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Abstract. We propose a novel, vision-based method for robot homing, the problem of computing a route so

that a robot can return to its initial “home” position after the execution of an arbitrary “prior” path. The method

assumes that the robot tracks visual features in panoramic views of the environment that it acquires as it moves. By

exploiting only angular information regarding the tracked features, a local control strategy moves the robot between

two positions, provided that there are at least three features that can be matched in the panoramas acquired at these

positions. The strategy is successful when certain geometric constraints on the configuration of the two positions

relative to the features are fulfilled. In order to achieve long-range homing, the features’ trajectories are organized

in a visual memory during the execution of the “prior” path. When homing is initiated, the robot selects Milestone

Positions (MPs) on the “prior” path by exploiting information in its visual memory. The MP selection process aims

at picking positions that guarantee the success of the local control strategy between two consecutive MPs. The

sequential visit of successive MPs successfully guides the robot even if the visual context in the “home” position is

radically different from the visual context at the position where homing was initiated. Experimental results from a

prototype implementation of the method demonstrate that homing can be achieved with high accuracy, independent

of the distance traveled by the robot. The contribution of this work is that it shows how a complex navigational task

such as homing can be accomplished efficiently, robustly and in real-time by exploiting primitive visual cues. Such

cues carry implicit information regarding the 3D structure of the environment. Thus, the computation of explicit

range information and the existence of a geometric map are not required.
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1. Introduction

The goal of this research is to propose a minimalist,

yet robust, vision-based method that supports robot

homing and to describe a real time implementation of

this method on a robotic platform. Homing is a term

that robotics has borrowed from biology (Franceschini

et al., 1992; Weber et al., 1998), where it is usually

used to describe the ability of various living organisms

to return to their nest after having distanced themselves

to forage. Homing is also a useful behavior for mobile

robots. It is assumed that a mobile robot starts moving

at a position in its workspace, which we will call the

“home” position and executes an arbitrary path, called

the “prior” path. The execution of the prior path may

have been the result of a different behavior such as

workspace exploration or target following. Then, the

problem is to develop a means of enabling the robot to

find its way back to the home position. Homing accu-

racy can be crucial, particularly when a subsequent task

depends on the accurate positioning of the robot. For

example, docking for battery recharging may require

homing with high (i.e. in the order of a centimeter) po-

sitional accuracy. One of the objectives of this work

is to reach this level of homing accuracy in order to

provide support for such tasks.

1.1. Related Work on Robot Homing

Robot homing is an instance of the general robot navi-

gation problem. There have been many efforts towards

solving navigational tasks using non-visual sensors.

Mobile robots are typically equipped with odometry

sensors which, in principle, suffice to support hom-

ing. However, the errors in the information provided

by odometry sensors are considerable and, most impor-

tantly, cumulative. Recent research efforts use odom-

etry only as a coarse indication of the robot’s pose

and employ range (ultrasound or laser) sensors to cre-

ate or use a metric representation of the environment

(e.g. occupancy-grid maps) (Thrun, 1999, 2000; Thrun

et al., 2000). Several of these methods have been proven

successful in the context of demanding applications in

complex environments (Burgard et al., 2002; Trahanias

et al., to appear). However, indoor environments of-

ten exhibit similar 3D structure at completely differ-

ent locations, which results in high uncertainty in the

estimation of the robots’ pose. Therefore, a lot of re-

search effort has been devoted to dealing with uncer-

tainty in robot localization (Burgard et al., 1997; Fox

et al., 1998, 1999; Gutmann et al., 1998; Thrun et al.,

2000).

On the other hand, visual sensors provide dense in-

formation regarding “where is what”. A survey of meth-

ods for vision-based robot navigation is presented in

DeSouza and Kak (2002). When visual sensors are

used, topological workspace representations are usu-

ally constructed (Choset and Burdick, 2000; Santos-

Victor et al., 1999). An interesting approach for homing

(Basri et al., 1998) is based on recovering the epipo-

lar geometry relating two images. The applicability of

this approach is limited by the difficulty in establishing

feature correspondences between distant viewpoints.

In order to solve the correspondence problem between

distant views, several efforts exploit algorithms that are

invariant to affine transformations, such as the Fourier-

Mellin transform (Rizzi et al., 2000). Methods that

combine range and visual information have also been

proposed (Facchinetti and Hügli, 1994; Baltzakis et al.,

2003).

The aforementioned methods have been applied to

visual input provided by conventional cameras with

limited field of view. Panoramic cameras, however,

can provide up to a 360◦ field of view (see Fig. 1).

For navigational tasks a wide field of view is essen-

tial since a robot can observe most of its surround-

ings without the need for elaborate gaze control. Fur-

thermore, the likelihood of detecting reference features

and the “life-cycle” of a tracked feature are increased,

while changes due to dynamic aspects of the environ-

ment can be tolerated (Cassinis et al., 1996). Chahl

et al. (1997) have used panoramic cameras for egomo-

tion estimation, range computation and localization.

Figure 1. An example of a panoramic image.
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Kröse et al. (2002) have studied the problem of robot

localization while Bianco and Zelinsky (1999) have in-

vestigated possible landmark definitions that allow for

robot navigation. Winters et al. (1999, 2000) have used

omni-directional cameras to achieve robot navigation

by constructing a topological representation of the en-

vironment and by applying visual path following.

The choice of vision as the primary source of sensory

information for achieving a homing behavior is also in-

spired by nature, which provides a plethora of visual

systems that are successful in assisting long-range navi-

gation and homing. Insects such as ants and bees exhibit

remarkable homing abilities based on a minimalist cog-

nitive architecture that associates motion vectors to vi-

sual content, without 3D reconstruction of the environ-

ment (Dyer, 1996). One of the first algorithmic models

for homing was developed to explain the navigational

capabilities of ants and bees. Collett (1996), Collett and

Rees (1997), and Srinivasan et al. (1996) have studied

insect navigation and they proposed various ways in

which insects use familiar landmarks on their trip to

the home position. Cartwright and Collett (1983, 1987)

have proposed the so-called snapshot model. Accord-

ing to this model, a snapshot is taken at the home posi-

tion. When the agent is displaced to a different position,

both the perceived angles and the landmarks sizes on

the retina change. As a result, the snapshots acquired

at these two positions vary significantly in appearance.

Pairing sectors of the current and home snapshots using

compass information can derive a home vector, point-

ing approximately to the direction of the home position.

Each pairing generates two unit vectors, (a) a tangen-

tial vector pointing from the snapshot sector towards

the current view sector and (b) a radial vector, which

points centrifugally, if the apparent size of the current

view sector is smaller than the size of its counterpart in

the snapshot and vice versa. Summing all unit vectors

derives the homing vector. This approach requires the

use of compass information and is successful in driving

the robot to the goal only if the starting position is in

the vicinity of the goal.

Many other research efforts towards solving the

problem of vision-based homing in robotics have

been inspired by the snapshot model. For example,

Lambrinos et al. (2000) introduced the proportional

vector model and implemented it on the Sahabot II.

The experiments were conducted on a flat plane in the

Sahara desert with four black cylinders as highly dis-

tinctive landmarks. The snapshots were aligned at a

direction obtained from the polarized light compass

of Sahabot. Möller (2000) describes the average land-

mark vector technique and its implementation on ana-

log hardware, which is closely related to the snapshot

model. Franz et al. (1997, 1998a, 1998b) proposed the

average displacement vector model that is based on the

assumption that landmarks are equidistant from the cur-

rent viewpoint. According to this model, the equal dis-

tance assumption is not supposed to drastically affect

the convergence properties of their control algorithm.

Franz and Mallot (1998) provide an excellent review of

biomimetic robot navigation. Most of these approaches

use compass information that facilitates the task of cor-

responding landmarks in panoramas acquired from dif-

ferent viewpoints.

Another way of achieving homing is by “memoriz-

ing” the environment. This is the approach taken by

appearance-based methods. Cameras are nicely suited

for such approaches, since images are usually stored

to represent a location and control is associated with

each stored image. The images taken during homing

are matched with images acquired and stored during the

execution of the prior path. Gaussier et al. (2000) de-

veloped a neural network approach to map perception

to action. The robot computes an array of maximum

intensity averages along the horizontal axis. The set of

maximum values in the array defines a “place”, which

a neural network associates with a control that eventu-

ally moves the robot to its final destination. Matsumoto

et al. (2000) introduced the VSRR (“view-sequence”)

concept, where the robot stores a sequence of images

and associated controls. Then the system computes the

displacement in pixels between the current image and

the best-matched stored image. This displacement is

used in a table to extract controls.

1.2. The Proposed Approach to Homing

We assume a robot equipped with a panoramic camera

mounted on it. The basic building block of the proposed

homing strategy is a local, reactive control strategy,

which enables a robot to move between two adjacent

positions. The success of the control strategy depends

on the existence of at least three matched image fea-

tures between the two panoramas acquired at these two

positions. The features employed in our approach are

image corners, which can be automatically extracted

and localized in images (Shi and Tomasi, 1993). Usu-

ally, a plethora of such features can be extracted in

images acquired in realistic environments as opposed
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to other more complex landmarks (Thompson et al.,

1999). Establishing feature correspondences in images

acquired from adjacent viewpoints is an extensively

studied problem in computer vision. This problem can

be simplified by tracking the image features in all in-

termediate frames that the robot acquires between two

nearby positions during the execution of the prior path.

Therefore, short-range homing, i.e. homing initiated at

a position close to home, can be achieved by direct

application of the local control strategy. In the case of

long-range homing prominent features are greatly dis-

placed and/or occluded, and the correspondence prob-

lem becomes much more difficult to solve. In many

interesting cases the visual context at the home and the

current positions are totally different (e.g. two positions

in different rooms) which makes the establishment of

correspondences an impossible task, simply because

such correspondences do not exist. Therefore, the lo-

cal control strategy cannot support long-range hom-

ing. To overcome this problem, the proposed method

decomposes homing into a series of simpler naviga-

tional tasks, each of which can be implemented using

the proposed local control strategy.

The operation of the overall homing strategy is de-

picted in Fig. 2. As the robot departs from its home po-

sition H it acquires panoramic views of the environment

from which it extracts characteristic features and tracks

them in subsequent frames. In our implementation we

are employing the KLT algorithm for corner tracking

(Shi and Tomasi, 1993; Tomasi and Kanade, 1991). As

the robot moves, some of the features disappear while

new ones appear due to the changing viewpoint, pos-

sible changes in lighting conditions, occlusions, etc.

The system builds a visual memory that records the

Figure 2. An illustration of long range-homing. The robot starts at

position H and executes a “prior” path that leads it to some position

G. Then, homing is initiated at G, aiming at guiding the robot back

to its home position H.

“life-cycle” of all detected and tracked features. If at

a certain moment in time the robot is at location G

and decides to return back to its home position H, it

automatically defines a number of Milestone Positions

(MPs) on the original path connecting H and G, as well

as the set of features that will be used to drive the robot

between consecutive MPs. The basic aim of this selec-

tion process is to guarantee that (a) the robot can move

between successive MPs based on the properties of the

local control strategy and (b) that visiting all successive

MPs will lead the robot to its home position H.

The work presented in this paper exploits panoramic

vision and is also influenced by the studies on insect

navigation by Cartwright and Collett (1983, 1987).

Compared to the existing approaches to robot homing,

the proposed method has a number of attractive proper-

ties. The proposed method enables a robot to solve the

homing problem regardless of the length of the prior

path and with minimal computational and sensory re-

quirements. In particular, the main contribution of this

work is that it shows that robust, long-range homing ca-

pabilities can be achieved by a vision-based approach

which uses a simple control strategy and does not make

use of a geometric map, of range or of compass infor-

mation. The local control strategy does not require the

definition of two types of motion vectors (tangential

and centrifugal), as in the original snapshot model and,

therefore, the definition of motion vectors is simplified.

Furthermore, there is a simple and intuitive stopping

criterion that marks the reaching of the home position.

The reactive nature of the employed local control strat-

egy enables a robot to perform other important navi-

gational tasks while homing. For example, the robot

motion vector suggested by the local control strategy

can always be combined with the motion vector sug-

gested by a reactive obstacle avoidance module. Last

but not least, we provide a complete architecture and an

implementation for long-range homing. We show how

short-range homing strategies can be incorporated in

a global framework even in the case that no feature is

commonly visible at the home position and the position

where homing was initiated.

The proposed method for robot homing has been

implemented and extensively tested on a robotic plat-

form in a real indoor office environment. The home

position is achieved with high accuracy after long

journeys during which the robot performs complex ma-

neuvers. No modification of the environment is neces-

sary to facilitate the robot in its homing task. The pro-

posed method can efficiently achieve homing as long
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as enough corners exist in the environment. Due to the

simplicity of the tracked features, however, it is guar-

anteed that there are many of them in a typical indoor

environment.

1.3. Overview

The rest of this paper is organized as follows. In

Section 2 we present the local control law that is able

to move the robot between two adjacent positions. We

also provide an analysis of the control strategy demon-

strating that the set of positions that are reachable from

a specific starting point depends on the spatial con-

figuration of the employed features. In Section 3 the

construction and the employment of the visual mem-

ory for long-range homing are described. Section 4

presents important issues regarding the detection and

tracking of image features in panoramic images while

Section 5 summarizes the results from several exper-

iments. Finally, in Section 6, various aspects of the

proposed method are discussed and basic conclusions

of this research are drawn.

2. Local Control Strategy

We now present the proposed local control strategy that

drives a robot between two adjacent positions S and T,1

provided that there is an established correspondence

between at least three features in the panoramic views

acquired at these positions. These positions will later

be used as milestone positions (MPs) for long-range

homing.

2.1. Method Description

Let Fi represent a feature in the environment. We define

AP (Fi ) to be the bearing angle of feature Fi as observed

from position P , i.e. the direction at which the robot

perceives the feature relative to its orientation. A pair of

features F1 and F2, as observed from position S, define

an angle FS(F1, F2) = AS(F2) − AS(F1) measured

in the range [0..2π ). The locus of positions that can

observe the features F1 and F2 at angle FS(F1, F2) is

the circular arc with end-points F1 and F2 that passes

through S (see the corresponding solid circular arc in

Fig. 3).

A robot motion vector M12 is defined so that it lies

on the bisector of the angle � F1SF2 and its magnitude

is proportional to the angle difference |FT (F1, F2) −

Figure 3. If at position S the robot follows the bisector of the angle

formed by two features F1 and F2 in the environment, it will effec-

tively move on the branch of the hyperbola that passes through S and

has points F1 and F2 as its foci.

FS(F1, F2)|. The direction of M12 can easily be com-

puted as AS(F1) + FS(F1, F2)/2. Intuitively, the partial

motion vector M12 contributes towards equalizing the

corresponding angles at positions S and T . Therefore,

the larger the angular difference is, the strongest the

component of motion towards this direction will be.

The direction of motion is determined by the relative

size of the angles; if the angle at T is larger (smaller)

than the corresponding angle in S, then the robot moves

on the bisector of the angle, towards (opposite to) T .

The path that the robot will follow is the branch of

the hyperbola that passes through S and has the fea-

tures F1 and F2 as its foci. The robot will stop moving

when it reaches a position which belongs to the cir-

cular arc F1T F2, since for all points T′ on this arc:

|FT ′(F1, F2) − FT (F1, F2)| = 0. Each of the branches

of the hyperbola with F1 and F2 as foci, intersect all

circles passing through F1 and F2; consequently it is

guaranteed that the robot will both arrive at a point with

this property and will stop there.

It is clear that, given only the bearing angles of two

features F1 and F2, the robot cannot move from a given

point S to a target position T . However, if another

feature F3 is considered, then T is constrained to lie
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Figure 4. Graphical sketch of the control strategy. (a) The three vectors M12, M23 and M31 are partial contributions to the global motion vector

M defined at position S. (b) The black trace corresponds to the path traveled by a simulated robot between the start position S and the target

position T . Numbered rectangles correspond to the three features employed by the local control strategy.

on two more circles, namely the one defined by fea-

tures F1, F3 and position T and the one defined by

features F2, F3 and position T . Let us now assume that

for each pair of features Fi and F j (1 ≤ i, j ≤ 3,

i �= j), we define motion vectors Mi j as before and

force the robot to move in the direction of the vector

sum M of all partial motion vectors Mi j . Figure 4(a) il-

lustrates the quantities involved in the proposed control

strategy. Figure 4(b) gives an example of the behavior

achieved by a simulated robot utilizing the proposed

control strategy. Note that the trace of the robot towards

the goal position is not a straight line. This indicates

that at each position, the global motion vector M is not

necessarily directed towards the target position T . Still,

for the case of Fig. 4(b), as the robot adjusts its motion

vector M at every new position, it converges to the goal

position. Whether the target position has been reached

can easily be verified by checking whether the magni-

tude of the motion vector M is zero. Practically, this

is achieved by comparing the magnitude of M against

a predefined, positive threshold that represents the de-

sired tolerance in homing accuracy.

2.2. Properties of the Local Strategy

Given the definition of the motion vector M, two ques-

tions need to be answered in order for M to constitute

an appropriate control vector for moving the robot from

S to T :

(a) Assuming that the robot’s trajectory passes through

T, will the robot stop there?

Assuming perfect sensing, T is the only location

on the plane from where three given features can

be observed with a specific set of angles. There-

fore, if the robot arrives at T, it will stop there be-

cause this is the only location on the plane where

all Mi j and, therefore, M are equal to zero. A

degenerate case arises when the target position

T and the three features belong to the same cir-

cle. This special case is discussed later in this

section.

(b) Given a starting position S, which is the locus of

positions that are reachable by following the motion

vector M?

Simulations have been carried out to demonstrate the

convergence properties of this control strategy. To do

so, the definitions of the reachable and catchment

areas2 are introduced.

Definition 1. Let S be a point on the plane and

F1, F2 and F3 be three point features on the plane.

The reachable area R (S, F1, F2, F3) is defined

as the set of points that the robot can reach start-

ing from S, by employing the bearing angles of

features F1, F2 and F3 in the proposed control

strategy.

Definition 2. Let T be a point on the plane and F1, F2

and F3 be three features on the plane. The catchment
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Figure 5. Investigation of reachable areas for the case of three features F1, F2 and F3. Reachable area appears in gray color while unreachable

area appears in white color. The starting position is designated by the symbol S, while the observed features are numbered. (a) Reachable area

for three features in general configuration, (b) reachable area in the case of almost collinear features.

area C (T , F1, F2, F3) is defined as the set of all starting

positions from which T can be reached by employing

the bearing angles of features F1, F2 and F3 in the

proposed control strategy.

The reachable area contains all reachable destina-

tions of a robot initially placed on S and moving ac-

cording to the proposed control strategy. The catchment

area contains all possible starting points of a robot that

has reached position T . Although we do not have an

analytical proof on the shape of the reachable area, it

has been experimentally validated that the set R (S, F1,

F2, F3) consists of:

(a) Area A1: the interior of the circle defined by fea-

tures F1, F2 and F3.

(b) Area A2: the intersections of half-planes defined

by the sides of the triangle F1 F2 F3.

(c) Area A3: curves that emanate from the circle de-

fined by the three features.

Areas A1 and A2 are always reachable, indepen-

dent of the starting position S. On the other hand, area

A3 changes shape depending on S. Figure 5(a) shows

illustrative examples. Features F1, F2 and F3 are repre-

sented by numbered rectangles. The robot starts mov-

ing at the position S of a simulated workspace. The

reachable area of this starting position is shown in gray

color. White color designates areas that the robot can-

not reach.

Several simulations have been conducted to mon-

itor the catchment area of points belonging to areas

A1 and A2, in order to obtain further evidence to

the fact that the shape of these areas does not de-

pend on the starting position. Towards this end, a goal

position is set and the starting robot position is var-

ied. Indeed, the catchment area of every point in ar-

eas A1 and A2 is the entire plane, which implies that

points in these areas are reachable independently of

S.

A special case is encountered when the target po-

sition and all features belong to the same circle. In

this degenerate case, all points on this circle satisfy

the stopping criterion. Another special case is encoun-

tered when the employed features are collinear. Then,

all points on the plane are reachable apart from the

line that connects the set of collinear features. This

is because in the case of collinear features, the cir-

cle defined by the three features degenerates into a

half-plane. The region between the extensions of the

sides of the degenerate triangle of features is the other

half-plane. Thus, points on either side of the line de-

fined by the collinear features are reachable. Points ex-

actly on this line are not, because then, the target posi-

tion and the three features are degenerately co-circular.

Figure 5(b) illustrates the case of three almost collinear

features.

The proposed control strategy can be generalized to

employ more than three features. Each feature pair may

contribute to the global motion vector M. The shape of

the reachable area is much more complex when more
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Figure 6. In the case of more than three features, the shape of the

reachable area is more complex compared to that of three features.

However, points within the convex hull of the features are always

reachable.

than three features are considered. However, simula-

tions have shown that if a point lies within the con-

vex hull of the features, then it is guaranteed to be a

reachable position. Figure 6 shows the reachable area

for point S when a configuration of five features is

employed.

An important question is whether, by measuring

bearing angles only, the robot can determine if a spe-

cific position T is reachable or not. To develop such

a criterion, we consider features in a retinotopic or-

der, as observed from position T , i.e. in an order that

guarantees that i > j ⇔ AT (Fi ) > AT (F j ). Note

that the ordering of features depends on the target

position T . We then consider the angles FT (Fi , F j ),

1 ≤ i ≤ n, j = (i + 1) mod n formed by consecutive

features in the defined order. Position T is guaranteed

to belong to the convex hull of features F1, F2, . . . , Fn

if:

∀i ∈ {1, . . . , n}, �T

(

Fi , F(i+1) mod n

)

< π. (1)

Since the convex hull of the features is a subset of

the reachable area, the above criterion guarantees that

position T is reachable from any starting position. Cri-

terion (1) is sufficient but not necessary, in the sense

that there exist reachable positions that do not satisfy

it.

2.3. Algorithm for the Local Control Law

We are now in the position to fully describe the al-

gorithm that allows a robot to move from a position

S to a position T , given a set of features F1, F2,

. . . , Fn, n > 2, that have been corresponded between

views S and T , acquired at positions S and T respec-

tively, and for which the bearing angles and AT (Fi )

are known. Figure 7 presents this algorithm in pseudo-

code.

3. Long-Range Homing

Assume that the home H and the goal position G

do not have any feature in common and, therefore,

the local control strategy presented in Section 2 can-

not be employed to directly support homing. In order

to alleviate this problem, milestone positions (MPs)

are introduced. Based on the employed feature selec-

tion algorithm, the robot detects features (corners) in

the view acquired at its home position. As it departs

from this position following the prior path, it continu-

ously tracks these corners in subsequent frames. Dur-

ing its course, some of the initially selected features

may be lost while other features may appear. In the

first case the system “drops” the features from subse-

quent tracking. In the second case, features start being

tracked. This way, the system builds a “visual mem-

ory” where information regarding the “life-cycle” of

features is stored. A graphical presentation of this type

of memory is shown in Fig. 8. The vertical axis in

this figure corresponds to all the features that have

been identified and tracked during the execution of the

prior path. The horizontal dimension corresponds to

time. Horizontal black lines correspond to the life cy-

cle of a certain feature. It is theoretically possible for a

feature to disappear at some point in time t , and reap-

pear later in the journey of the robot from home po-

sition to position G. In this case, the same environ-

mental feature will appear as two distinct features in

the visual memory, but this does not affect the homing

procedure.

As soon as homing is initiated at position G, the

robot first decides how far the robot can go towards

H based on the extracted and tracked features. A posi-

tion with these characteristics is denoted as MP1 in

Fig. 8. The automatic selection of MP1 essentially

amounts to the problem of finding the three features

that are visible at G, have the longest tracked trajec-

tories and their A1 reachability area contains MP1. In
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Figure 7. The local control strategy that can move a robot from a start position S to a goal position T , given that at least three features have

been corresponded between S and T .

Figure 8. Graphical presentation of the memory built to support

homing. The task of homing can be decomposed into a series of sim-

pler navigation tasks, which involve visiting sequentially a number

of Milestone Positions (MPs) by employing the local control strategy

of Fig. 7.

Fig. 8 these are features F5, F6 and F7, which is a

trivial selection since there are no other visible fea-

tures (we also assume that position MP1 belongs to

the reachability region defined by features F5, F6 and

F7). Achieving MP1 is feasible (by definition) by em-

ploying features F5, F6 and F7 in the proposed local

control strategy because these features can be tracked

(and therefore corresponded) between G and MP1.

The algorithm proceeds in a similar manner to define

the next MP towards home. The procedure terminates

when the last visited position coincides with the home

position.

The local control strategy of Section 2 does not nec-

essarily guarantee the achievement of the orientation

with which the robot has previously visited this posi-

tion. This is because it takes into account the differences

of the bearing angles of features and not the bearing an-

gles themselves. This poses a problem in the process

of switching from the features that drove the robot to

a certain MP to the features that will drive the robot

to the next MP. This problem is solved as follows. As-

sume that the robot has originally visited a position

P with a certain orientation and that during homing

it arrives at position P ′, where P ′ denotes the same

position, visited under a different orientation. Suppose

that the robot arrived at P ′ via features F1, F2, . . . , Fk .
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The bearing angles of these features as observed from

position P are AP (F1), AP (F2), . . . , AP (Fk) and the

bearing angles of the same features as observed from

P ′ are AP ′ (F1), AP ′ (F2), . . . , AP ′ (Fk). Then, it holds

that:

AP (Fi ) − AP ′ (Fi ) = ϕ, ∀i, 1 ≤ i ≤ n, (2)

where ϕ is constant and equal to the difference in

the robot orientation at P and P ′. This is because

panoramic images that have been acquired at the same

location but under a different orientation differ by a

constant rotational factor ϕ. Since both AP (Fi ) and

AP ′ (Fi ) are known, ϕ can be calculated. Theoretically,

one feature suffices for the computation of ϕ. Prac-

tically, for robustness purposes, all tracked features

should contribute to the estimation of ϕ. Errors can

be due to feature tracking inaccuracies and/or due to

the non-perfect achievement of P during homing. For

the above reasons, ϕ is computed as

ϕ = median{AP (Fi ) − AP ′ (Fi )}, 1 ≤ i ≤ n. (3)

Having an estimation of the angular shift ϕ between

the images acquired at P and P ′, the retinal coordi-

nates of all features detected during the visit of P can

be predicted. Feature selection is then applied to small

windows centered at the predicted locations. This cal-

culation results in registering all features acquired at P

and P ′ and permits the identification of a new MP and

the continuation of the homing procedure.

An important decision is the selection of the num-

ber of features that should be corresponded between

two consecutive MPs. It has been shown that three fea-

tures suffice, although more features can be used, if

available. It is quite important that only a few (three)

matched features are required by the local control strat-

egy; this almost guarantees that there will be a series

of MPs that when sequentially visited, will lead the

robot to its home position. The advantage of consider-

ing more than three corresponded features is that reach-

ing MPs (and consequently reaching the home position)

becomes more accurate because feature-tracking errors

are smoothed out. However, as the number of features

increases, the number of MPs also increases because it

is less probable for a large number of features to “sur-

vive” for a long period. In a sense, the homing scheme

becomes more conservative and it is decomposed into

a larger number of safer, shorter and more accurate

reactive navigation sessions. Specific implementation

choices and related results are discussed in the experi-

ments section of the paper.

4. Panoramic Sensing

In this section we deal with the details pertaining to the

detection and tracking of image corners which con-

stitute the perceptual features that are employed by the

local control strategy described in Section 2 and used in

the construction of the visual memory in Section 3. Im-

age corners have several attractive properties that favor

their selection as the primitive visual information em-

ployed by the proposed homing method. Specifically,

there are many of them in most indoors environments.

Moreover, their definition, extraction and tracking are

mathematically rigorous and computationally efficient.

Nevertheless, the homing strategy can, in principle,

exploit any other point feature that can be extracted

from panoramic images (e.g. centroids of detected and

tracked colored image blobs).

4.1. Extracting and Tracking Features

in Panoramic Images

The local control strategy for moving between adja-

cent positions is based on the availability of feature

correspondences between two panoramic views. If the

two views have been acquired from significantly dif-

ferent viewpoints, feature correspondence is a non-

trivial task (Lourakis et al., 2003). For this reason, the

proposed homing strategy achieves the required fea-

ture correspondences through feature tracking in a se-

ries of panoramic images that the robot acquires as

it moves. This guarantees small inter-frame displace-

ment, which, in turn, facilitates the task of feature cor-

respondence. More specifically, we have employed the

KLT tracking algorithm (Shi and Tomasi, 1993; Tomasi

and Kanade, 1991). KLT starts by identifying charac-

teristic image features, which it then tracks in a series

of images.

An important property of KLT is that the definition

of features to be tracked guarantees optimal tracking.

The definition of features is based on the quantity:

Z (i, j) =

[

∑ ∑

g2
x

∑ ∑

gx gy
∑ ∑

gx gy

∑ ∑

g2
y

]

, (4)

which is defined over an N × N neighborhood of im-

age point (i , j). In Eq. (4) gx and gy are the partial
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derivatives of the image intensity function. The eigen-

values λ1 and λ2 of the matrix Z are computed. Good

features to track are considered those satisfying the rule

min {λ1, λ2} > t, (5)

where t is a predefined threshold. Tracking is then

based on a Newton-Raphson style minimization

procedure that minimizes the error vector e:

e =
∑ ∑

[I − J ]

[

gx

gy

]

, (6)

where I and J are the two images containing the fea-

tures to be tracked. The minimization of e is based on

the solution of the linear system

Zd = e, (7)

where d is the displacement of the tracked feature. In

addition to the purely translational model, tracking can

take into account the case of an affine image transfor-

mation between two consecutive images. Theoretically,

the latter is more general and allows tracking of fea-

tures that have undergone shearing or rotation. Shi and

Tomasi (1993) propose the use of the translation model

for a good displacement measurement of features and

confine the affine model to monitoring a feature’s qual-

ity by checking the dissimilarity between the initial and

the current frame.

The KLT corner detection and tracking is not applied

to the panoramic images provided by a panoramic cam-

era (e.g. image of Fig. 1) but rather on a cylindrical ver-

sion of it (e.g. the image of Fig. 9). Such an unfolding

transformation can easily be achieved using a polar-

to-Cartesian transformation (Argyros et al., 2004). In

the resulting cylindrical image, the full 360◦ field of

view is mapped on the horizontal image dimension. In

the remainder of this paper, if not otherwise stated, the

term panoramic image refers to a cylindrical one. Once

a corner feature F is detected and tracked in a sequence

of such images, its bearing angle AP (F) of the feature

Figure 9. The result of unfolding the panoramic image of Fig. 1.

can be computed as:

AP (F) =
2πxF

D
, (8)

where xF is the x-coordinate of feature F in the im-

age acquired at position P, and D is the width of this

panoramic image in pixels.

4.2. Reducing Uncertainty in Feature Tracking

Feature correspondence may result in feature mis-

matches which may introduce considerable errors in

the computation of the motion vector. One way to elim-

inate some of these errors is to exploit the ordering of

features in panoramas acquired at two different posi-

tions. More specifically, features that do not appear in

the same order in panoramas acquired at two differ-

ent positions are excluded from the computation of the

global motion vector. In order to detect such features,

the Longest Common Subsequence algorithm (Cormen

et al., 1996), which is a dynamic programming tech-

nique, has been employed. Formally, given two se-

quences X = 〈x1, x2, . . . , xk〉 and Z = 〈z1, z2, . . . ,

zm〉, Z is considered a subsequence of X if there exists

a strictly increasing sequence 〈i1, i2, . . . , ik〉 of indices

of X such that, for all j = 1, 2, . . . , k, xi ( j) = z j .

Given three sequences X , Y and Z , Z is a common

subsequence of X and Y , if Z is a subsequence of both

X and Y .

Consider now the sequence of features F S = 〈F1,

F2, . . . , FL〉 extracted at the start position S and the

sequence FT = 〈F ′
1, F ′

2, . . . , F ′
K 〉 extracted at the

goal position. The estimation of the motion vector M

(from S to T ) is based on the features contained in

the maximum-length common subsequence of F S and

FT . The time complexity of the Longest Common Sub-

sequence Algorithm is O(L + K ).

5. Experimental Results

The proposed method has been experimentally tested

on LEFKOS, the RWI B21r mobile robotic platform of
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Figure 10. LEFKOS, the mobile robotic platform of ICS/FORTH

with a panoramic camera mounted on it.

the Computational Vision and Robotics Laboratory of

ICS-FORTH. A panoramic camera has been mounted

on top of LEFKOS to provide the necessary panoramic

views (see Fig. 10). An 800 MHz Pentium III processor

was dedicated to vision processing and robot control.

The experimental testing took place in a real office

environment. No special arrangements and modifica-

tions were made in the environment to facilitate the

execution of the proposed homing method. Two series

of experiments have been conducted aiming at test-

ing different aspects of the proposed homing strategy.

Clearly, the robustness of the overall homing strategy

heavily depends on the robustness and the accuracy of

the local control strategy that moves the robot between

successive MPs. In order to quantitatively assess the

Table 1. Performance of the proposed local control strategy in supporting robot motion between adjacent positions.

N = 50, M = 45 N = 50, M = 40 N = 50, M = 35 N = 100, M = 95 N = 100, M = 90 N = 100,M = 85

Mean distance 3.24 4.99 6.40 1.72 3.17 5.71

traveled (m)

St. dev. of the 0.54 1.27 0.67 0.45 0.83 1.11

distance traveled (m)

Mean homing 3.20 8.90 28.40 15.20 16.34 17.43

error (cm)

St. dev. of 2.35 10.08 16.97 6.75 7.99 9.23

error (cm)

Average number of 39 35 27 84 79 72

features survived

until reaching home

robustness and accuracy of the local control strategy

a series of related experiments have been conducted.

Moreover, a series of long-range homing experiments

have been executed.

5.1. Experiments with the Local Control Strategy

The first series of the conducted experiments study the

ability of the proposed local control strategy to sup-

port robot motion between adjacent positions. In each

of these experiments, the robot is placed at a particu-

lar home position where it initially detects N features.

These features are subsequently tracked as the robot

moves away from the home position, executing the

prior path. The prior path is executed with the robot per-

forming a purely translational motion with a speed of

15 cm/sec. The execution of the prior path is terminated

as soon as the number of tracked features drops below

a threshold of M features. Then, the robot employs

the proposed local control strategy to return back to

its home position. Six different combinations of values

for parameters N and M were tried to investigate how

the performance of the proposed local control strategy

is influenced by feature selection. For each pair of pa-

rameters M and N , ten independent navigation sessions

were executed resulting in a total of sixty navigation

sessions. In all these experiments the home position

remained the same; however the directions of the prior

paths randomly varied among different experiments.

Table 1 summarizes the quantitative results obtained

from these experiments.

The first and second rows of Table 1 measure the

average length of the prior path and the standard devia-

tion of this length, respectively. It can be verified that as
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we relax the constraint on the number of features that

should be successfully tracked before starting homing,

the path traveled by the robot increases considerably.

This occurs at the cost of decreased positional accu-

racy for homing (third and fourth row of Table 1). It is

interesting to observe that the effect of accuracy degra-

dation is more profound in the case of smaller N . For

example, for N = 50, varying the number of tracked

features from 45 to 35 results in an average of 25 cen-

timeters increase in the error when attempting to reach

the home position. On the contrary, when 100 features

are employed, varying the number of tracked features

from 95 to 85 increases the positional error by approxi-

mately 2 centimeters. Analogous observations hold for

the standard deviation of the positional error. The fifth

row of Table 1 shows the average number of features

that are still tracked upon arrival at the home position

at the end of the experiment. As it can be verified, the

number of features lost during homing is in the same

order as the number of features lost during the execu-

tion of the prior path. It is important that in all these

experiments the robot had to perform a rather complex

maneuver including an 180◦ rotation. This is because

the prior path is executed with a purely translational

motion, therefore, returning to the home requires 180

degrees of change in robot pose.

The above series of examples show that the proposed

control law can achieve a target position with remark-

able accuracy which clearly depends on the number of

features employed. The results also demonstrate that

with corner features, many more that the theoretic mini-

mum of three should be employed. This is not a problem

Figure 11. Influence of the arrangement of features on the accuracy of reaching a desired position. Dark gray area represents the uncertainty

in position due to the error in feature localization (a) for a panoramic camera and (b) for a 60◦ f.o.v. conventional camera.

because typically, a lot of corners can be detected in in-

door environments. Moreover, it should be stressed that

the optimal number of features may vary depending on

various parameters such as robot speed, the distribution

of features in the environment etc.

The accuracy of the proposed method for robot hom-

ing is attributed to the use of panoramic vision. It turns

out that the accuracy in reaching a certain position

depends on the accuracy in localizing the image fea-

tures but also on the spatial arrangement of features

around the target position. To illustrate this, assume a

panoramic view that captures a full 360◦ view of the

environment in a typical 640 × 480 image. The dimen-

sions of the cylindrical panoramic images produced by

such panoramas are 1394×163, which means that each

pixel corresponds to 0.258◦ of the visual field. If a cor-

ner detector can localize a corner with an accuracy of

3 pixels, the accuracy of measuring a bearing angle

of a feature is 0.775◦ or 0.0135 radians. This implies

that the accuracy in determining the angular extent of

a pair of features is 0.027 radians, or, equivalently, that

all positions in space that view pair of features within

the above bounds cannot be distinguished.

Figure 11 shows results from related simulation ex-

periments. In Fig. 11(a), a simulated robot, equipped

with a panoramic camera, observes the features in its

environment with the accuracy indicated above. Then

the set of all positions that the robot could reach by

the proposed control strategy are shown in the figure

in dark gray color. It is evident that all such positions

are quite close to the true robot location. Figure 11(b)

shows a similar experiment but involves a robot that
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is equipped with a conventional camera with limited

field of view that observes three features. Because of

the limited field of view, features do not surround the

robot. Due to this fact, the fuzziness in determining the

true robot location has increased substantially. It is im-

portant to note that in the experiment of Fig. 11(b) the

camera captures 60◦ of the visual field in a 640 × 480

image. Thus, each pixel represents 0.094◦ of the visual

field and the accuracy of measuring a bearing angle of

a feature is 0.282◦ or 0.005 radians. Thus, accuracy in

determining the angular extend of a pair of features is

0.01 radians, which is almost three times larger, com-

pared to the accuracy of the panoramic camera. Thus,

although feature localization is more accurate in the

case of the hypothesized conventional camera, the un-

certainty in reaching a desired position is much higher

because of the arrangement of features in the visual

field of the robot. In the proposed local control strat-

egy, as shown in Section 2.2, each target MP lies within

the convex hull of the features that will be used to drive

the robot towards it. Since features surround the tar-

get position, the accuracy in reaching it is very high.

These results indicate that in the context of this work,

a sensor that captures a large portion of the visual field

is preferable, compared to a sensor that captures more

accurately a smaller visual field.

5.2. Homing Experiments

Figure 12(a) gives an approximate layout of the robots’

workspace and the location of the robot’s start position

in a representative long-range homing experiment. The

robot leaves its home position and, after executing a

predetermined set of motion commands, reaches posi-

tion G, covering a distance of approximately eight me-

(a) (b)

Figure 12. Workspace layout for two representative homing experiments. Starting at point G, homing is achieved by visiting three and five

MPs in experiments (a) and (b), respectively. The workspace dimensions are approximately 4 × 9 meters.

ters. Then, homing is initiated, and a number of MPs are

automatically defined. The robot sequentially reaches

these MPs to eventually reach the home position. Note

that the properties of the local control strategy applied

to reaching successive MPs are such that the homing

path is not identical to the prior path. During this exper-

iment, the robot has been acquiring panoramic views

and processing them on-line. Image preprocessing in-

volved unfolding of the original panoramic images and

gaussian smoothing (σ = 1.4). The resulting images

were then fed to the KLT corner tracker. Potential fea-

tures were searched in 7 × 7 windows over the whole

image. For a feature to be considered as a candidate for

tracking, threshold t in Eq. (5) was set to 1000. Feature

tracking has been accomplished with the aim of im-

age pyramids and the Newton-Raphson iterative mini-

mization scheme. Two pyramid levels have been used.

Tracking of a feature was stopped when the determinant

of its Z matrix (Eq. (4)) dropped below 0.1. The robot’s

maximum translational velocity was 4.0 cm/sec and

its maximum rotational velocity was 3 deg/sec. These

speed limits depend on the image acquisition and pro-

cessing frame rate and are set to guarantee small inter-

frame feature displacements which in turn, guarantee

robust feature tracking performance. The 100 strongest

features were tracked at each time. After the execution

of the initial path, three MPs were defined so as to

guarantee that at least 80 features would be constantly

available during homing.

Figure 13 shows snapshots of the homing experiment

as the robot reaches the home position. Figure 14 shows

the visual input to the homing algorithm after image

acquisition, unfolding and the application of the KLT

tracker. The tracked features are superimposed on the

image. It must be emphasized that although the homing

experiment has been carried out in a single room, the
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Figure 13. Snapshots from a homing experiment. The robot returns back to the home position after the execution of the prior path and the

homing route with three MPs. These snapshots correspond to the experiment illustrated in Fig. 12(a).

Figure 14. Cylindrical panoramic view of the workspace from the home position that the robot is approaching in Fig. 13. The features extracted

and tracked at this image frame are also shown as numbered rectangles.

appearance of the environment at positions H and G

differs considerably. As it can be observed, the robot

has achieved the home position with high accuracy (the

robot in Fig. 13(c) covers exactly the circular mark on

the ground).

In a second experiment, a more complicated scenario

was investigated. A number of panels were added to the

workspace of Fig. 12(a), dividing it into two separate

rooms communicating through a narrow passage (see

Figure 15. Snapshots from the experiment in which the workspace has been separated into two rooms. The robot is visible (a) initially at its

home position, (b) on its way back to the home position and (c) at the final position reached. This experiment corresponds to the workspace of

Fig. 12(b).

Fig. 12(b)). Because of the introduction of the pan-

els, the visual appearance of the two “rooms” is com-

pletely different, posing a challenge to feature tracking

and to the process of defining the MPs. As it can be

seen in Fig. 12(b), the robot defined five MPs in this

experiment, as opposed to the three MPs of the first

experiment. Figure 15 shows snapshots of the hom-

ing procedure. It can be verified that homing has been

accomplished with an accuracy of a few centimeters.
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6. Discussion

In this paper, a novel method for robot homing has been

proposed. The method is based on tracking image cor-

ners in panoramic views of the environment. Tracking

has been employed as a means to correspond features

in different views of the environment. By memorizing

and processing the “life-cycle” of the tracked corners,

the robot is able to define MPs that should be revisited

sequentially to achieve homing.

The proposed method has a number of attractive

properties. A complex behavior such as homing is

achieved by exploiting very simple sensory informa-

tion. More specifically, only corners are extracted and

tracked in a series of images and only the evolution of

their retinal coordinates in a panoramic view is mon-

itored. It is quite important that robot navigation, a

problem typically handled through the use of range

information, is achieved without computing any ex-

plicit range information. Argyros et al. (2004) present

similar results for a reactive, corridor following be-

havior. The decomposition of the homing journey to

a number of intermediate reactive navigation sessions

appears intuitive. Moreover, the accuracy in the

achievement of the home position does not depend on

the distance traveled by the robot, which constitutes a

fundamental problem in odometry-based homing. The

final positional error depends only on the last step of the

whole procedure (moving from the last MP to the home

position).

This work also reveals the importance of omni-

directional visual cues to robot navigation tasks. The

proposed scheme depends on the availability of a full

360◦ visual field in a number of ways. A robot equipped

with a standard camera with limited visual field cannot

easily identify “features seen before” on the way to-

wards home position. Thus, homing becomes a much

more difficult task. In environments that lack rich vi-

sual content, a panoramic sensor has higher probability

of identifying features that are suitable for supporting

navigation. A conventional camera would have much

less candidate features to select and track because of

its limited field of view. Furthermore, as shown earlier,

the accuracy in reaching a certain position is improved

when the employed features are distributed over a large

field of view. With respect to the proposed method, an

additional advantage of a 360◦ field of view is that it

simplifies the description of the conditions under which

the local control law is successful for all possible fea-

ture configurations.

An important issue in vision-based homing is the

selection of the visual features that can support naviga-

tion. In our approach to homing, the selected features

were image corners. The advantage of corners is that

typically, there are many of them in most indoors en-

vironments. Their definition, extraction and tracking

are mathematically rigorous and computationally effi-

cient. Their main disadvantage is that correspondence

of corners in views acquired from considerably differ-

ent viewpoints can only be achieved through tracking.

This is actually the reason why the proposed approach

cannot easily be extended to more complex naviga-

tion tasks such as “go to location X”. To support such a

scenario would imply that the robot memorizes the life-

cycle of the features in all paths connecting its current

position to all potential target positions. To alleviate

this problem an alternative would be to use, instead of

corners, characteristic areas of the environment, such

as visual landmarks. Current research work is towards

this direction.

Notes

1. H is the initial position of the prior path, the home, and G the

position where homing is initiated. S and T are any two posi-

tions along the path and they correspond to the starting and target

positions for the local control law.

2. The term “catchment area” was originally proposed by Cartwright

and Collett (1983).
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Möller, R. 2000. Insect visual homing strategies in a robot with analog

processing. Biological Cybernetics, special issue in “Navigation

in Biological and Artificial Systems”, 83(3):231–243.

Rizzi, A., Duina, D., Inelli, S., and Cassinis, R. 2000. Unsupervised

matching of visual landmarks for robotic homing using fourier-

mellin transform. In International Conference on Intelligent Au-

tonomous Systems, Venice, Italy.

Santos-Victor, J., Vassallo, R., and Schneebeli, H.J. 1999. Topolog-

ical maps for visual navigation. In the First International Confer-

ence on Computer Vision Systems, Las Palmas, Canaries.

Shi, J. and Tomasi, C. 1993. Good features to track. Technical Report

93–1399, Department of Computer Science, Cornell University.

Srinivasan, M.V., Zhang, S.W., Lehrer, M., and Collett, T.S. 1996.

Honeybee navigation en route to the goal: Visual flight control

and odometry. The Journal of Experimental Biology, 199:237–

244.

Thompson, S., Zelinsky, A., and Srinivasan, M.V. 1999. Automatic

landmark selection for navigation with panoramic vision. In the

Proceedings of Australian Conference on Robotics and Automa-

tion ACRA’99, Brisbane, Australia.

Thrun, S. 1999. Learning metric-topological maps for indoor mobile

robot navigation. Artificial Intelligence, 99(1):21–71.

Thrun, S. 2000. Probabilistic algorithms in robotics. AI Magazine,

21(4):93–109.

Thrun, S., Fox, D., Burgard, W., and Dellaert, F. 2000. Robust monte

carlo localization for mobile robots. Artificial Intelligence.

Thrun, S., Fox, D., Burgard, W., and Dellaert, F. 2000. Robust

monte carlo localization for mobile robots. Artificial Intelligence,

101:99–141.

Tomasi, C. and Kanade, T. 1991. Detection and tracking of point

features. CMU-CS-91-132, School of Computer Science, Carnegie

Mellon University.

Trahanias, P., Burgard, W., Argyros, A.A., Haehnel, D., Baltzakis,

H., Pfaff, P., and Stachniss, C. Tourbot and webFair: Web operated

mobile robots for telepresence in populated exhibitions. To appear

in IEEE Robotics and Automation Magazine, Special issue on EU-

funded projects in Robotics.



24 Argyros et al.

Weber, K., Venkatesh, S., and Srinivasan, M.V. 1998. Insect inspired

robot homing. Adaptive Behaviour.

Winters, N., Gaspar, J., Lacey, G., and Santos-Victor, J. 2000. Omni-

directional vision for robot navigation. IEEE Workshop on Omni-

directional Vision (OMNIVIS’00), Hilton Head, South Carolina.

Winters, N. and Santos-Victor, J. 1999. Mobile robot navigation us-

ing omni-directional vision. In the Proceedings of the 3rd Irish

Machine Vision and Image Processing Conference (IMVIP’99),

Dublin, Ireland.

Dr. Antonis A. Argyros is a research scientist at the Institute of Com-

puter Science (ICS) of the Foundation for Research and Technology

(FORTH) in Heraklion, Crete, Greece. He received his Ph.D. from

the Department of Computer Science, University of Crete, Greece, in

visual motion analysis. He has been a postdoctoral fellow at the Royal

Institute of Technology in Stockholm, Sweden, where he worked on

vision-based, reactive robot navigation. In 1999 he joined the Com-

putational Vision and Robotics Laboratory of ICS-FORTH, where he

has been involved in many RTD projects in image analysis, compu-

tational vision and robotics. Dr. Argyros has also served as a visiting

associate professor at the Computer Science Department of the Uni-

versity of Crete. His current research interests include computational

vision and robotics and particularly the visual perception of motion

and 3D structure, the development of robot behaviors based on visual

information and alternative visual sensors. In these research fields he

has published more than 45 papers in peer reviewed scientific jour-

nals and conference proceedings.

Kostas Bekris is a Ph.D. candidate in Computer Science at Rice

University. He is a member of the Physical and Biological Com-

puting Group under the the supervision of Prof. Lydia Kavraki.

His research interests include mobile robot navigation with sensing

constraints, motion planning and robotic sensor networks. Kostas

Bekris received his B.S. in Computer Science at University of Crete,

Greece in 2001 and an M.Sc. in Computer Science from Rice in

2004.

Professor Stelios C. Orphanoudakis holds a Ph.D. degree in Elec-

trical Engineering from the Thayer School of Engineering, Dart-

mouth College, USA, a M.S. degree in Electrical Engineering from

the Massachusetts Institute of Technology (MIT), and a B.A. de-

gree, magna cum laude with highest distinction in Engineering Sci-

ences, from Dartmouth College. He held a faculty appointment in

the Departments of Diagnostic Radiology and Electrical Engineer-

ing at Yale University, USA, from 1975 until 1991. Since 1986, he

holds a faculty appointment as Professor of Computer Science at the

University of Crete, Greece. Furthermore, from 1991 until 1994, he

was Acting Director of the Institute of Computer Science-FORTH

(ICS-FORTH) and, from 1994 until 2004, he was Director of this In-

stitute. Today he is Chairman of the Board of Directors of FORTH,

and he is scientific leader of the Center for Medical Informatics and

Health Telematics Applications and of the Computational Vision and

Robotics Laboratory. Prof. Orphanoudakis is a member of many hon-

orary and professional societies and a Senior Member of the Institute

of Electrical and Electronics Engineers (IEEE). He has many years

of academic and research experience in the fields of computational

vision and robotics, intelligent image management and retrieval by

content, medical informatics, and medical imaging. He is the author

of more than 120 publications in international scientific journals,

refereed conference proceedings and books. He has served on var-

ious committees and working groups of the European Commission

and has been active in numerous European R & D programs. He

has also served on the Board of Directors of the EuroPACS society

(1994–2000). During the period 1995–2000, he served on the Na-

tional Telecommunications and Post Commission of Greece. Finally,

from 1994 until 2001, he served on the National Advisory Research

Council of Greece and, from 1998 until 2002, he served on the Board

of Directors of the Hellenic Foundation for Culture.

Lydia E. Kavraki is the Noah Harding Professor of Computer Sci-

ence and Bioengineering at Rice University. Kavraki received a B.A.

degree in Computer Science from the University of Crete in Greece,

and a Ph.D. in Computer Science from Stanford University. Her



Robot Homing by Exploiting Panoramic Vision 25

research interests are in physical algorithms and their applications

in robotics, computational structural biology, and bioinformatics.

Kavraki is one of the principal inventors the Probabilistic RoadMap

planner (PRM). Her research interests include the development of

methods for robot planning in high dimensions and with physi-

cal constraints, assembly planning, micromanipulation using micro-

electromechanical systems, and flexible object manipulation. In her

recent work, Kavraki applies robotics methods to the modeling of

biomolecular interactions for drug design. Kavraki is the recipient

of the 2000 Association for Computing Machinery (ACM) Grace

Murray Hopper Award for her technical contributions. She has also

received an NSF CAREER award, a Sloan Fellowship, and the 2002

Early Academic Career Award from the IEEE Society on Robotics

and Automation. Kavraki has recently been included in the list of

Top 100 Young Innovators under 35 of the MIT Technology Review

Magazine and in the list of Top 10 Young Scientists by the Popular

Science Magazine. She is a member of IEEE and ACM and a Fellow

of AIMBE.




