k times the euclidean
distance from the node to the goal. Note that our heuristic is admissible, and so the search is guaran-
teed to find the path with the smallest cost.

In most of our programs, the successors of any cell were simply its 8 neighbors [Elfes87]. However,
this produces jagged paths in many conditions. In a later experiment, the set of “neighbors” was ex-
panded [Goang-Tai Hsu, 1989, unpublished] to include all cells within some distance from the cur-
rent point, with the integral taken over the straight line from the center of the current cell to the center
of the destination cell. This produced much more natural and efficient paths, at the expense of some
extra computation.

Exploration

After the work on path planning (see above), some experiments in exploration were performed [Jie
Yang, 1990, unpublished]. The goal of the exploration module was to try to make the grid as polar-
ized (each cell close to one or zero) as possible. We used entropy (see Section 3) as our polarization
measure which the robot would try to maximize.

We chose a small number (8 or 16) of points equally spaced around the robot. At each point we cal-
culated the entropy in a small window surrounding that point. Then we take a reading and incorpo-
rate it into the grid, and then recalculate the entropies. The point with the greatest change in entropy
was then made the goal and the path planner was invoked to guide the robot to that point. The pro-
cedure was repeated until all points had a high entropy, that is, there was nothing left to explore in
the local area.

The results of a typical simulation run are shown in Figure 10. The robot started on the right by tak-
ing a reading with its 32 simulated sonar sensors. This changed the entropy in some areas more than
others; the area with the greatest change was to the left and slightly up from the robot. It then moved
to the x in that direction and repeated the process until all of the immediate vicinity is explored. This
stopping condition doesn’t guarantee that the whole map has been explored, and in our example run
the bottom right near the starting area was partially unexplored. However, the vast majority of the
area was explored. Also, entropy will change less in directions with nearby walls, since only a small-
er area (the part in front of the wall) can change. Therefore, this method naturally avoids walls and
other objects.
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FIGURE 10 Exploration in a simulated world. The robot started in the lower right and always moved inthe

5.7

5.8

direction in which the sensors registered the biggest change. When the sensors registered no significant
change, the robot stopped.

Grid Matching

Given two grids of the same area built at different times, it is possible to deduce the relative robot
position by finding the displacement and rotation that brings one into alignment with the other. We
call this process grid matching. Our approach [Elfes87] starts by scaling each cell of both maps so that
each cell contains 2p - 1, where p is that cell’s probability of occupancy. This way, cells whose occu-
pancy is unknown contain 0, cells which are probably empty are negative, and those that are proba-
bly occupied are positive. For a given displacement and rotation we define the goodness of match as
the sums of the products of corresponding cells in the two maps. Our goal is then to find the displace-
ment and rotation which minimizes this measure. To speed up the search, we note that most of the
information in the maps is in the occupied cells, and the number of such cells is typically on the order
of the square root of the total number of cells. By only transforming the occupied cells of each map to
the other and summing over those, much time is saved.

Another approach we used in 1986 used complete maps and a coarse to fine matching strategy. It
generated a hierarchy of reduced resolution versions of each map, in half-scale steps. A rough esti-
mate of the best match was found by matching the lowest resolution maps (whose dimension typi-
cally was 8x 8 cells). It then improved on this estimate by matching the next higher resolution,
searching only in the vicinity of the original match. Continuing in this way it quickly found a near
optimal match at the highest resolution. Optionally, it could improve the final resolution to a fraction
of cell by means of a polynomial interpolation. A program of this type in 1986 was able to match two
32 x 32 maps in three seconds on an 8MHz Motorola 68000 processor of the type found on early Den-
ning robots and in the original 128K Macintosh computer [Moravec 1986, unpublished].

Visualization of 3D Grids

We are in the process of applying what we have learned from working with 2D grids to ones in 3D.
Not only does this leap multiply the size of the grid by the resolution of third dimension, but it tempts
us to increase the resolution in the other dimensions. 2D maps blur together the differences of hori-
zontal planes at different heights, and are practically limited to an effective resolution of about ten
centimeters. 3D grids, without such ambiguity, could, in principle, be much finer, leading us to con-




Open Issues 19

sider 128 x 128 x 128 grids in3D compared to typical 64 x 64 maps in 2D, a 500-fold increase in the
number of cells. Such large grids were computationally unfeasible until the recent appearance of
workstations in the 100 MIPS speed and 100 megabyte memory range. Even with them, we find it
necessary to devise very efficient algorithms and shortcuts to assemble 3D grid guided robots that
could move at tolerable speeds. We are in the process of doing so. One problem is visualizing the
robot’s internal knowledge of its surroundings.

By visualizing an evidence grid, we mean displaying the grid to the user so she can see the informa-
tion contained in it. Visualizing evidence grids is important for a number of reasons, including de-
bugging, and communicating and understanding results. While visualizing 2D evidence grids is
straightforward, an adequate method for visualizing 3D grids is not obvious. One approach is to sim-
ply threshold: declare all cells over p = 0.5 to be opaque and the rest transparent. In practice the
threshold should probably be set lower to ensure “unknown” regions are transparent. Rendering
such a grid can then be easily done by many graphics packages. However, a lot of information is lost
this way, so in some exploratory work we investigated an alternative method (see Figure 11). In this
implementation the cells of the grid are treated as if filled with a fog whose density depends on the
occupancy probability. For rendering purposes, each cell is defined by two parameters, the color of
the cell and the “weight” of the cell. When light passes through a cell on the way to the virtual cam-
era, each component (R, G or B) is modified using the following formula:

light « cell_color x weight + light X (1 — weight) (Equation 12)

In our implementation we made cells with p = 1 red (weight 0.7), p = 0.5 white (weight 0.01),and p =
0 blue (weight 0.01). Values for intermediate probability simply used a linear interpolation.

The rendering was slow to the point of aggravation. Even our fastest implementation, which avoided
floating point operations by using a fixed point (integer) representation, took 20 seconds to render a

100 x 100 % 100 grid on a Sparc 10. In future we plan to explore precomputing a thresholded image
which can be manipulated at higher speeds.

Open Issues

The work is ongoing. Here is a partial list of open research questions.

« 3D Evidence Grids We have barely begun work with 3D grids. Our Polaroid-sonar-based 2D
grids have a few thousand cells each representing an area about six inches square. A typical
robot run in such a space involves under a thousand range measurements. A good resolution
3D grid has over a million cells, needing on the order of a million 3D sensory data points for
good definition. We briefly contemplated a tilting sonar ring, but Polaroid sonar cannot pro-
viding this much data. Recent progress suggests stereo cameras a promising sensor for gen-
eral applications, since a single set of stereo images can provide tens of thousands of range
values. Most operations such as learning and matching, are made very challenging by the
number of cells and the extra of degrees of freedom. For example, even visualizing 3 dimen-
sional grids is a non-trivial problem. We have already created efficient code for adding new
readings into a grid, given the grid and the sensor model [Moravec92b]. We have also written
a program that accurately characterizes distortion and rectifies wide angle images for stereo
vision.

e Unsupervised Learning Methods for learning sensor models were described above. All
required an accurate ideal map given to the program a priori, presumably measured by hand
or created with a different, high precision sensor. Such maps are hard to generate in 3D. It
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FIGURE 11 Visualization of Three Dimensional Evidence Grids. The grid displayed here was created from 3 stereo

images of parking lot, one of which is shown above. The image on the top left is a side view of the
resulting grid; the pavement is a red horizontal line, with a blue space above it. The noise below the
pavement resulted from several spurious stereo matches near the edge of the stereo images. In the
upper right is a view from roughly the same location as the stereo camera; the dark two thirds is red,
becoming bluer red farther up the image (further back). The top view (bottom right) shows patchy red
watered down by the blue above it.

may be possible to learn the sensor model without such a map. The key idea is to notice that a
good sensor model will not lead to many contradictory readings, where one reading increases
a cell and another reading decreases it. At the same time, it shouldn’t achieve this by leaving
the map undecided. Learning sensor models without an a priori map may be possible by
finding the sensor model which maximizes some combination of consistency and information
content. This kind of ideal-map-free unsupervised learning would also allow the sensor
model to be easily and automatically updated to accommodate changing sensor characteris-
tics.
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e Stereo Stereo, especially in 3D grids, promises to be much more robust and reliable than tra-

ditional stereo, which is prone to momentary mismatches. Also, traditional stereo throws
away a lot of information when it returns only the best match. In the evidence grid frame-
work there is no need to declare one match as “the answer” and ignore the rest: for each pair
of pixels along the epipolar line in the two images we can create a confidence value, and add
that to the map.

Other Sensors Any sensor that returns geometric information, such as laser range finders or
proximity sensors, can be integrated into the evidence grid framework.

Sensor Fusion Although we have demonstrated combing sonar and stereo in 2D, the results
are expected to be much more spectacular in 3D, where the stereo isn't restricted to a narrow
horizontal field of view. And other combinations of sensors should be investigated as well.

High Level Navigation Robot navigation is one of the most important applications of robot
evidence grids. So far, we have only created grids about the size of a room or a length of hall-
way. Creating larger grids presents problems both because of their memory requirements,
and because dead reckoning error increases at these bigger scales. Some issues that arise
when attempting higher level navigation are:

* Recognizing Previously Visited Areas Suppose a robot travels around a rectangular hall-
way. Because of accumulative positioning (dead reckoning) errors, it won't be able to tell
from its wheel encoders alone that it has returned. The problem of simultaneously creat-
ing a higher level map and determining whether you’re in a part you've seen before is
crucial to practical applications of evidence grids.

o Identifying Features Needed for Navigation When navigating, the robot needs to know
which areas are passible and which aren’t, which openings lead where, and possibly even
the detection of walls which break an area into “regions”, and the classification of those
regions as rooms, hallways, etc.

Identifying Areas That Are Likely To Change or To Remain The Same When a robot
needs to go from a hallway to a room, it needs to find the door into the room and detect
whether the door is open or closed. It should know that, even if the door was closed last
time (and so presumably those cells are labelled “occupied”), it may be worth the robot’s
while to go check the door to see if it’s open now.

Interaction Between Path Planning and Plan Execution Typically, evidence grids don't
notice highly dynamic objects, such as people moving in a corridor, and so path planning
and execution algorithms need to take this into account. For example, path planning
might be done in the evidence grid (which only weakly renders moving objects) and
might be executed by a purely reactive system. If the robot drifts too far from the planned
* path it should stop and replan.

* Models for Systematic Errors The derivation of the formula for adding new readings into the

grid assumed that all errors in the readings were independent. However, there are many
cases where this is not true. Although there are various ways around this problem, explicit
models of such systematic errors would be a much more powerful solution and probably
make for the most accurate and informative grids from a given set of readings.

* Position Estimation A largely unexplored problem is: given a small set of readings taken near

your current location, and a map made previously from a large set of readings, find your cur-
rent location. You’d want to take into account your dead reckoned position, even though
some error will be associated with it. A related extension would be to develop an algorithm
that decides what direction to aim the sensor to help disambiguate position.
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* Grid Matching Related to position estimation is the problem of efficiently matching two grids
of the same area that were produced at different times from different sets of readings, i.e. find-
ing the displacement and rotation(s) that bring the coordinates of one grid into alignment with
those of the other. This is moderately challenging in 2D, and even more interesting in 3D.

* Object Identification A fine grained grid of a room should provide enough information for
the robot to identify objects by shape. This is especially difficult since usually part of the
object may be hidden by other objects or the wall, so that we must deal with partial occlusion.
One approach to object recognition might be to learn the “signatures” of the object in the grid.
The probabilistic nature of the grid is a help, since it indicates unknown areas that can be
ignored in a match.

e Incorporating Other Object Properties For many tasks beyond navigation it helps to record
the color of objects, the orientation of the surfaces in the cells, or any other object properties
that could be put into the cells.

7 Annotated Bibliography of Evidence Grid Related Work

The following is a selection of papers relevant to the Evidence Grid framework. Although this list
tries to be as complete as possible, no doubt some omissions remain.

[Beckerman90]

Author

Title

Source

Abstract

Beckerman, M.; Oblow, EM.;

Oak Ridge Nat. Lab., TN, USA

Treatment of systematic errors in the processing of wide-angle sonar sensor data for Ro-
botic navigation

IEEE Transactions on Robotics and Automation (USA); vol.6, no.2; April 1990; pp. 137-45

A methodology has been developed for the treatment of systematic errors that arise in the
processing of sparse sensor data. A detailed application of this methodology to the con-
struction, from wide-angle sonar sensor data, of navigation maps for use in autonomous
robotic navigation is presented. In the methodology, a four-valued labeling scheme and a
simple logic for label combination are introduced. The four labels Conflict, Occupied, Emp-
ty, and Unknown are used to mark the cells of the navigation maps. The logic allows for
the rapid updating of these maps as new information is acquired. Systematic errors are
treated by relabeling conflicting pixel assignments. Most of the new labels are obtained
from analyses of the characteristic patterns of conflict that arise during the information
processing. The remaining labels are determined by imposing an elementary consistent-la-
beling condition.

[Blackwell91]

Author

Title
Source

Abstract

Blackwell, Mike
Pittsburgh, Pa.: Carnegie Mellon University, The Robotics Institute

The Uranus mobile robot
Technical report. Carnegie Mellon University. The Robotics Institute; CMU-RI-TR-91-06

The Uranus mobile robot was built by Carnegie Mellon University’s Mobile Robot Lab to
provide a general purpose mobile base to support research in to indoor robot navigation.
As a base, it provides full mobility, along with support for a variety of payloads, such as
sensors and computers. This report details the design and maintenance of Uranus’s me-
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chanical, electrical, and software systems, and is intended to serve two purposes. First, it
acts as documentation for the robot. Second, it offers a perspective in to mobile robot de-
sign, showing the decisions, trade-offs and evolution that are involved in the design of a
system of this complexity. Hopefully, others building similar systems will be able to profit
from our experience.

[Borenstein88al

Author

Title
Source

Abstract

Borenstein, J.; Koren, Y.;

Dept. of Mech. Eng. & Appl. Mech., Michigan Univ., Ann Arbor, MI, USA

Real-time obstacle avoidance for fast mobile robots

CAD/CAM Robotics and Factories of the Future. 3rd International Conference (CARS and
FOF ’88) Proceedings, B. Prasad Ed.; Southfield, MI, USA; 14-17 Aug. 1988; pp. 144-8 vol.3

A real-time obstacle avoidance approach for mobile robots has been developed and tested
on an environmental mobile robot. The approach enhances the basic concepts of the poten-
tial field method by representing obstacles in a two-dimensional certainty grid that is es-
pecially suited to the accommodation of inaccurate real-time sensor data (such as that
produced by ultrasonic sensors), as well as sensor fusion. Experimental results on a mobile
robot running at 0.78 m/sec demonstrate the power of the new algorithm.

[Borenstein88b]

Author

Title
Source

Abstract

Borenstein, J.; Koren, Y.;

Dept. of Mech. Eng. & Appl. Mech., Michigan Univ., Ann Arbor, MI, USA

High-speed obstacle avoidance for mobile robots

Proceedings IEEE International Symposium on Intelligent Control 1988, Stephanou, H.E.,
Meystel, A. and Luh, J.Y.S. Ed.; Arlington, VA, USA; 24-26 Aug. 1988; pp. 382-4

A real-time obstacle avoidance approach for mobile robots has been developed and imple-
mented. This approach permits the detection of unknown obstacles simultaneously with
the steering of the mobile robot to avoid collisions and the advance of the robot toward the
target. The approach, called the virtual force field technique, integrates two known con-
cepts: certainty grids for obstacle representation and potential fields for navigation. This
combination is especially suitable for the accommodation of inaccurate sensor data (such
as those produced by ultrasonic sensors) as well as for sensor fusion, and it allows contin-
uous motion of the robot without stopping in front of obstacles. Experimental results from
a mobile robot running at a maximum speed of 0.78 m/s demonstrate the power of the pro-
posed algorithm.

[Borenstein89]

Author

Title
Source

Abstract

Borenstein, J.; Koren, Y.;

Adv. Technol. Lab., Michigan Univ., Ann Arbor, MI, USA

Real-time obstacle avoidance for fast mobile robots

IEEE Transactions on Systems, Man and Cybernetics (USA); vol.19, no.5; Sept.-Oct. 1989;
pp- 1179-87

A real-time obstacle avoidance approach for mobile robots has been developed and imple-
mented. It permits the detection of unknown obstacles simultaneously with the steering of
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the mobile robot to avoid collisions and advance toward the target. The novelty of this ap-
proach, entitled the virtual force field method, lies in the integration of two known con-
cepts: certainty grids for obstacle representation and potential fields for navigation. This
combination is especially suitable for the accommodation of inaccurate sensor data as well
as for sensor fusion and makes possible continuous motion of the robot with stopping in
front of obstacles. This navigation algorithm also takes into account the dynamic behavior
of a fast mobile robot and solves the local minimum trap problem. Experimental results
from a mobile robot running at a maximum speed of 0.78 m/s demonstrate the power of
the algorithm.

[Borenstein95]

Author

Borenstein, J.
Adv. Technol. Lab., Michigan Univ., Ann Arbor, M], USA

Title DOE Project History at UM - Mobile Robots Research

Source  http://www-personal.engin.umich.edu/~johannb /historyl.html

Descrip Describes the history of Mobile Robots research at the Advanced Technology Lab. In-
cludes pages on the Virtual Force Field and Vector Field Histogram obstacle avoidance meth-
ods as well as others.

[Christensen94]

Author Christensen, H.L; Kirkeby, N.O.; Kristensen, S.; Knudsen, L.; Granum, E.;
Inst. of Electron. Syst., Aalborg Univ., Denmark

Title Model-driven vision for indoor navigation

Source  Robotics and Autonomous Systems (Netherlands); vol.12, no.3-4; April 1994; pp. 199-207

Abstract For navigation in a partially known environment it is possible to provide a model that may
be used for guidance in the navigation and as a basis for selective sensing. In this paper a
navigation system for an autonomous mobile robot is presented. Both navigation and sens-
ing is built around a graphics model, which enables prediction of the expected scene con-
tent. The model is used directly for prediction of line segments which, through matching,
allow estimation of position and orientation. In addition, the model is used as a basis for a
hierarchical stereo matching that enables dynamic updating of the model with unmodelled
objects in the environment. For short-term path planning a set of reactive behaviours is
used. The reactive behaviours include use of inverse perspective mapping for generation
of occupancy grids, a sonar system and simple gaze holding for monitoring of dynamic ob-
stacles. The full system and its component processes are described and initial experiments
with the system are briefly outlined.

[Cho90]

Author DongWoo Cho;
Dept. of Mech. Eng., Pohang Inst. of Sci. & Technol., South Korea

Title Certainty grid representation for robot navigation by a Bayesian method

Source  Robotica (UK); vol.8, pt.2; April-June 1990; pp. 159-65

Abstract Development of sensor knowledge representation by the use of a certainty grid has been

extensive and shown the usefulness of the grid-based concept for robot navigation. Yet the
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methodology was not perfect. The paper introduces the Bayesian formula into the certainty
grid representation to overcome some difficulties of ad hoc formula that has been the only
way of updating the grids. The complete derivation of the proposed updating formula is
given and proved to be able to accurately identify the simulated world. Also, the paper
suggests two updating models: context-sensitive and context-free. Both of them were
shown to be usable through simulation in real world modeling.

[De Almeida89]

Author

Title
Source

Abstract

De Almeida, R.; Melin, C,;

Dept. Genie Informatique, Univ. de Technol. de Compiegne, France

Exploration of unknown environments by a mobile robot

Proceedings of an International Conference. Intelligent Autonomous Systems 2, Kanade,
T., Groen, F.C.A and Hertzberger, L.O. Ed.; Amsterdam, Netherlands; 11-14 Dec. 1989; pp.
715-25 vol.2

The aim of the paper is to define a software architecture allowing a mobile robot to explore
an unknown territory. The finality of the active learning is to build a geometric map of the
mobile robot environment using its sensors. This map is a grid where each cell is labelled
empty, unknown or occupied; from it, a road map is built by the cartographer module. The
navigator module plans the exploration using these two maps. Obstacle avoidance is as-
sured by a local navigator using sensor data returned by the observer module.

[Dodds90]

Author
Title
Source

Abstract

Dodds, D.R.

Terrain classification in navigation of an autonomous mobile robot

Mobile Robots V; Boston, MA, USA; 8-9 Nov. 1990;

Proceedings of the SPIE - The International Society for Optical Engineering; vol.1388; 1991;
pp. 82-9

The authors describe a method of path planning that integrates terrain classification (by
means of fractals), the certainty grid method of spatial representation, Kehtarnavaz Gris-
wold collision-zones (N. Kehtarnavez, 1989), Dubois Prade fuzzy temporal and spatial
knowledge (D. Dubois, 1989) and nonpoint sized qualitative navigational planning. An ini-
tially planned (‘end-to-end’) path is piecewise modified to accommodate known and in-
ferred moving obstacles, and includes attention to time- varying multiple subgoals which
may influence a section of path at a time after the robot has begun traversing that planned
path.

[Elfes86]

Author

Title
Source

Abstract

Elfes, Alberto

Pittsburgh, Pa.: Carnegie Mellon University, The Robotics Institute

A Sonar Based Mapping and Navigation System

1986 IEEE International Conference on Robotics and Automation, San Francisco, CA, April
7-10, 1986; vol. 2, pp. 1151-56

This paper describes a sonar-based mapping and navigation system for autonomous mo-
bile robots operating in unknown and unstructured surroundings. The system uses sonar
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range data to build a multi-leveled description of the robot’s environment. Sonar maps are
represented in the system along several dimensions: the Abstraction axis, the Geographical
axis, and the Resolution axis. Various kinds of problem-solving activities can be per-
formed and different levels of performance can be achieved by operating with these mul-
tiple representations of maps. The major modules of the Dolphin system are described and
related to the various mapping representations used. Results from actual runs are present-
ed, and further research is mentioned. The system is also situated within the wider context
of developing an advanced software architecture for autonomous mobile robots.

[Elfes87]

Author

Title
Source

Abstract

Elfes, Alberto
Pittsburgh, Pa.: Carnegie Mellon University, The Robotics Institute

Sonar-Based Real-World Mapping and Navigation
IEEE Journal of Robotics and Automation; IEEE J. Robot. Autom. (USA); volL.RA-3, no.3;

A07; June 1987; pp. 249-65

A sonar-based mapping and navigation system developed for an autonomous mobile ro-
bot operating in unknown and unstructured environments is described. The system uses
sonar range data to build a multileveled description of the robot’s surroundings. Sonar
readings are interpreted using probability profiles to determine empty and occupied areas.
Range measurements from multiple points of view are integrated into a sensor-level sonar
map, using a robust method that combines the sensor information in such a way as to cope
with uncertainties and errors in the data. The sonar mapping procedures have been imple-
mented as part of an autonomous mobile robot navigation system called Dolphin. The ma-
jor modules of this system are described and related to the various mapping
representations used. Results from actual runs are presented, and further research is men-
tioned. The system is also situated within the wider context of developing an advanced
software architecture for autonomous mobile robots

[Elfes89a]

Author

Title
Source

Abstract

Elfes, Alberto

Pittsburgh, Pa.: Carnegie Mellon University, The Robotics Institute

Occupancy Grids: A Probabilistic Framework for Mobile Robot Perception and Navigation
Ph.D. Thesis, Electrical and Computer Engineering Dept., Carnegie-Mellon University,
1989.

In this thesis we introduce a new framework for spatial robot perception, real-world mod-
eling, and navigation that uses a stochastic tessellated representation of spatial information
called the Occupancy Grid. The Occupancy Grid is a multi-dimensional random field that
maintains probabilistic estimates of the occupancy state of each cell in a lattice. To recover
a sensor-based map of the robot’s environment, the cell state estimates are obtained by in-
terpreting the incoming range readings using probabilistic sensor models that capture the
uncertainty in the spatial information provided by the sensor. A Bayesian estimation pro-
cedure allows the incremental updating of the Occupancy Grid, using readings taken from
several sensors and over multiple points of view. Additional estimation methods provide
mechanisms for composition of multiple maps, integration of information from different
sensors, decision-making, and handling of robot and sensor position uncertainty. The re-
sulting Occupancy Grids provide dense descriptions of the robot’s environment, are robust
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under sensor uncertainty and errors, and can be used directly for navigation and other ro-
botic tasks.

[Elfes89b]

Author Elfes, Alberto

Pittsburgh, Pa.: Carnegie Mellon University, The Robotics Institute
Title Using Occupancy Grids for Mobile Robot Perception and Navigation
Source Computer, vol. 22, no. 6, June 1989, pp. 46-57

Abstract This article reviews a new approach to robot perception and world modeling that uses a
probabilistic tessellated representation of spatial information called the occupancy grid. The
occupancy grid is a multi-dimensional random field that maintains stochastic estimates of
the occupancy state of the cells in a spatial lattice. To construct a sensor-derived map of the
robot’s world, the cell state estimates are obtained by interpreting the incoming range read-
ings using probabilistic sensor models. Bayesian estimation procedures allow the incre-
mental updating of the occupancy grid using readings taken from several sensors over
multiple points of view.

[Elfes-Matthies87]

Author Elfes, A.; Matthies, L.;
Dept. of Comput. Sci., Carnegie-Mellon Univ., Pittsburgh, PA, USA

Title Sensor integration for robot navigation: combining sonar and range date in a grid-based
representation

Source  Proceedings of the 26th IEEE Conference on Decision and Control; Los Angeles, CA, USA;
9-11 Dec. 1987; pp. 1802-7 vol.3

Abstract The problem of integrating noisy range data from multiple sensors and multiple robot po-
sitions into a common description of the environment is considered. A cellular representa-
tion, called the occupancy grid is proposed as a solution. Occupancy grids are used to
combine range information from sonar and one-dimensional stereo into a two-dimensional
map of the vicinity of a robot. Each cell in the map contains a probabilistic estimate of
whether it is empty or occupied by an object in the environment. These estimates are ob-
tained from sensor models that describe the uncertainty in the range data. A Bayesian es-
timation scheme is used to update the existing map with successive range profiles from
each sensor. This representation is simple to manipulate, treats different sensors uniform-
ly, and models uncertainty in the sensor data and in the robot position. It also provides a
basis for motion planning and creation of higher-level object descriptions.

[Faibish92]
Author Faibish, S.; Abramovitz, M.;
Rafael, Haifa, Israel
Title Perception and navigation of mobile robots

Source  Proceedings of the 1992 IEEE International Symposium on Intelligent Control (Cat.
No.92CH3110-4); Glasgow, UK; 11-13 Aug. 1992; pp. 335-40

Abstract The authors present a method of navigation for mobile robots, based on perception of the
unknown environment, that is similar to a blind man’s behavior. The perception uses data
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from different types of sensors, combined in a probabilistic occupancy map of the close sur-
roundings of the robot. A global map of the workspace is constructed and updated at each
step by the navigation algorithm, using the latest perception. The navigation algorithm is
suited for indoor as well as outdoor applications. It computes the optimal path based on
the last updated map of the workspace and the present position estimate of the robot with
respect to the goal position. The algorithm consists of two stages: global path planning and
local obstacle avoidance.

[Firby92]

Author

Title
Source

Abstract

Firby, R].; Christianson, D.; McDougal, T.;

Dept. of Comput. Sci., Chicago Univ., IL, USA

Fast local mapping to support navigation and object localization

Sensor Fusion V; Boston, MA, USA; 15-17 Nov. 1992;

Proceedings of the SPIE - The International Society for Optical Engineering; vol.1828; 1992;

pp. 344-52

A robot must have an internal representation of the local space it occupies to use for both
navigation and obstacle localization. In addition, it must be possible to build and update
the map in real-time so that it can be used in feedback control loops. A robot’s notion of
local space must bridge the gap between symbolic and continuous control. To satisfy both
real-time constraints and the needs of high-level navigation and object recognition, the
map building system must use a simple representation that can be computed quickly yet
will support the construction of more involved maps over longer timescales. A complete
system also requires control behaviors that can use the simple representation to drive the
robot through its immediate surroundings in service of higher-level local navigation goals
generated from the more detailed map. This paper describes a system based on building
simple geometric occupancy maps from multiple sensors in real-time and using them for
control. The mapping and local navigation algorithms presented were used to control the
University of Chicago mobile robot at the AAAT-92 robot Competition.

[Good92]

Author

Title
Source

Abstract

Good, T.T.;

Dept. of Comput. Sci., Brown Univ., Providence, RI, USA

Blank-map orienteering for a mobile robot using certainty grids

Mobile Robots VII; Boston, MA, USA; 18-20 Nov. 1992;

Proceedings of the SPIE - The International Society for Optical Engineering; vol.1831;1993;

pp. 631-42

The author uses a robot based certainty grid to maintain map information generated from
eight fixed sonars to compare three robot navigators. The certainty grid includes a variety
of averaging and weighting techniques to improve sonar accuracy and reduce noise. The
navigators are constrained by two design parameters: they should not use domain specific
knowledge and the navigators and mapper are independent. Navigation decisions are
based solely on the internal map. Each navigator uses a weighting function to determine a
potential for each grid element and navigates by minimizing the potential over the robot’s
immediate surroundings. Local route selection is performed in real time while traveling as
the local navigator continuously re-evaluates the path with new information from the cer-
tainty grid. The navigators differ in their methods of global route selection. One uses inter-
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mediate destinations and backtracking to handle dead ends. The other two incorporate
dead end information directly into local route selection, one with intermediate destinations
and the other without them

[Gourley94]

Author

Title
Source

Abstract

Gourley, C.; Trivedi, M.;

Dept. of Electr. & Comput. Eng., Tennessee Univ., Knoxville, TN, USA

Sensor based obstacle avoidance and mapping for fast mobile robots

Proceedings of the 1994 IEEE International Conference on Robotics and Automation; Part:
vol.2; San Diego, CA, USA; 8-13 May 199%4; pp. 1306-11 vol.2

This paper describes one aspect of a project whose goal is to move a robot in an unknown
environment and find pipes to decommission. While moving through the environment a
low level map, in the form of an occupancy grid, along with detailed location of pipes in
the environment are obtained. This paper deals only with the low level “reflex” of obstacle
avoidance that is performed while the robot moves along its path as well as some of the
higher level tasks involved in path planning and robot motion in order to negotiate
through a hazardous environment. The overall high level interaction with the system is
made as simple and user friendly as possible using a graphical interface to control high lev-
el tasks. All low level communications and processing are transparent. The robot used for
experimentation is a wheeled mobile platform equipped with many different sensors in-
cluding ultrasonic range sensors and cameras. A quick and efficient obstacle avoidance al-
gorithm has been developed using sixteen ultrasonic range sensor and one infrared
proximity sensor.

[Graham92]

Author

Title
Source

Abstract

Graham, J.H.;

Dept. of Eng. Math. & Comput. Sci., Louisville Univ., KY, USA

A fuzzy logic approach for safety and collision avoidance in robotic systems

Ergonomics of Hybrid Automated Systems III, Brodner, P. and Karwowski, W. Ed. Pro-
ceedings of the Third International Conference on Human Aspects of Advanced Manufac-
turing and Hybrid Automation; Gelsenkirchen, Germany; 26- 28 Aug. 1992; pp. 493-8

A major factor which has limited the application of robots in industrial and human service
applications has been the lack of robust sensing and control algorithms for detection and
prevention of collision conditions. This paper discusses an approach to the collision avoid-
ance control of robots using a fuzzy logic methodology for the integration of sensory input
data from the robot’s environment. The paper presents a formulation of the collision avoid-
ance problem using the occupancy grid formulation, and discusses the use of a combina-
tion of Dempster-Shafer inference and fuzzy logic in fusing the sensory information and
making robot movement decisions. This hybrid approach utilizes the strengths of both sys-
tems to provide an effective and computationally tractable result.

[Hughes92]

Author

Hughes, K.; Murphy, R.;
Dept. of Comput. Sci., Univ. of South Florida, Tampa, FL, USA
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Title
Source

Abstract

Ultrasonic robot localization using Dempster-Shafer theory

Neural and Stochastic Methods in Image and Signal Processing; San Diego, CA, USA; 20-
23 July 1992;

Proceedings of the SPIE - The International Society for Optical Engineering; vol.1766; 1992;
pp- 2-11

The authors present a method for ultrasonic robot localization without a prior world mod-
els utilizing the ideas of distinctive places and open space attraction. This method was in-
corporated into a move-to-station behavior, which was demonstrated on the Georgia Tech
mobile robot. The key aspect of the approach was to use Dempster-Shafer theory to over-
come the problem of the uncertainty in the range measurements returned by the sensors.
The state of the world was modeled as a two element frame of discernment Theta: empty
and occupied. The world itself was represented as a grid, with the belief in whether a grid
element was empty or occupied set to total ignorance (don’t know) at the beginning of the
robot behavior. A belief model of the range readings was used to compute the belief of
points in the environment being empty, occupied, or unknown. Experiments demonstrat-
ed that the robot was able to localize itself with a repeatability of 1.5 feet in a 33 foot square
room, regardless of the starting position within the open space.

[Tanigro92]

Author

Title
Source

Abstract

Ianigro, M.; D’Orazio, T.; Lovergine, F.P.; Stella, E.; Distante, A

Istituto Elaborazione Segnali e Immagini, CNR, Bari, Italy

Real-time obstacle avoidance based on sensory information

Mobile Robots VII; Boston, MA, USA; 18-20 Nov. 1992;

Proceedings of the SPIE - The International Society for Optical Engineering; vol.1831; 1993;
pp- 62-73

Detecting unexpected obstacles and avoiding collisions is an important task for any auton-
omous mobile robot. The authors describe an approach using a sonar-based system that
they have used in an indoor autonomous mobile system. The logical design of this system
is shown, followed by a description of how it builds a knowledge of the environment. The
information collected of the environment can be used for many applications like real-time
obstacle avoidance, environment learning, position estimation. This method builds up two
kind of maps: a occupancy grid which contains the probability value of each cell to be oc-
cupied and an orientation map which contains the expected orientation of the surface of
each cell in the occupancy grid. Methods for filtering raw sensor data before using it for
map generation together with experimental results are shown

[Jones93a]

Author

Title
Source

Jones, ].P.;

Oak Ridge Nat. Lab., TN, USA

Real-time construction and rendering of three-dimensional occupancy maps

Applications of Artificial Intelligence 1993: Machine Vision and Robotics; Orlando, FL,
USA; 14-16 April 1993;

Proceedings of the SPIE - The International Society for Optical Engineering; vol.1964; 1993;
pp- 249-56
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Abstract

This paper describes a preliminary sensory system for real-time sensor-based robot navi-
gation in a three-dimensional, dynamic environment. Data from a laser range camera are
processed on an iWarp parallel computer to create a 3D occupancy map. This map is ren-
dered using raytracing. The construction and rendering consume less than 800 millisec-
onds.

[]onesl93b]

Author

Title
Source

Abstract

Jones, ].P.;

Oak Ridge Nat. Lab., TN, USA

Real-time construction of three-dimensional occupancy maps

Proceedings of 1993 IEEE International Conference on Robotics and Automation; Atlanta,
GA, USA; 2-6 May 1993; pp. 52-7 vol.1

An experimental study of parallel algorithms for constructing 3- D occupancy maps is de-
scribed. Data from a laser range camera are processed on an iWarp parallel computer. The
resulting 3-D map is rendered using raytracing. The construction and rendering consume
less than 800 ms.

[Jorgensen87]

Author

Title
Source

Abstract

Jorgensen, C.C.;

Oak Ridge Nat. Lab., TN, USA

Neural network representation of sensor graphs in autonomous robot path planning
IEEE First International Conference on Neural Networks, Caudill, M. and Butler, C. Ed.;
San Diego, CA, USA; 21-24 June 1987; pp. 507-15 vol.4;

A continuous-valued associative neural network used for anticipatory robot navigation
planning in partially learned environments is discussed. A navigation methodology is im-
plemented in four steps. First, a room is represented as a lattice of connected voxels (voice
elements) formed by dividing navigation space into equal-sized volumetric cells. Each vox-
el is associated with a simulated neuron. The magnitude of a neuron’s activation corre-
sponds to a probability of voxel occupancy calculated from a series of sonar readings taken
by an autonomous robot. Neurons are trained with a series of room patterns derived from
varying robot sensor perspectives. At another time, the robot is exposed to a single per-
spective of one of the rooms and utilizes the sensor return as a cue to prompt associative
recall of a best guess of the complete interior of the room. A two-step path planning oper-
ation is then invoked that uses line-of-sight readings and anticipated global information to
form a trial path plan. The planning process merges a nearest neighbor grid cell technique
and a simulated-annealing gradient descent method to optimize transversal movements.
In the final step, the path is followed until a mismatch between the estimated room and the
actual sensor returns indicate incorrect anticipation. Implementation of the method on a
hypercube computer is discussed, along with memory-computation trade-off require-
ments.

[Laliberte94]

Author

Laliberte, T.; Gosselin, C.M.;
Dept. de Genie Mecanique., Laval Univ., Que., Canada
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Title

Source

Abstract

Efficient algorithms for the trajectory planning of redundant manipulators with obstacle
avoidance

Proceedings of the 1994 IEEE International Conference on Robotics and Automation; Part:
vol.3; San Diego, CA, USA; 8-13 May 1994; pp. 2044-9 vol.3

This article presents a path planning strategy for redundant serial manipulators working
in a cluttered environment. Developed in a practical context of telemanipulation, the algo-
rithm, which sacrifices the capability of solving very difficult trajectories for efficiency, al-
lows a human to control a robot at a higher level, in Cartesian space. The model of the
environment is provided by a 3D vision system as an occupancy map. An iterative process
guides the end effector towards its goal with the help of discrete potential fields, which re-
duce the number of local minima. The motion of the manipulator is calculated using the
velocity inversion of a redundant manipulator, which optimizes the distance to obstacles.
The algorithm includes joint limit constraints, collision detection and heuristics for the so-
lution of typical difficult cases, thereby leading to a high success rate. A simulator has been
developed to test the algorithms.

[Lang89]

Author

Title
Source

Abstract

Lang, S.Y.T.; Korba, L.W.; Wong, AK.C;

Lab. for Biomed. Eng., Nat. Res. Council of Canada, Ottawa, Ont., Canada

Characterizing and modeling a sonar ring

Mobile Robots IV; Philadelphia, PA, USA; 6-7 Nov. 1989;

Proceedings of the SPIE - The International Society for Optical Engineering; vol.1195; 1990;
pp- 291-304

Effective sensor integration requires knowledge of the characteristics of all sensor sub-
systems. This type of meta- knowledge can originate from theoretical models of the phys-
ical processes involved in the sensing, from actual testing of the sensory system or from a
combination of both. This paper describes the collection and analysis of experimental data
from an actual sonar ring. The effective beam pattern is mapped and modeled for the eight
possible setting combinations of pulse width and gain profiles, using three different sizes
of targets. The beam cross sectional characteristics are also analyzed to show the effective
signal strength and its effect upon error in the depth readings. The performance of the sys-
tem is highly dependent upon surface texture and orientation, and other tests of the sonar
ring illustrate the types of artifacts which arise in the actual use of the system. The test re-
sults can be used to provide better certainty values in certainty grid representations, or
used to build a boundary representation from a composite scan which integrates the data
from the scans at different settings. The test results are shown graphically.

[Lee94]

Author

Title
Source

Abstract

Jang Gyu Lee; Chung, H.;

Dept. of Control & Instrum. Eng., Seoul Nat. Univ., South Korea

Global path planning for mobile robot with grid-type world model

Robotics and Computer-Integrated Manufacturing (UK); vol.11, no.1; March 1994; p p. 13-
21

This paper presents a new methodology for global path planning for an autonomous mo-
bile robot in a grid-type world model. The value of a certainty grid representing the exist-
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ence of an obstacle in the grid is calculated from readings of sonar sensors. In the
calculation, a way of utilizing three sonar sensor readings at a time is introduced, resulting
in a more accurate world model. Once the world model is obtained, a network for path
planning is built by using the model. The global paths, defined as the shortest paths be-
tween all pairs of nodes in the network, are calculated. A fast algorithm using a decompo-
sition technique is proposed for real-time calculation. The new methodology has been
implemented on the mobile robot whose role is to transport materials in a flexible manu-
facturing system. The results show that the proposed method of certainty grids satisfacto-
rily represents a precise environment, including the locations of obstacles. Thus, the robot
successfully comprehends its surroundings, and navigates to its destinations along opti-
mal paths.

[Lim90]

Author

Title
Source

Abstract

Jong-Hwan Lim; Dong-Woo Cho;

Korean Inst. of Electr. Eng., Seoul, South Korea

Sonar-based certainty grids for autonomous mobile robots

Transactions of the Korean Institute of Electrical Engineers; Trans. Korean Inst. Electr. Eng.
(South Korea); vol.39, no.4; April 1990; pp. 386-92

This paper describes a sonar-based certainty grid, and the probabilistic representation of
uncertain and incomplete sensor knowledge, for autonomous mobile robot navigation.
They use sonar sensor range data to build a map of the robot’s surroundings. This range
data provides information about the location of the objects which may exist in front of the
sensor. Here, a new method using a Bayesian formula is introduced, which enables one to
overcome some difficulties of the ad-hoc formula that has previously been the only way of
updating the certainty grids. This new formula can be applied to other kinds of sensors as
well as the sonar sensor. The validity of this formula in the real world is verified through
simulation and experiment.

[Lim93]

Author

Title

Source

Abstract

Jong Hwan Lim; Dong Woo Cho;

Dept. of Mech. Eng., Pohang Inst. of Sci. & Technol., South Korea

Experimental investigation of mapping and navigation based on certainty grids using so-
nar sensors

Robotica (UK); vol.11, pt.1; Jan.-Feb. 1993; pp. 7-17

A mapping and navigation system based on certainty grids for an autonomous mobile ro-
bot operating in unknown environment is described. The system uses sonar range data to
build a map of the robot’s surroundings. The range data from sonar sensor are integrated
into a probability map that is composed of two dimensional grids which contain the prob-
abilities of being occupied by the objects in the environment. A Bayesian model is used to
estimate the uncertainty of the sensor information and to update the existing probability
map with new range data. The resulting two dimensional map is used for path planning
and navigation. In this paper, the Bayesian updating model which was successfully simu-
lated in the earlier work is implemented on a mobile robot and is shown to be valid in the
real world by experiment. This paper also proposes a new path planning method based on
weighted distance, which enables the robot to efficiently navigate in an unknown area
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[Lim94]

Author

Title
Source

Abstract

Jong Hwan Lim; Dong Woo Cho;

Dept. of Mech. Eng., Cheju Nat. Univ., South Korea

Specular reflection probability in the certainty grid representation

Transactions of the ASME. Journal of Dynamic Systems, Measurement and Control (USA);

vol.116, no.3; Sept. 1994; pp. 512-20

A new method for solving the specular reflection problem of sonar systems has been de-
veloped and implemented. This method, the specular reflection probability method, per-
mits the robot to construct a high quality probability map of an environment composed of
specular surfaces. The method employs two parameters, the range confidence factor (RCF)
and orientation probability. The RCF is the measure of confidence in the returning range
from a sensor under reflective environment, and the factor will have low value for long
range information and vice versa. Orientation probability represents the surface orienta-
tion of an object. Bayesian reasoning is used to update the orientation probability from the
range readings of the sensor. The usefulness of this approach is illustrated with the results
produced by our mobile robot equipped with ultrasonic sensors.

[Matthies-Elfes88]

Author

Title
Source

Abstract

Matthies, L.; Elfes, A.;

Carnegie-Mellon Univ., Pittsburgh, PA, USA

Integration of sonar and stereo range data using a grid-based representation

Proceedings of the 1988 IEEE International Conference on Robotics and Automation; Phil-
adelphia, PA, USA; 24-29 April 1988; pp. 727-33 vol.2

The authors use occupancy grids to combine range information from sonar and one-di-
mensional stereo into a two-dimensional map of the vicinity of a robot. Each cell in the map
contains a probabilistic estimate of whether it is empty or occupied by an object in the en-
vironment. These estimates are obtained from sensor models that describe the uncertainty
in the range data. A Bayesian estimation scheme is applied to update the current map using
successive range readings from each sensor. The occupancy grid representation is simple
to manipulate, treats different sensors uniformly, and models uncertainty in the sensor
data and in the robot position. It also provides a basis for motion planning and creation of
more abstract object descriptions.

[Matthies-Elfes89]

Author

Title
Source

Abstract

Matthies, L.; Elfes, A.;

Dept. of Comput. Sci., Robotics Inst., Carnegie-Mellon Univ., Pittsburgh, PA, USA
Probabilistic estimation mechanisms and tessellated representations for sensor fusion
Sensor Fusion: Spatial Reasoning and Scene Interpretation; Cambridge, MA, USA; 7-9
Nov. 1988;

Proceedings of the SPIE - The International Society for Optical Engineering; vol.1003; 1989;
pp- 2-11

Two fundamental issues in sensor fusion are (1) the definition of model spaces for repre-
senting objects of interest and (2) the definition of estimation procedures for instantiating
representations, with descriptions of uncertainty, from noisy observations. The authors
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show that random field models provide attractive, alternative representations for the prob-
lem of creating spatial descriptions from stereo and sonar range measurements. For stereo
ranging, they model the depth at every pixel in the image as a random variable. Maximum
likelihood or Bayesian formulations of the matching problem allow one to express the un-
certainty in depth at each pixel that results from matching in noisy images. For sonar rang-
ing, they describe a tessellated spatial representative that encodes spatial occupancy
probability at each cell. They derive a probabilistic scheme for updating estimates of spatial
occupancy from a model of uncertainty in sonar range measurements. These representa-
tions can be used in conjunction to build occupancy maps from both sonar and stereo range
measurements. They show preliminary results from sonar and single-scanline stereo that
illustrate the potential of this approach. They conclude with a discussion of the advantages
of the representations and estimation procedures used over approaches based on contour
and surface models.

[McDonnell90]

Author

McDonnell, J.R.; Page, W.C,;
US Naval Ocean Syst. Center, San Diego, CA, USA

Title Mobile robot path planning using evolutionary programming

Source Conference Record. Twenty-Fourth Asilomar Conference on Signals, Systems and Com-
puters, Chen, RR. Ed. (Cat. No.90CH2988-4); Pacific Grove, CA, USA; 5-7 Nov. 1990; pp.
1025-9 vol.2

Abstract Evolutionary programming provides a framework for generating algorithms which emu-
late natural evolution. A description is given of the use of evolutionary programming for
global path planning in two dimensions. Safe paths are planned in cluttered environments
modeled with a certainty grid representation. The results indicate that evolutionary pro-
gramming yields a safe path if one exists

[Mobasseri88]

Author Mobasseri, B.G.; Adams, W.].;
Dept. of Electr. Eng., Villanova Univ., PA, USA

Title Real-time spatial occupancy map generation using multiresolution shadow casting

Source  Optics, lllumination and Image Sensing for Machine Vision III[; Cambridge, MA, USA; 8-9
Nov. 1988;
Proceedings of the SPIE - The International Society for Optical Engineering; vol.1005; 1989;
pp- 88-94

Abstract Path planning comprises a significant task in robot vision problems. The issue involves

navigating from point A to B, avoiding obstacles on the way and satisfying other possible
optimality criteria. Among the many path planning algorithms, multiresolution tech-
niques based on hierarchical tree structures, e.g. quadtrees, have shown great potential.
The paper presents a technique whereby a quadtree-based spatial occupancy map is gen-
erated in real time, making an online path planning task feasible.
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[Mobasseri89al

Author

Title
Source

Abstract

Mobasseri, B.G.;

Dept. of Electr. Eng., Villanova Univ., PA, USA

Path planning under uncertainty from a decision analytic perspective

Proceedings. IEEE International Symposium on Intelligent Control 1989 (Cat.
No.89TH0282-4); Albany, NY, USA; 25-26 Sept. 1989; pp. 556-60

Previous work has used a certainty grid for navigation and path planning. In the present
work, the author attempts to formulate the path planning problem under uncertainty from
a decision analytic perspective. Paths are generated based on the planner’s preferences and
expected utilities of actions. A proposed cost structure, controlled by a strategy index, can
simulate attitudes ranging from risk aversion to risk seeking. Experimental results demon-
strate how path length and path risk are traded off based on this index. The proposed
framework for navigation under uncertainty has proven to be a powerful tool in encoding
subjective preferences in path planning. With a solid theoretical foundation such as deci-
sion analysis and utility and game theory, uncertain spatial and other knowledge terms can
be assimilated in the overall plan. The preliminary results so far have shown a promising
outlook for further expansion of this technique to real-world problems.

[Mobasseri89b]

Author

Title
Source

Abstract

Mobasseri, B.G.;

Dept. of Electr. Eng., Villanova Univ., PA, USA

Incorporating subjective measures in robot motion planning

Mobile Robots IV; Philadelphia, PA, USA; 6-7 Nov. 1989;

Proceedings of the SPIE - The International Society for Optical Engineering; vol.1195; 1990;

pp. 340-8

Path planning can be grossly defined as the problem of reaching a goal from a starting po-
sition, avoiding collisions and satisfying one or more optimality criteria. A prerequisite to
such planning is the availability of an occupancy map either as a priori information or gen-
erated online. Recent work has shown that such information can at best be obtained within
a probabilistic framework, hence exact occupancy status is never known with absolute con-
fidence. This paper presents a formal framework for formulating path planning under un-
certainty. It is shown that paths compete not just on the basis of physically measurable
parameters but also on the basis of collision risk. There emerge circumstances requiring a
formulation of underlying subjective trade-offs among competing paths with the added el-
ement of risk. A set of experimental results shows the actual implementation of the pro-
posed path planner inside a certainty grid.

[Moravec85]

Author

Title
Source

Moravec, Hans P.

Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA

Autonomous Mobile Robots Annual Report 1985

Carnegie Mellon University, Robotics Institute Technical Report CMU-RI-TR-86-4
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[Moravec88]

Author

Title
Source

Abstract

Moravec, Hans P.

Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA

Certainty Grids for Sensor Fusion in Mobile Robots

Sensor Devices and Systems for Robotics, Alicia Casals, ed., Springer-Verlag, Berlin, 1989,
pp 243-276. Also in Al Magazine v9#2, Summer 1988, pp 61-77. Earlier version in Proceed-
ings JPL Workshop Telerobotics (Pasadena, CA), Jan. 1987.

A numerical representation of uncertain and incomplete sensor knowledge we call Cer-
tainty Grids has been used successfully in several of our past mobile robot control pro-
grams, and has proven itself to be a powerful and efficient unifying solution for sensor
fusion, motion planning, landmark identification, and many other central problems. We
had good early success with ad-hoc formulas for updating grid cells with new information.
A new Bayesian statistical foundation for the operations promises further improvement.
We propose to build a software framework running on processors onboard our new Ura-
nus mobile robot that will maintain a probabilistic, geometric map of the robot’s surround-
ings as it moves. The “certainty grid” representation will allow this map to be
incrementally updated in a uniform way from various sources including sonar, stereo vi-
sion, proximity and contact sensors. The approach can correctly model the fuzziness of
each reading, while at the same time combining multiple measurements to produce sharp-
er map features, and it can deal correctly with uncertainties in the robot’s motion. The map
will be used by planning programs to choose clear paths, identify locations (by correlating
maps), identify well known and insufficiently sensed terrain, and perhaps identify objects
by shape. The certainty grid representation can be extended in the time dimension and
used to detect and track moving objects. Even the simplest versions of the idea allow us
fairly straightforwardly to program the robot for tasks that have hitherto been out of reach.
We look forward to a program that can explore a region and return to its starting place, us-
ing map “snapshots” from its outbound journey to find its way back, even in the presence
of disturbances of its motion and occasional changes in the terrain.

[Moravec92a]

Author

Title
Source

Moravec, Hans P.;

Carnegie Mellon Univ., Robotics Institute, Pittsburgh, PA, USA

2D Evidence Grid Code in C

available from the author, hpm@cs.cmu.edu, and from http: //www.frc.ri.cmu.edu/
~hpm/s2d/

[Moravec92b]

Author

Title
Source

Abstract

Moravec, Hans P.;

Carnegie Mellon Univ., Robotics Institute, Pittsburgh, PA, USA

VOLSENSE (3D Evidence Grid Program)

available from the author, hpm@cs.cmu.edu, and from http:/ /www.frc.ri.cmu.edu /
~hpm/s3d/

A 1992 sabbatical year at supercomputer manufacturer Thinking Machines Corporation in
Cambridge, resulted in a surprisingly efficient program for updating 3D evidence grids
with additional sensor data. A log-odds representation makes the basic update operation
an integer addition. By assuming sensor symmetry about the view axis, 3D distributions of
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individual sensings are stored as 2D arrays representing radial slices. These slices are
swept into cylinders when used, intersecting successive z grid planes in the 3D map in a
series of ellipses. The mapping from radius, distance coordinates in the slices differs from
one z plane to the next only in a few additive constants, allowing it to be precomputed out-
side the main loop, which itself requires less than ten operations, none more expensive
than integer addition, per cell updated. An efficient bounding calculation outside the loop
limits the updates to those that cause changes, typically occupying a cone within the evi-
dence cylinder. Additional efficiencies exploit a four-way symmetry in the elliptical slices,
and various coding and incremental computation techniques. The central evidence accu-
mulation can process about 200 wide-beam sonar, or 4000 narrow-beam stereo-vision rang-
ings per second in a 128x128x128 world representing a cube 10 meters on a side, on a
SPARC-2 uniprocessor. This is fast enough now for experimental robots, and is suitable for
practical robots when 100 MIPS microprocessors become available later this decade. The
package also contains procedures for building sensor models controlled by 15 parameters,

for comparing 3D maps, and various utilities.

[Moravec-Blackwell93]

Author

Title
Source

Abstract

Moravec, H.P.; Blackwell, M.;

Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA

Learning Sensor Models for Evidence Grids

CMU Robotics Institute 1991 Annual Research Review, 1993, pp.8-15.

Evidence grids (aka. occupancy, probability and certainty grids) are a probabilistic, finite-
element representation of robot spatial knowledge. The grids allow the efficient accumula-
tion of small amounts of information from individual sensor readings into increasingly ac-
curate and confident maps. Each sensor measurement is translated, via a sensor model,
into a spatial evidence distribution that is added to a grid representing the robot’s sur-
roundings. In our first applications of the method, on a mobile robot with a ring of 24 Po-
laroid sonar transducers autonomously navigating a cluttered room, we constructed the
sensor model from a cursory examination of the Polaroid literature. Despite the ad-hoc
model, the grid approach worked far better than an older program, a decade in develop-
ment, that used a geometric model. It successfully navigated cluttered rooms, most hall-
ways, a coal mine and outdoors. The original program failed in a smooth-walled narrow
corridor, where most sonar pulses, deflected by mirrorlike walls, indicated overlong rang-
es. The evidence grid method might be able to slowly accumulate evidence from such data,
if only the sensor model accurately represented the modest information contained in a
reading, as our ad-hoc model did not. This paper reports on a learning program that finds
good models automatically. The sensor model is formulated as a closed form expression
shaped by several parameters. The parameters are adjusted, in a hill-climbing process, that
maximizes the match between a hand-constructed ideal map and a map built by the model
with data from a robot test run in the mapped area. Using this approach with a 9- param-
eter function a program using several weeks of Sparcl+ workstation search time was able
to produce a crisp, correct map of the difficult smooth hallway, from data that produces an
unrecognizable splatter when interpreted by our original ad-hoc sensor model.

[Moravec-Cho89]

Author

Moravec, H.P.; Cho, D. W,;
Robotics Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA
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Title
Source

Abstract

A Bayesian Method for Certainty Grids
Working notes of AAAI 1989 Spring Symposium on Robot Navigation, Stanford, CA, 1989,
pp- 57-60.

In earlier work we introduced a probabilistic, finite-element representation of robot spatial
knowledge we call “certainty grids”. The grids allow the efficient accumulation of small
amounts of information from individual sensor readings into increasingly accurate maps
of a robot’s surroundings. Early experiments using the method to interpret measurements
from a ring of 24 Polaroid sonar transducers carried on board an autonomously navigating
mobile robot were surprisingly successful, compared with our earlier experiences with ste-
reo-vision based programs that mapped points on objects as error distributions in space.
These older programs enabled a robot to map and traverse cluttered 30 meter obstacle
courses, succeeding about three times in four attempts. By contrast the grid method accom-
plished a similar task with a vanishingly small failure rate. We then used the grid approach
to a stereo-vision equipped robot, also with excellent success. A subsequent experiment in-
tegrated sonar and vision data, generating maps with correct features not found in those
from either sensor alone. These encouraging early results were obtained using ad-hoc sta-
tistical models and methods. We then developed a Bayesian statistical foundation for grid
updates. A key result of this derivation was a combining formula for integrating two inde-
pendently derived maps of the same area, or for adding a new reading to a developing
map. This combining formula incorporated in one expression (and improved on) several
different parts of the ad-hoc approach. In this paper we introduce a more specialized Baye-
sian combining formula for inserting range readings into maps. The formula is suitable for
sonatr, stereo, laser, proximity and touch measurements. By making use of the property of
this kind of sensor that nearby objects occlude distant ones, the new (context-sensitive) for-
mula manages to extract more information from a reading than the older (context-free) ver-
sion. To insert a sensor reading, the context free method has a computational cost linear in
the number of grid cells in the sensitive volume of the sensor. The context-sensitive formu-
la has a cost dominated by a term quadratic in the volume of range uncertainty of the read-
ing. Using simulated data, we compare the performances of the context-free formula, the
context-sensitive one used incrementally, and the context-sensitive formula operating in a
“batch” mode, in which every reading of a batch serves as context for all the others. Given
the same input, the context-sensitive formula produces slightly better maps than the con-
text-free method, and the batch mode does better than the incremental mode. But typically
the differences are small. A few more readings processed by the cheaper context-free meth-
od can compensate for its slightly less efficient use of each reading. The paper also shows
how this approach allows sensor models to be learned as a wandering robot equipped with
several sensors gathers experiences. As an example, a sonar-type sensor whose character-
istics are initially completely unknown is well characterized after experiencing as few as
1000 random range measurements in a world well mapped by other sensors.

[Moravec-Elfes85]

Author

Title
Source

Moravec, H.P.; Elfes, A.E.;

Robotics Institute, Carnegie Mellon University, PA, USA

High Resolution Maps from Wide Angle Sonar

Proceedings of the 1985 IEEE International Conference on Robotics and Automation, St.
Louis, March, 1985, pp 116-121;
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Abstract We describe the use of multiple wide-angle sonar range measurements to map the sur-

roundings of an autonomous mobile robot. A sonar range reading provides information
concerning empty and occupied volumes in a cone (subtending 30 degrees in our case) in
front of the sensor. The reading is modelled as probability profiles projected onto a raster-
ized map, where somewhere occupied and everywhere empty areas are represented.
Range measurements from multiple points of view (taken from multiple sensors on the ro-
bot, and from the same sensors after robot moves) are systematically integrated in the map.
Over- lapping empty volumes reinforce each other, and serve to condense the range of oc-
cupied volumes. The map definition improves as more readings are added. The final map
shows regions probably occupied, probably unoccupied, and unknown areas. The method
deals effectively with clutter, and can be used for motion planning and for extended land-
mark recognition. This system has been tested on the Neptune mobile robot at CMU.

[Moreno91]

Author

Title
Source

Abstract

Moreno, L.; Salichs, M.A.; Gachet, D.;

Univ. Politecnica de Madrid, Spain

Fusion of proximity data in certainty grids

Parallel and Distributed Computing in Engineering Systems; Tzafestas, S., Borne, P. and
Grandinetti, L. Ed. Proceedings of the IMACS/ IFAC International Symposium; Corfu,
Greece; 23-28 June 1991; pp. 269-74

The present work deals with the different methods to fuse new sensors information about
the environment in certainty grid environment modeling. The Probabilistic Estimation and
some combination rules based on the Dempster-Shafer theory of evidence are analyzed
and their possibilities compared. The present work has been developed under the Esprit-
2483 Panorama project.

[Moreno92]

Author

Title

Source

Abstract

Moreno, L.; Puente, E.A; Salichs, M.A;

Dept. Ingenieria de Sistemas y Autom., Univ. Politecnica de Madrid, Spain

World modelling and sensor data fusion in a nonstatic environment. Application to mobile
robots

Intelligent Components and Instruments for Control Applications; Ollereo, A. and Cama-
cho, E.F. Ed. Selected Papers from the IFAC Symposium; Malaga, Spain; 20-22 May 1992;

pp- 433-6

Describes a world modelling method which is able to integrate static and moving objects
existing in dynamic environments. The static world is modelled by using an occupancy
grid. The method is capable of modelling several moving objects. Whereas measurements
belonging to actual targets are processed using a Kalman filter to yield optimum estimates,
all other measurements are used to create or maintain multiple hypothesis corresponding
to possible mobile objects. The viability of the method has been tested in a real mobile ro-
bot. Portions of this research has been performed under the EEC ESPRIT 2483 Panorama

Project.
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[Mori94]

Author Mori, T.; Fukuda, H.; Kamei, K.; Inoue, K.;
Ritsumeikan Univ., Kyoto, Japan

Title An environment modeling method by sensor fusion for an indoor mobile robot

Source  Transactions of the Institute of Electrical Engineers of Japan, Part C (Japan); vol.114-C, no.5;
May 1994; pp. 603-8

Abstract Describes a sensor fusion system which uses monocular vision and a sonar sensor to rec-
ognize an environment for an indoor mobile robot. In the authors’ system the environment
is represented by using the occupancy grids that Elfes (1989) has proposed. The occupancy
grids are two-dimensional tessellations of space into cells where each cell contains a prob-
abilistic estimate of its occupancy. Since they supply a common underlying representation
for the interpretation of qualitatively different sensors, they also provide a natural frame-
work for sensor integration. In order to cope with the weakness of each sensor, the occu-
pancy grids derived from camera and sonar are integrated into a local map using a
Bayesian estimation procedure. The weakness of vision is errors in distance due to shad-
ows and reflections, while sonar errors in width are due to beam width. Further, local maps
made at different locations are integrated into a global map for robot navigation.

[Poloni95]

Author Poloni, M.; Ulivi, G.; Vendittelli, M.;

Dipartimento di Inf. e Sistemistica, Rome Univ., Italy
Title Fuzzy logic and autonomous vehicles: experiments in ultrasonic vision
Source  Fuzzy Sets and Systems (Netherlands); vol.69, no.1; 13 Jan. 1995; pp. 15-27

Abstract The opportunities offered by fuzzy logic to build maps for robot navigation are investigat-
ed. Characteristics of points of the space (occupied, free, uncertain, etc.) are easily ex-
pressed through set theoretical operations. Real-world experiments validate the approach.
The experimental set-up is based on modified Polaroid ultrasonic sensors; however, the
approach can be easily extended to incorporate other kinds of sensors.

[Puente91]

Author Puente, E.A.; Moreno, L.; Salichs, M.A.; Gachet, D.;
Dept. Ingenieria de Sistemas y Autom., Univ., Politecnica de Madrid, Spain

Title Analysis of data fusion methods in certainty grids application to collision danger monitor-
ing

Source  Proceedings IECON ‘91. 1991 International Conference on Industrial Electronics, Control
and Instrumentation (Cat. No. 91CH2976-9); Kobe, Japan; 28 Oct.-1 Nov. 1991; pp. 1133-7
vol.2

Abstract The authors focus on the use of the occupancy grid representation to maintain and combine
the information acquired from sensors about the environment. This information is subse-
quently used to monitor the robot collision danger risk and take into account that risk in
starting the appropriate maneuver. The occupancy grid representation uses a multidimen-
sional tessellation of space into cells, where each cell stores some information about its
state. A general model associates a random vector that encodes multiple properties in a cell
state. If the cell property is limited to occupancy, it is usually called occupancy grid. Two
main approaches have been used to model the occupancy of a cell: probabilistic estimation
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and the Dempster-Shafer theory of evidence. Probabilistic estimation and some combina-
tion rules based on the Dempster- Shaffer theory of evidence are analyzed and their possi-

bilities compared.

[Santos94]

Author

Title
Source

Abstract

Santos, V.; Goncalves, ].G.M.; Vaz, F.;

Joint Res. Centre, Commission of the Eur. Communities, Ispra, Italy

Perception maps for the local navigation of a mobile robot: a neural network approach
Proceedings of the 1994 IEEE International Conference on Robotics and Automation; Part:

vol.3; San Diego, CA, USA; 8-13 May 1994; pp. 2193-8 vol.3

Sensorial perception is a key issue for the problem of robot local navigation, that is, the im-
mediate or short-range motion planning, reacting only to the free space around the robot,
without requiring a pre-defined trajectory plan. Therefore, local navigation requires no en-
vironment model and relies entirely on sensorial data. Commonly used sensors such as ul-
trasonic ranging devices, are known for their associated problems: specular reflections and

_crosstalk, essentially. However if sensors are used in an appropriate number and geometric

lay-outs, the resulting spatial redundancy offers the possibility of overcoming some of
those problems. This paper deals with these problems by means of special perception maps
using ultrasound data. A generalized grid serves as the base of maps, and its cells have
simply binary values: free or occupied. The relation between the topology of the perception
map and the environment is a determinant factor for accurate reasoning. A 3- layer feed-
forward neural network is used to perform the mapping between sensorial scans and grid
occupancy. It was verified that the neural network handles most of the situations of spec-
ular reflections, and gives good perception maps for mid- range distances. Changes in en-
vironment, such as obstacles in vehicle’s trajectory, have also been detected, which stresses
the network’s ability to generalize.

[Schiele94a]

Author

Title
Source

Abstract

Schiele, B.; Crowley, J.L.;

LIFIA, Inst. Nat. Polytech. de Grenoble, France

A comparison of position estimation techniques using occupancy grids

Robotics and Autonomous Systems; (Netherlands); vol.12, no.3-4; April 1994; pp. 163-71

A mobile robot requires a perception of its local environment for both sensor-based loco-
motion and for position estimation. Occupancy grids, based on ultrasonic range data, pro-
vide a robust description of the local environment for locomotion. Unfortunately, current
techniques for position estimation based on occupancy grids are both unreliable and com-
putationally expensive. This paper reports on experiments with four techniques for posi-
tion estimation using occupancy grids. A world modeling technique based on combining
global and local occupancy grids is described. Techniques are described for extracting line
segments from an occupancy grid based on a Hough transform. The use of an extended
Kalman filter for position estimation is then adapted to this framework. Four matching
techniques are presented for obtaining the innovation vector required by the Kalman filter
equations. Experimental results show that matching of segments extracted from both the
local and global occupancy grids gives results which are superior to a direct matching of
grids, or to a mixed matching of segments to grids.
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[Schiele94b]

Author

Title
Source

Abstract

Schiele, B.; Crowley, J.L.;

LIFIA-IMAG, Grenoble, France

A comparison of position estimation techniques using occupancy grids

Proceedings of the 1994 IEEE International Conference on Robotics and Automation; Part:
vol.2; San Diego, CA, USA; 8-13 May 1994; pp. 1628-34 vol.2

A mobile robot requires perception of its local environment for both sensor based locomo-
tion and for position estimation. Occupancy grids, based on ultrasonic range data, provide
a robust description of the local environment for locomotion. Unfortunately, current tech-
niques for position estimation based on occupancy grids are both unreliable and computa-
tionally expensive. This paper reports on experiments with four techniques for position
estimation using occupancy grids. A world modeling technique based on combining glo-
bal and local occupancy grids is described. Techniques are described for extracting line
segments from an occupancy grid based on a Hough transform. The use of an extended
Kalman filter for position estimation is then adapted to this framework. Four matching
techniques are presented for obtaining the innovation vector required by the Kalman filter
equations. Experimental results show that matching of segments extracted from the both
the local and global occupancy grids gives results which are superior to a direct matching
of grids, or to a mixed matching of segments to grids.

[Schultz95]

Author
Title
Source

Abstract

Schultz, Alan; Grefenstette, John;

Continuous localization using evidence grids

NCARAI Technical Report AIC-95-024, Naval Research Laboratory, Washington, DC,
USA.

Not Available.

[Singh93]

Author

Title
Source

Abstract

Singh, K.; Fujimura, K,;

Dept. of Comput. & Inf. Sci., Ohio State Univ., Columbus, OH, USA

Map making by cooperating mobile robots

Proceedings of 1993 IEEE International Conference on Robotics and Automation; Atlanta,
GA, USA; 2-6 May 1993; pp. 254-9 vol.2

The problem of map making using cooperating multiple heterogeneous mobile robots is
investigated. The mobile robots vary in size and capabilities in terms of speeds to navigate
through the region and sensor ranges to acquire information about the region. The robots
are assumed to have sufficient memory to store the map and to be able to communicate
with each other. An algorithm is presented for map making by multiple mobile robots in a
cooperative manner. The authors’ approach makes use of an occupancy grid and com-
pletes a map to a specified resolution. The algorithm is discussed in detail, and its feasibil-
ity is demonstrated by simulation results for the case of two cooperating mobile robots.
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[Takada93]

Author

Title
Source

Abstract

Takada, Ryohei
Mechanical Technology R&E Center, Nippon Steel Corporation, Chiba, Japan

Modeling Surface Orientation in 2D Evidence Grids
Nippon Steel Corporation, Mechanical Technology R&E Center, Technical Report 93-026

The evidence grid approach (aka certainty grids or occupancy grids) has proven itself very
useful in constructing maps from inexpensive wide-beam sonar range finders mounted on
mobile robots. Sonar works well in rough surroundings, but is unreliable in reflective en-
vironments of hard flat surfaces that act as acoustic mirrors. An automatic tuning (learn-
ing) process has produced sensor evidence functions that construct quite good maps in
reflective environments by making only small map adjustments for each individual, often
erroneous, reading. This conservative tuning, however, gives less than optimal perfor-
mance in non-mirror environments. By extending the grid approach from evidence of sim-
ple occupancy to evidence of possible surface orientations, we attempted to model the
systematic nature of reflective sonar errors to produce a system that works well in both re-
flective and diffusive surroundings. Results of these experiments show the validity of the
approach and suggest future research directions.

[Tanabe91]

Author

Title

Source

Abstract

Tanabe, M.; Maeda, Y.; Yuda, M.; Takagi, T.;
Lab. for Int. Fuzzy Eng. Res., Yokohama, Japan
Path planning method for mobile robot using fuzzy inference under vague information of

environment
Fuzzy Engineering Toward Human Friendly Systems; Terano, T., Sugeno, M., Mukaidono,

M. and Shigemasu, K. Ed.; Yokohama, Japan; 13-15 Nov. 1991; pp. 758-69

Path planning based on vague information of the environment is discussed. In this method
the abstracted motion of planning is taken into consideration. The vague environment in-
formation is taken into consideration as vague map, defined using a certainty factor. Hu-
man knowledge described as fuzzy rules used in the planning process.

[Vacherand94]

Author

Title
Source

Abstract

Vacherand, F.;

Dept. Syst. CENG, CEA, Centre d’Etudes Nucleaires, de Grenoble, France

Fast local path planner in certainty grid

Proceedings of the 1994 IEEE International Conference on Robotics and Automation; Part:

vol.3; San Diego, CA, USA; 8-13 May 1994; pp. 2132-7 vol.3

A real time local path planner is designed and developed. It is based on a specific environ-
ment modeling with square grid tessellation. Because of different motion requirements to
achieve a mission, several path planners are developed that do forward or reverse motions
and maneuvers. The motion planning problem is formulated as the problem of motion of
a point in a reduced sub-set of the configuration space. The implementation use intensively
cellular automaton paradigm to compute the different stages of the processing
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[Van Dam93a]

Author

Title
Source

Abstract

van Dam, ]. W. M.; Krose, B.J. A.; Groen, F.C. A.;

Fac. of Math. & Comput. Sci., Amsterdam Univ., Netherlands

Transforming occupancy grids under robot motion

Artificial neural networks, S. Gielen and B. Kappen, ed, Springer-Verlag, pp. 318
http:/ /www.fwi.uva.nl/research/neuro/ projects/fusion.papers.html

This paper addresses the problem of how occupancy values from one occupancy grid can
be used to calculate occupancy values in another grid, where the latter is rotated and /or
translated with respect to the former. The mapping is described in terms of a neural net-
work, of which the parameters are learned form examples. An activation function is de-
rived taking into account that the input and output values represent probabilities. It is also
determined how many points should be taken in a learning sample to optimize learning
speed.

[Van Dam93b]

Author

Title
Source

Abstract

van Dam, J. W. M.; Krose, B. J. A.; Groen, F. C. A.;

Fac. of Math. & Comput. Sci., Amsterdam Univ., Netherlands

A neural network that transforms occupancy grids by parallel Monte-Carlo estimation
Computing Science in The Netherlands, H. A. Wijshoff, ed., CWI, Amsterdam, pp- 121-131
http:/ /www.fwi.uva.nl/research/neuro/projects/ fusion.papers.html

To represent the working environment of an autonomous mobile robot, occupancy grids
can be used. This paper addresses the problem of how occupancy values from one occu-
pancy grid can be used to calculate occupancy values in another grid, where the latter is
rotated and/or translated with respect to the former. The mapping is described in terms
of a neural network, of which the parameters are learned from examples. An activation
function is derived taking into account that the input and output values represent proba-
bilities in the occupancy grid. Itis shown that the network performs a parallel Monte Carlo
estimation of multiple volumes. It is also determined how many points should be taken
into account in a learning sample to optimize the learning speed.

[Van Dam94]

Author

Title

Source

Abstract

Van Dam, JW.M.; Krose, B.J.A.; Groen, F.CA,;

Fac. of Math. & Comput. Sci., Amsterdam Univ., Netherlands

Transforming the ego-centered internal representation of an autonomous robot with the
cascaded neural network

Proceedings of 1994 IEEE International Conference on MFI ‘94. Multisensor Fusion and In-
tegration for Intelligent Systems; Las Vegas, NV, USA; 2-5 Oct. 1994; pp. 667-74

http:/ /www.fwi.uvanl/research/neuro/projects/ fusion.papers.html

This paper addresses the problem how the ego-centered internal representation of a robot
is to be transformed upon robot movement if the robot’s environment is represented in an
occupancy grid. The transformation rules are derived and it is shown that for a single
change in the robot’s position, the parameters of this transformation can best be estimated
with Monte Carlo sampling. A neural network architecture is introduced as a computation-
al model of the Monte Carlo estimation method, which can calculate estimates of all param-
eters in parallel. The cascaded neural network is an extension to this architecture, which is
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capable of learning the relation between the change in the robot’s configuration and the pa-
rameters of the corresponding transformation of occupancy grids.

[Weigl93]

Author Weigl, M.; Siemiatkowska, B.; Sikorski, K.A.; Borkowski, A.;
Inst. of Fundamental Technol. Res., Polish Acad. of Sci., Warsaw, Poland

Title Grid-based mapping for autonomous mobile robot

Source  Robotics and Autonomous Systems (Netherlands); vol.11, no.1; May 1993; pp- 13-21

Abstract A mapping module for the mobile robot equipped with the ultrasonic range finder is pre-
sented. The environment is described by a grid of cells that can be either free or occupied.
A two-stage processing of data coming from the sonar is proposed: first, the readings are
filtered and composed into the local model, then the latter is aggregated into the global
map. In order to account for random errors the formulae based upon Shafer theory are em-
ployed. The proposed procedure is able to reproduce correctly the indoor environment as
documented by the results of tests performed on a prototype robot

[Yamauchi96]

Author Yamauchi, Brian.;
Institute for the Study of Learning and Expertise, Palo Alto, CA, USA

Title Mobile Robot Localization in Dynamic Environments Using Dead Reckoning and Evi-
dence Grids

Source  http:// robotics.stanford.edu/people /yamauchi /
Submitted to the 1996 IEEE International Conference on Robotics and Automation.

Abstract None.

[Zapata90]

Author Zapata, R.; Jouvencel, B.; Lepinay, P.;
Lab. d’Autom. de Microelectron. de Montpellier, Univ. des Sci. et Tech. du Languedoc,
France

Title Sensor-based motion control for fast mobile robots

Source Intelligent Motion Control; Kaynak, O. Ed. Proceedings of the IEEE International Work-
shop (Cat. No.90TH0272-5); Istanbul, Turkey; 20-22 Aug. 1990; pp. 451-5 vol.2

Abstract This paper addresses the motion planning problem for fast mobile robots evolving in ill-

structured and dynamic environments. First, several theoretical aspects of the sensor and
geometric fusion are investigated. Unknown environments are modelled with a spherical
grid in which cells are either empty or occupied. A connectivity graph is obtained by merg-
ing neighboring occupied cells. Next, the navigation control structure based on the poten-
tial field method is described. By this method it is possible to take into account both an a
priori model and sensor information, by adding artificial forces due to the known part of
the world, to distance information coming from sensors. Finally, the paper discusses the
implementation of this sensor-integrated motion control structure for controlling a fast
outdoor mobile robot (5 m/s to 10 m/s) in an unknown world.
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