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We hypothesize that the initiative of a robot during a collaborative task with a human

can influence the pace of interaction, the human response to attention cues, and the

perceived engagement. We propose an object learning experiment where the human

interacts in a natural way with the humanoid iCub. Through a two-phases scenario, the

human teaches the robot about the properties of some objects. We compare the effect

of the initiator of the task in the teaching phase (human or robot) on the rhythm of the

interaction in the verification phase. We measure the reaction time of the human gaze

when responding to attention utterances of the robot. Our experiments show that when

the robot is the initiator of the learning task, the pace of interaction is higher and the

reaction to attention cues faster. Subjective evaluations suggest that the initiating role of

the robot, however, does not affect the perceived engagement. Moreover, subjective and

third-person evaluations of the interaction task suggest that the attentive mechanism we

implemented in the humanoid robot iCub is able to arouse engagement and make the

robot’s behavior readable.
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1. INTRODUCTION

Personal robots and robotic co-workers need to interact with

humans and coordinate with them to fulfill collaborative tasks.

Even though a robot has pre-built knowledge, at some point

it has to adapt to the way its master (or its human partner)

name things and execute the tasks (Wilcox et al., 2012). The

robot needs the capability to learn from him as an intelligent

social partner (Breazeal, 2003): it must be endowed with tools

for learning new skills and symbols, that the human can teach

physically and verbally, but also with social skills to interact

with humans in a way that is as easy and natural as possi-

ble (Huang and Thomaz, 2011; Knoblich et al., 2011). A critical

component for natural Human–Robot Interaction (HRI) is the

selection and implementation of the social skills that can make

the robot “interactable,” i.e., usable and understandable also by

ordinary people. These skills translate in a combination of ver-

bal and non-verbal communication, which must be adapted in

real-time to each human behavior. Clearly, verbal communication

is fundamental for information exchange between the partners,

to communicate labels, abstract and complex concepts. Non-

verbal communication is critical for achieving natural interaction

between the human and the robot, especially to achieve engage-

ment and synchronization in tasks where the two are teamed.

Implicit non-verbal communication positively impacts human-

robot tasks performance (Breazeal et al., 2005).

A possible way to see the team learning problem is to set

social parenting scenarios, where a human caregiver supervises

the learning process of the robot as an adult would do with a child.

The embodiment induced by certain platforms with human-like

appearances facilitates the task from the human perspective (Ugur

et al., 2011; Natale et al., 2013). This approach is vivid in the

developmental robotics community, who made several advance-

ments in the design of theories and mechanisms to make robots

learn like children (Smith and Gasser, 2005; Asada et al., 2009).

Interestingly, researchers made also several attempts at reproduc-

ing the attentive system of infants in robots (Sumioka et al., 2007,

2010), to improve the robot’s performances in social learning by

regulating contingency and synchrony in the interaction. As in

infants (Morales et al., 1998), such systems integrate the social sig-

nals exchanged with their caregivers: verbal and non-verbal cues,

such as body language, gestures and intentional actions like point-

ing and gazing. The latter is probably the most important and

informative action and the focus of our study.

The gaze is the joint movement of head and eyes used to convey

information and indicate situated attention (Staudte and Crocker,

2010, 2011). It is used to indicate interest, intentions and com-

bined with speech it plays an important role in the coordination

of joint attention and turn-taking (Meltzoff, 2007; Skantze et al.,

2013). It is also used to influence object perception and situated

utterance comprehension by driving the interlocutor’s focus of

attention toward objects of common interest (Moll and Meltzoff,

2011; Obhi and Sebanz, 2011). Shared attention or joint attention

occurs when an agent follows the other partner’s gaze to exam-

ine an entity of common interest, which is intentionally referred

to by the interlocutor through a combination of spoken utter-

ances and non-verbal cues (Emery, 2000; Staudte and Crocker,

2011). Within collaborative actions, joint attention is based on

the “shared intentionality” (Tomasello et al., 2005), i.e., the fact
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that partners coordinate their actions and roles to attain a shared

goal, and are mutually aware of the other’s perspective (Kaplan

and Hafner, 2006). An interesting feature of joint attention is the

automatic orientation of attention in response to the perception

of the partner focusing on an object or location of common inter-

est (Posner, 1980). Typically, the partner is able to infer the spatial

direction of attention on the basis of visual cues (eyes movement,

head and body posture). An important characteristic emerging

from joint attention is the contingency of the gazing action, and

the inter-personal synchrony which is established by the agents

when they interact (Delaherche et al., 2012).

Similar behaviors have been observed during HRI, particu-

larly with humanoids. Quoting Chaminade and Okka (2013), “it

is known that humans can interpret cues provided by humanoid

robots to convey information about their object of attention.” In

their study, they showed that a humanoid face can trigger auto-

matic orientation of spatial attention as the human face. Boucher

et al. (2012) showed that the robot gaze facilitates the coopera-

tion in a task, making the robot behavior more readable, resulting

in faster reaction times. This study puts in evidence that the tim-

ing of the attention response during HRI can reveal the human

engagement toward the robot and the task. The contingency of

robot responses to human cues impacts the humans’ behavior

in interaction scenarios (Fischer et al., 2013) and is fundamen-

tal to establish engagement between the partners (Rich et al.,

2010). Particularly in turn-taking scenarios where the partners

collaborate in a systematic way, time is critical (Steinfeld et al.,

2006): synchrony, delays in replies, and rhythm of interaction can

impact on the perception of the robot by the human, amplifying

or decreasing the perceived engagement and influencing impres-

sion and responsive behaviors. This is true for robots (Thomaz

and Chao, 2011) and agents in general (ter Maat et al., 2010).

Therefore, there is an apparent link between the timing of inter-

action, the role of the partners in the interaction and their

impressions and responsive behaviors: while this has been shown

for virtual conversational agents (ter Maat et al., 2011), there are

still open questions about robots in teaching, collaborative and

conversational scenarios.

In this paper, we hypothesize that the reaction time of a human

in response to a robot utterance can depend on the roles of

the human and robotic partners during the interaction. We also

hypothesize that the different roles of the partners can influ-

ence the rhythm of interaction and the perceived engagement.

We speculate that if a human is engaged during the interaction

with the robot, and he perceives the interaction as natural as if

it was happening with a human partner, then he should exhibit

the same features of joint attention as if he was interacting with a

human. Particularly, the human should have a rapid gaze response

to attention cues from the robot, and react to robot’s utterances

in a way that is close to the one observed in human–human inter-

actions. Tanenhaus et al. (1995) showed that humans rapidly gaze

to objects of interest that are mentioned by a speaker. Does this

also happen if the speaker is a humanoid robot? We know from

Chaminade and Okka (2013) that the reaction time of the human

to the detection of a robot attention cue is longer for humanoid

robots than for human faces. Thus we expect the reaction time

to robot’s attention cues to be globally longer than to human’s

attention cues. However, we presume that this time can be manip-

ulated by a suitable design of the task (acting on the roles of the

partners and their turn-taking), by making the robot more read-

able and by keeping the human engaged toward the task and the

robot.

We study the effects of a simple joint attention system dur-

ing a learning task, in terms of induced joint attention (reaction

time) and engagement perceived on the human side. We designed

a two-step learning experiment, where people had to teach the

iCub the color of objects. The learning situation was simple, as

shown in Figure 1, and interaction between robot and human

was naturalistic. Remarkably, participants were not required to

do any calibration nor wear eye-tracking devices, such as in Yu

et al. (2010). Objects were selected by simply gazing at them

by both pairs, and the information transfer about their color

property was based on verbal communication (speech). Human–

human interaction studies provide many elements for designing

attention mechanisms for robots, based on gaze statistics and

observed habits and tendencies. For example Argyle and Cook

(1976) report that people look at each other about 60% of the

time during an interaction, and look more while listening than

talking (during which they give frequent short glances). More

fine-grained observations reveal that people look away whenever

they start speaking, and that the one finishing a sentence looks at

the one who is about to start speaking. Though the implemen-

tation of similar mechanisms in the robot would be of interest,

for the purpose of our study we designed an attention system

that only respects some basic rules of human interactions (Sacks

et al., 1974). For example, the fact that only one party talks at a

time was ensured by systematically pausing the speech synthesis

of the robot after an utterance. This allowed us to define implicitly

“roles” and turns in the interaction. We compare in this paper the

effect of the initiator of the task in the teaching phase (human or

robot) on the reaction time of the human gaze when responding

to attention cues of the robot. Through a subjective evaluation,

we also assess the difference in the perceived engagement depend-

ing on the role of partners during the task. Our guess is that

the reaction time could be an index of perceived engagement.

FIGURE 1 | The object learning experimental scenario.
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Interpersonal coordination is often used to evaluate the attention

or engagement between social partners, because it relates to the

quality of interaction and cooperation (Wiltermuth and Heath,

2009; Delaherche et al., 2012). Through the subjective evaluation,

we seek at finding if differences in the rhythm of interaction can

reflect in perceived engagement.

Finally, through a qualitative evaluation by participants to the

experiment and observers not involved in the task, we aim to

assess whether the simple attention mechanism we implemented

in the humanoid robot is able to arouse engagement and make

the robot readable.

2. MATERIALS AND METHODS

2.1. EXPERIMENTAL PROTOCOL

The experimental scenario is shown in Figure 1: the robot inter-

acts with a human caregiver to learn the colors of some objects.

The human is standing in front of the robot: his/her position

is roughly fixed, but not constrained to a specific position with

respect to the robot. Between the two, there is a table with sev-

eral colored objects. When the partners look at the same object of

interest (i.e., the blue ball in the figure), they can share knowledge

about it. The experiment consists of a supervised learning pro-

cess, across two phases: a teaching phase and a verification phase.

In the first phase, the robot is taught the labels of the objects by

the human partner. In the second phase, the human gazes to one

of the objects, and the robot responds with the learnt label. The

sequences of events in the experimental protocol are shown in

Figure 2. Notably, the teaching phase can be performed in two

different conditions: Human Initiative (HI) and Robot Initiative

(RI). HI and RI conditions are used to establish which partner

initiates the action, that is the first who gazes at the object of

interest.

The teaching phase is as follows:

(1) The robot waits for the human to establish eye-to-eye con-

tact. When mutual engagement occurs, the robot starts

speaking to introduce the next step.

For all the objects on the table:

(2) The gaze leader (HI: human, RI: robot) looks at one of the

objects on the table. In the RI condition, the robot simply

gazes at one of the objects and asks information about it. In

the HI condition, the robot asks first the human to look at an

object: this step is necessary to stimulate the human to do the

gazing action. In response to the robot request, the human

moves his head and eyes to look at one of the items on the

table1.

(3) The gaze follower (HI: robot, RI: human) looks at the object

of interest on the table. In the HI condition, the robot tracks

the human head movement, estimating yaw and pitch of

1It has to be remarked that estimating the gaze simply looking at the head

movements is quite challenging with respect to estimating the gaze using a

combination of head and eyes movements. However, the latter estimation

typically requires an external device, such as an eye-tracker, to track the eye

movements.

FIGURE 2 | Schematic representation of the events in the experimental

protocol. Two different conditions are tested for the teaching phase.

RI: The robot initiates the phase by looking at a random object. The human,

if engaged, naturally looks back at the common object of interest. When

both partners look at the object, the robot asks the color of the object, and

the human answers. HI: The human initiates the phase by looking at a

desired object. The robot tracks the human head movement, then guesses

which object is being observed by the human. It asks about the color of the

object, which is answered by the human. The color label is then associated

to the object’s prominent color feature. In the verification phase, the

human validates if the robot correctly learned the object colors. The human

looks randomly at some objects. The robot tracks the human gaze,

estimates the object of interest, retrieves the color label learned in the

teaching phase and says the color to the human.

the head, then it drives its head to look at the intersection

of the gaze direction and the table, which allows the iden-

tification of the object of interest. In the RI condition, the

robot’s head motion is coupled with the information request

to the human. This induces joint attention in the human,

who naturally looks at the object selected by the robot.

(4) The two partners focus their attention on the same object.

The robot asks the human some information about the object

(in this scenario its color).

(5) The human tells the robot the object’s color. The speech is

captured by a lavalier microphone, which improves the qual-

ity of the sound source for the speech recognition system. At

this point, the human can either look at the robot or at the

object (there is no constraint on his gaze).

(6) The robot retrieves the color name from the natural human

speech, then it associates the color label to the most promi-

nent color feature of the object observed in the camera image.

Once this association is successful, the robot looks back at the

human.

(7) The robot greets.
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Once the robot has acquired the labels for all the objects, a verifi-

cation phase begins. In this second phase, the human looks at the

objects on the table, one by one in a random order, and the robot

says what he learned about this object.

The verification phase is as follows:

(1) The robot waits for the human to establish eye-to-eye con-

tact. When mutual engagement occurs, the robot starts

speaking to introduce the next step.

Until the human is disengaged:

(2) The robot looks at the human standing in front of it, and asks

the human to look at one of the objects on the table.

(3) In response to the robot request, the human moves his head

and looks at an object.

(4) The robot looks at the selected object on the table. It tracks

the human head movement, estimating yaw and pitch of the

head, then drives its head at the intersection of the human

gaze direction and the table, which enables to identify the

object of interest. The two partners look at the same object.

(5) The robot observes the object in the camera image, and

retrieves the color label of its most prominent color feature.

Then, it says the color label to the human. At this point, the

human is free to gaze at the object or the robot (there is no

constraint on his gaze).

(6) The robot greets.

The two phases rely on the induced joint attention mechanism,

and on the ability of the robot to engage the human and to be

seen as a natural interactive partner. Joint attention is paramount

to the success of the two phases: in both phases, the agents must

be able to induce joint attention and estimate the gaze of their

partner. The readability of the partners is important, as well as

their capability to drive the attention of the partner toward the

object of interest. Finally, the synchrony between the agents is

important to make the pace of interaction as close as possible to a

natural one.

We performed the interaction experiment on two groups of

volunteers, randomly assigned to conditions HI or RI. The goal

was to spot differences in the reaction time of the participants in

the two conditions.

After each human-humanoid interaction experiment, we

asked the participants to evaluate qualitatively the interaction

with the robot through an anonymous questionnaire. The pur-

pose of this evaluation was to verify if the objective evaluation

through the attention cues was coherent with the subjective

perception.

Finally, we asked external observers, not involved in the exper-

iments, to evaluate the quality of the human–robot interaction.

The goal was to obtain an objective evaluation based on the obser-

vation of few seconds of human–robot interaction. Indeed, it

is possible that the engagement and the quality of interaction

perceived by an external observer do not match with the ones per-

ceived by the human interacting with the robot, whose evaluation

could be biased by factors related to the task. The observer may

notice key elements that make the interaction unnatural or on

the contrary very realistic, that may not be obvious to the partner

actively interacting with the robot.

2.1.1. Experimental procedure: HRI experiment

We recruited 13 adult volunteers within the local campus pop-

ulation, mostly from the ISIR laboratory, who had no prior

experience of interactions with iCub. Volunteers were divided

into two groups, and associated to condition HI or RI:

• Group HI consisted of six people (2 males, 4 females), 22 ± 1

years old (age: min. 21, max. 24).

• Group RI consisted of seven people (4 males, 3 females), 26 ± 3

years old (age: min. 22, max. 30).

The only requirement for the participants was the lack of prior

experience with the robot; that is we selected volunteers that

had never interacted with the robot before2. Each participant

was involved separately in the experiment, and was not able to

communicate with the others before doing the experiment. We

informed each volunteer about the teaching task with the iCub

through an instruction paper, to make sure that each partici-

pant had the same amount of information about the task and

the robot’s capabilities used during the experiment. Participants

were informed about the purpose of the study and the technolog-

ical limitations of the robot, for example the fact that we could

not extract eye movements, so they had to gaze at the objects

while trying to keep the eyes fixed 3. Participants were equipped

with a lavalier microphone, and then could enter the room where

the robot was waiting for them. They were simply instructed to

stay in front of the robot and do the teaching task with the robot,

focusing on its gaze. Their position with respect to the robot was

not fixed, i.e., they could stay closer or farther. No calibration

was required, so once they were in eye contact with the robot,

this would speak to start the experiment, in a very natural way.

iCub was not moving except for the head. Three colored balls

were placed on a table in between the human and the robot, on

the left, on the center and on the right. During the two phases,

participants were free to speak and interact with the robot in the

way they were feeling more comfortable with. The teaching ses-

sion was composed in both HI and RI conditions of only three

trials, corresponding to the three objects to teach. Once the three

colors were learnt, the verification phase would begin. This phase

was less constrained, in the sense that humans needed to verify

that the robot had learnt correctly the three objects, but they were

2The only criterion for participating to the study was to have never interacted

with the robot before—“un-familiarity” or prior non-experience. As the robot

is quite famous in the campus, many of them had already seen the robot (for

example in photos, flyers or videos) or knew about its existence. Specifically,

three in HI and six in RI already knew about it. However, all participants

were equally “naive,” as they had never done an experiment with the robot

before. Age and sex are not control variables for our study, and interpersonal

differences were not relevant.
3All the participants were informed, orally by the experimenter and through

a printed instruction paper, about the aim of the study, the goal, the measure-

ments, the methodology, and they gave informed consent about participating

to the experiment and being filmed for research purposes. The participants

were not exposed to any risk of injury, as they were not required to interact

physically with the robot.
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allowed to keep verifying the colors if they wanted to4. Once the

experiment was over, participants were asked to fill up an anony-

mous questionnaire to evaluate their experience. There were ten

questions evaluating the two-phases interaction through a 1–5

Likert scale.

2.1.2. Experimental procedure: observers

For the evaluation from the observers groups, we recruited mostly

volunteers from the local campus population, but also many peo-

ple from outside the university or research area network. We

divided the volunteers into two groups: group A and B.

• Group A consisted of 48 people (79% males, 21% females),

27 ± 9 years old (age: min. 19, max. 62).

• Group B consisted of 34 people (67% males, 32% females),

29 ± 4 years old (age: min. 22, max. 46).

There were no particular requirements for the participants.

They were mostly unfamiliar with robotics, and some of them

(33% in A, 44% in B) had never even seen iCub before.

Participants were directed to a website with the instructions for

the anonymous questionnaire, where they were asked to watch

a video showing some parts of the human–robot interaction

4In the verification phase, the individual trials were (HI) 3, 3, 3, 3, 4, 7, (RI)

4, 5, 5, 5, 5, 7, 9.

experiment, then answer to a series of questions regarding the

video through a web form. Participants in group A would also

watch a video where two humans were giving a short demon-

stration of the interaction task5. There were nine questions eval-

uating the two-phases interaction through a 1–5 Likert scale,

then two questions where participants were asked to evalu-

ate the quality of the overall experiment through a first choice

selection.

2.2. ROBOTIC FRAMEWORK

The robot learns from the human using several coordinated sys-

tems (see Figure 3), implemented in its software architecture

(Ivaldi et al., 2013). Modules were developed both in YARP and

ROS middlewares, connected through a dedicated bridge 6. A

RGB-D camera is placed statically behind the robot, in a con-

venient fixed position to retrieve human features, whereas the

objects are observed through the eyes (i.e., the cameras) of the

robot. Verbal communication is achieved through speech syn-

thesis and a simple speech recognition system. The modules are

briefly outlined below.

5Human–human interaction video (only for group A): http://www.youtube.

com/watch?v=fUVOFyuGSJM. Human–Robot interaction video (for groups

A and B): http://www.youtube.com/watch?v=VrzL7xIB0Nw.
6For more details, see http://wiki.icub.org/wiki/UPMC_iCub_project/YARP_

ROS_bridge.

FIGURE 3 | iCub’s cognitive architecture (from Ivaldi et al., 2013) enriched with the new modules. In green, the modules that have been used for the

experiment of this paper.
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• 3D People tracking: we use a multiple skeleton tracking system

by OpenNI to track the position of humans (Shotton et al.,

2011) through the information perceived by the RGB-D sen-

sor. After a background subtraction step applied to the depth

image in which the static environment is separated by the mov-

ing bodies, the points related to the human figures are analyzed

and classified according to depth invariants and 3D translation

invariant features. By this classification, the system will be able

to estimate which part of the body each depth pixel belongs

to. From these classified patches, the position of each joint is

calculated according to their density.

• Head Pose estimation: the 3D position and orientation of the

human head is retrieved by fusing the information from the

skeleton tracker with the information retrieved by the color

image perceived by the RGB-D sensor. More in detail, the 3D

head position is projected on the 2D color image. As shown in

Figure 4, the latter is cropped accordingly in order to obtain an

image in which the face is found; then the Constrained Local

Models algorithm (Cristinacce and Cootes, 2006), a standard

face pose estimation and tracking algorithm, is applied and the

head pose is extracted.

• Gaze tracking: the gaze of the human partner is approximated

by his head orientation (pitch and yaw). The estimation is thus

inaccurate, but it is the simplest way that does not necessitate

the use of external devices (e.g., eye trackers) or the availability

of high-resolution cameras to observe head and eye move-

ments. The adopted solution is also non “invasive,” resulting

in a more natural interaction. More details on this module can

be found in Rousseau et al. (2013).

• Simple Object Recognition: a simple object recognition module

assumes the object of interest to be roughly at the center of the

visual field of the cameras. This is consistent with the fact that

the robot gazes at the objects pointed out by the human part-

ner, so the object is centered in the camera images. A simple

image processing pipeline is used to segment the object from

the background, extract its contours and compute its most

characteristic color, which is used for label association.

• Verbal communication: the robot communicates through a text-

to-speech synthesis module based on Festival, and a speech

recognition module based on CMU Sphinx7.

• Object labeling: we defined a simple grammar to identify the

color label from the natural speech of the human partner

interacting with the robot 8. The label is then associated to

FIGURE 4 | Sketch of the head pose estimation processing.

7Festival: http://www.cstr.ed.ac.uk/projects/festival/. CMU Sphinx: http://

cmusphinx.sourceforge.net.
8For example, the human could say “The object is orange,” “It is orange,” or

simply “Orange.”

the colorimetry feature of the object, identified by the object

recognition module from the camera images9.

• Robot motion: the robot produces smooth human-like move-

ments using a minimum-jerk Cartesian controller (Pattacini

et al., 2010; Ivaldi et al., 2012). It must be noted that we con-

strained the robot’s movements, so that the head was the only

moving robot part (neck-3DOF and eyes-3DOF are actuated).

We intentionally did not make the robot move its trunk or its

arms, for example for pointing the objects, because we wanted

to avoid the human gaze to be perturbed by proactive gaze

effects due to robot gestures (Sciutti et al., 2012; Flanagan et al.,

2013).

2.2.1. Performances

The overall performances of the robotic software system depend

on the reliability of several interconnected modules. In prelimi-

nary tests (Rousseau et al., 2013), we evaluated the performance

of each component: the object recognition system was correct

in 92% of trials, while the speech recognition system had only

76% of correct labels. This latter result may be negatively influ-

enced by the uncalibrated speech model and the different mother

languages of the participants to the experiments. The gaze track-

ing system, based on the estimation of the head pitch and yaw,

was evaluated through comparison with a motion capture sys-

tem. The positive match was 49% for the pitch and 93% for the

yaw. The error brought by the pitch evaluation was compen-

sated in the experiments by a suitable placing of the objects on

the table, so that the robot could easily discriminate the human

vertical gaze direction. We are aware that this framework is less

precise than others in the evaluation of gaze (we also cannot easily

include eyes movement tracking), however, it provides an online

estimation/approximation of the human gaze in natural HRI con-

ditions. It can be used as a feedback signal to adapt or modulate

the behavior of the robot in real-time HRI experiments.

2.2.2. Measurements

The course of the experiment is controlled by a finite state

machine. The timing of the events generated by the computer,

the robot actions and the participants’ responses are imported

from the log of each experiment. The human gaze is continuously

estimated from the RGB-D flow through the gaze tracking

module. Figure 5 is an example of the ideal timeline of the robot’s

and human gaze that we were expecting to observe during the

learning phase of the RI experiments10. The y-axis is the head

pitch, marking a high-level for the head and a low-level for the

table where objects are located. The x-axis is time. In the first

part of the plot the robot gaze (blue line) and the human gaze

(red line) met at some point, as to establish eye-to-eye contact.

When partners are engaged, the robot lowers its head to look at

an object of interest: the robot gaze moves to the table level. If

the human is engaged, his gaze will follow the robot and they

9As the association color label—color feature is done after the human speech,

the human could actually teach a wrong color label to the robot.
10This plot is useful to figure the oscillations of the head pitch from the robot

head to the table level. An analogous plot for the head yaw can be used to

associate each yaw level to the three objects on the table.
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will both look at the same object of interest. When the robot has

successfully retrieved the object’s information from the human,

its gaze goes back to the head level, i.e., the robot looks at the

human face. It must be noted that the robot asks the question

about the object only once it has verified that the human is

correctly gazing at the object of interest, so the human is “forced”

to turn its head in a way that is sufficiently explicit for the robot

to estimate his gaze correctly. At this point, the human can have

different gaze responses: he can hold his gaze on the object,

he can look back at the robot and stare at the robot as if he

was expecting an acknowledgment, he can quickly look at the

robot then again at the object, and so on. We observed different

gaze behaviors in this phase. Some examples are shown in

Figure 6 11: in the first plot, the human quickly looked at the

objects then came back looking at the robot; in the second,

the human exaggerated the movements of his head to be more

readable by the robot; in the third, the human held his gaze on the

objects until he was sure that the robot had learnt its color; the

11In this figure, we report the plots related to head yaw, because the three levels

corresponding to the three objects are clearly visible. It is also more interest-

ing with respect to plotting the head pitch, that could only show two levels

(the head and table level) and would not allow to distinguish among the three

objects, which are all at the same level for the head pitch.

FIGURE 5 | Ideal timeline for the human’s and robot’s gaze during the

teaching phase of the experiment, in the RI condition. The robot gaze (blue

line) is moved toward the human head to look for eye contact. When mutual

eye contact is established, in the RI condition the robot lowers the head to

look at one of the objects on the table. The human, if engaged, follows the

robot gaze (red line). When both partners look at the same object, the

information exchange can take place. In this situation, the human can keep

gazing at the object or look back at the robot for a confirmation (dashed lines).

FIGURE 6 | Some examples of the humans’ and robot’s gaze during the

experiments. Four participants from the RI condition are shown. Blue lines

correspond to the robot gaze, while red lines correspond to the human gaze.

The head yaw is shown, so there are three visible locations corresponding to

the three objects on the table. In the first part of each plot, the green vertical

lines mark the beginning of each phase where the robot starts looking at an

object of interest. In the second part of each plot, the cyan vertical lines mark

the beginning of each phase where the human looks at an object of interest.
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fourth plot shows some hesitations of the humans, that made his

gaze hardly readable by the robot. Overall, we observed different

behaviors in the participants. Since they had never interacted

with the robot before, any difference in their gaze strategy is to be

attributed to individual differences, that are not relevant to our

study.

3. RESULTS

3.1. ATTENTION ANALYSIS

The effect of the two conditions is reflected in the gaze response of

the participants in the verification phase. We retrieved two impor-

tant measurements. The first is the reaction time of the human in

response to the attention stimulus of the robot, i.e., the request

to select an object. We measure in this case the time elapsed

between the onset of robot speech and the time when the human

gaze, stabilized on the object of interest, is correctly identified

by the robot. The second is the interval between two successive

requests from the robot, marking the amount of time dedicated

by the partners to exchange information about the object of inter-

est. This measurement is inversely proportional to the pace of

interaction as it has been defined by Rich et al. (2010). The shorter

the interval, the higher the pace or the faster the rhythm.

Tables 1, 2 report the reaction time and the indirect pace

measurement for the participants of the two groups. The time

distributions were compared with Wilcoxon’s test. The test shows

Table 1 | Reaction time (seconds) in response to robot attention

stimuli (utterances) during verification phase.

Group Mean Std Median Wilcoxon’s test

HI 1.932 0.711 1.917 W = 418,

RI 1.296 1.145 1.106 p-value = 0.005

Table 2 | Time interval (seconds) between consecutive robot

attention stimuli (utterances) during verification phase.

Group Mean Std Median Wilcoxon’s test

HI 9.524 1.515 8.588 W = 447,

RI 7.287 1.653 7.257 p-value = 1.6e–5

that there is a difference in the timing between the two groups

(p ≤ 0.005). People in the RI group react faster than the ones

of the HI group, and the interaction with the robot has a higher

rhythm (see Figure 7).

Figure 8 shows the normalized gaze heat-maps of the two

groups. Each map is a plot in the head’s pitch-yaw space, thus each

point represents the gaze direction of the human during the inter-

action with the robot. The range of pitch and yaw is [−90◦
, 90◦].

For the head pitch, 90 is on top of the head, 0 is in front of the

head, −90 is below the head. For the yaw, 0 is in front of the head,

while −90 and 90 represent left and right. We were able to identify

the four clusters associated to the robot head and the three objects

by applying K-means on the points, indicated in the left upper

corner of each plot. The mean and standard deviation of the cen-

troids of the four clusters is reported in Table 3. We compared the

density of each cluster in the two conditions with Wilcoxon’s test.

The test showed that there is no significant statistical difference

in the clusters for both conditions (p > 0.1). It is, however, inter-

esting to observe the amount of time spent by the participants

in looking at the different salient topics, which is proportional

to the density of the clusters. Overall humans spent 66% of their

time looking at the robot. For the three objects, the amount of

time is unequal: while the left and right objects get almost the

same amount of time (7% and 6%), the object in the center was

the focus of attention for almost twice the time spent for the oth-

ers (21%). This has a double explanation: on one side, it is more

difficult for the robot to detect that the human has moved the

head to gaze at the object of interest if the movement is exclu-

sively on the head pitch; on the other side, sometimes participants

spontaneously looked downward to match the robot’s gaze (this

behavior is in fact “normal” for humans and rather a positive sign

of natural, engaged interaction with the robot).

3.2. SUBJECTIVE EVALUATION

Table 4 reports statistics about the evaluation of the volunteers

involved in the object learning task. Overall, participants per-

ceived the robot as quite engaged (nobody evaluated engagement

with negative marks—i.e., below 3); the robot behavior was quite

readable, as participants pointed out that it could understand the

task and it was easy for them to figure out when the robot was

expecting an input from the human. The gaze behavior of the

FIGURE 7 | Reaction time to robot attention stimuli and time interval between consecutive attention requests in the verification phase.
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FIGURE 8 | Normalized gaze heat map of the human partners in the HI

and RI groups. The plots show the points in the pitch-yaw space representing

the gaze direction of the human partners during the interaction with the robot.

Note that the range of pitch and yaw is [−90◦
, 90◦]. For the head pitch, −90

is on top of the head, 0 is in front of the head, 90 is below the head. For the

yaw, 0 is in front of the head, while −90 and 90 represent left and right.

Table 3 | Characteristics of the four clusters of gaze points, corresponding to robot and objects, in the normalized head’s pitch-yaw space of

the participants in HI and RI groups.

Target Phase Yaw mean Var Pitch mean Var Density mean Std Wilcoxon’s test

Robot HI 2.51 31.52 0.40 42.38 0.647 0.197 W = 22,

RI 2.24 26.05 5.61 31.31 0.673 0.259 p-value = 0.804

Left object HI −33.56 50.08 13.92 172.13 0.089 0.050 W = 37,

RI −25.45 47.44 13.54 109.67 0.052 0.049 p-value = 0.128

Center object HI 5.88 34.21 18.78 59.25 0.190 0.213 W = 26,

RI 0.82 20.96 28.08 39.05 0.229 0.258 p-value = 0.901

Right object HI 31.60 51.44 16.94 176.88 0.072 0.054 W = 32,

RI 29.58 85.28 12.73 118.95 0.045 0.037 p-value = 0.383

Mean and variance refer to the coordinates of the x- and y-axis (yaw and pitch) of the points in each cluster. Wilcoxon’s test was applied on the normalized densities

of each cluster.

robot was also quite explicit, but this seems quite obvious because

the objects position was facilitating the task. Interaction with the

robot was globally easy for the subjects, despite the technical

difficulties in making the interaction robust with respect to the

participants subjectivities. The task performances, indeed, were

influenced by the irregularities introduced by each participant:

some had difficulties in having their speech recognized correctly

(we did not calibrate the speech recognition system for the indi-

vidual participants), some had a very stiff pose and their head

was not turning to look at the objects, etc. It is likely that

these variables influenced negatively some subjects, which could

explain the fluctuation of some evaluations. Clearly, if subjects

agreed on the ease/naturalness of interaction, they were uncer-

tain about the human-likeness of this interaction. This result is

not surprising, because we constrained the interaction to be based

simply on gaze. Even if we asked the subjects to concentrate on the

gaze, it is possible that, to feel it “human-like,” they would have

needed something more, for example more body language. It is

also possible that the evaluation of the interaction by the subjects

may be influenced by other factors: first, the surprise effect due to

the first encounter with a humanoid robot, which was unknown

to most of them; second, the frustration of not having successfully

completed the task for factors not correlated directly to gaze (for

example speech). Finally, the judgment of the “human-likeness”

of the robot may also be influenced by the expectation the sub-

jects had during the interaction. During the task, their behavior

unconsciously adapted to the robotic partner.

3.3. EVALUATION BY THIRD-PERSONS

Table 5 reports the statistics about the first part of the post-

experiment questionnaire given to external observers (mean,

standard deviation, minimum and maximum value assigned to

Frontiers in Neurorobotics www.frontiersin.org February 2014 | Volume 8 | Article 5 | 9

http://www.frontiersin.org/Neurorobotics
http://www.frontiersin.org
http://www.frontiersin.org/Neurorobotics/archive


Ivaldi et al. Robot initiative in learning task

Table 4 | Post-experiment questionnaire for participants.

Question Group Mean Std Min Max Wilcoxon’s test

Q1: The robot was engaged during the color naming task HI 4.50 0.84 3 5 W = 28.5, p = 0.2824

RI 4.00 0.82 3 5

Q2: The robot understood the task HI 3.83 1.47 2 5 W = 19.5, p = 0.8795

RI 4.14 0.89 3 5

Q3: The robot could be a good partner in a cooperative task with a human HI 2.33 0.52 2 3 W = 12, p = 0.1767

RI 3.00 1.00 2 5

Q4: The robot is intelligent, it understands what happens HI 2.33 0.52 2 3 W = 15, p = 0.4028

RI 2.86 1.21 1 4

Q5: During the naming task, robot was showing a human-like behavior HI 2.17 0.75 1 3 W = 18.5, p = 0.7428

RI 2.43 0.79 2 4

Q6: During the task, the robot behaved like a child HI 3.17 0.76 2 4 W = 31, p = 0.1572

RI 2.29 1.11 1 4

Q7: Interaction with the robot was easy HI 3.33 1.21 2 5 W = 18.5, p = 0.7682

RI 3.57 1.13 2 5

Q8: The robot understands which object is indicated by the human HI 3.50 1.22 1 5 W = 26, p = 0.4811

RI 2.71 1.60 1 5

Q9: It was easy to identify the object indicated by the robot HI 4.33 0.82 3 5 W = 15.5, p = 0.4069

RI 4.71 0.49 4 5

Q10: It was easy to see when the robot is waiting for something from the human HI 4.00 1.26 2 5 W = 18.5, p = 0.7542

RI 4.29 1.11 2 5

evaluate each question). Statistical analysis was realized in R

through the Welch two-sample t-test, comparing the answers of

all questions for the two groups. Significance level was set at 95%.

The analysis shows that there is no significant difference between

the A and B conditions: for each question p > 0.4, which indicates

that the vision of the human–human interaction demonstrat-

ing the task did not influence the perception of the observers.

This means that seeing a human–human demonstration of the

task is not a bias in judging the human–robot interaction task.

Overall, participants evaluated positively the aspects related to

the task (Questions 2, 7 especially). The “human-likeness” of the

gaze and more generally the robot’s behavior is above the neu-

trality threshold, so rather positive. This result can be explained

by looking at the second part of the questionnaire, where the

participant had to indicate the main issue of the teaching phase

of the experiment as well as the most important feature that in

their opinion would have been necessary for a more human-like

interaction. Participants could choose among a list of predefined

items, but could also propose their own. Table 6 reports the per-

centages of answers for each group. For both groups, two are

the main issues with the teaching phase of the experiment. The

first is the “slowness” of the robot that replies with a certain

delay to the human labeling; it also keeps the pace of interac-

tion globally low with respect to what a human would do. This

is especially remarked by the participants of group A, who saw

the human demonstration (that was quicker than any human–

robot interactions shown in the video). The second negative point

is about the robot’s movements that are not perceived as natu-

ral enough. This can be explained by looking at the answers of

Question 11, where participants could indicate the critical fea-

tures to add to make the robot more “human-like.” In Question

11, almost half of the suggestions were indicating faster move-

ments, which is coherent with the first issue pointed out in

Question 10. Almost one third of the participants, in both groups,

suggested features linked to gestures and movements to make the

robot more readable (e.g., give more feedback to the user). It

may seem straightforward, but pointing at the objects while gaz-

ing at them would certainly make the robot appear more natural

and “animated” to the partner’s eye. In the experiments we con-

strained the robot movements to the head, because we did not

want to have the human gaze perturbed by proactive gaze, such

as the one that could be induced by the human following the

hand and predicting the target pointing location before the robot

would gaze at it. This choice would allow us to have a better esti-

mation of the human gaze at the cost of a less natural robot’s

behavior. Interestingly, this lack of “naturalness” was noted by

the external observers but not by the human partners during

the experiment. Among the desirable features that could make

the robot more “human-like,” participants in both groups indi-

cated speech. In our experiments, the robot’s speech is the default
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Table 5 | Post-experiment questionnaire for external observers.

Question Case Mean Std Min Max Welch t-test

Q1: The robot was engaged during the color naming task A 4.18 0.87 2 5 t = 0.325; p = 0.74

B 4.08 1.05 1 5

Q2: The robot understood the naming task A 4.33 0.83 1 5 t = 0.076; p = 0.93

B 4.38 0.95 1 5

Q3: The robot could be a good partner in a cooperative task with a human A 3.25 0.96 1 5 t = 0.022; p = 0.98

B 3.29 1.12 1 5

Q4: The robot is intelligent, it understands what happens and learns something A 3.48 1.20 1 5 t = −0.825; p = 0.41

B 3.62 1.07 1 5

Q5: Interaction with the robot is easy A 3.31 0.97 1 5 t = −0.093; p = 0.93

B 3.32 1.03 1 5

Q6: During the naming task, the robot was showing a human-like behavior A 3.06 1.02 1 5 t = 0.388; p = 0.70

B 2.97 0.99 1 5

Q7: The robot understands which object is indicated by the human A 4.5 0.74 1 5 t = 0.479; p = 0.63

B 4.32 0.98 1 5

Q8: The robot gaze is human-like A 3.29 1.11 1 5 t = 0.272; p = 0.79

B 3.32 1.03 1 5

Q9: It was easy to see when the robot is waiting for something from the human A 3.69 0.93 2 5 t = 0.063; p = 0.95

B 3.62 1.07 1 5

First part (grading behaviors).

voice of a classical text-to-speech tool (Festival). The speech is

cold, monotone: perfect for a robot, and nothing like a human’s.

Probably, external observers would prefer a more human-like

voice, with the ability to change the pitch or the intonation

to give further feedback to the partner or the observer himself

(for example: communicate enthusiasm when the robot learns

something new).

4. DISCUSSION

4.1. DOES AN ACTIVE ROBOT INDUCE A FASTER INTERACTION?

The response times reported in Table 1 show that humans

respond faster to robot’s utterances in the verification phase when

in the previous phase of the task the robot was leading the

interaction (RI condition). The measurements verify our initial

hypothesis, that is the difference in the initiator/leader of the

learning task in the first phase is reflected in different reaction

times in the second phase of the task. In the HI teaching phase,

the robot asks the human to choose an object, leaving the choice

to the human, and making him the main actor of the interac-

tion. Once the human has gazed to the object, and its gaze is

correctly estimated, the robot looks at the object of interest. The

rhythm of the interaction is essentially determined by the human

response to the robot’s utterance: in terms of time, the human

can move more or less quickly his head, and make the move-

ment more or less “readable” by the robot, thus influencing the

time needed by the robot to estimate the head direction correctly.

Once the direction is estimated, the robot moves its eyes and

head with a practically constant movement, determined by the

gaze controller—the same used in Boucher et al. (2012). In the RI

teaching phase, the robot randomly picks an object on the table

and asks the human to tell the color of the object. The choice in

this case is made by the robot, which initiates the interaction. The

rhythm of the interaction as well as its success is determined by

the readability of the robot, its capability to induce in the human

a prompt response to the robot attention request, and of course

by the readability of the human that needs to have the same refer-

ential focus as the robot to make the interaction advance12. Again,

the duration of the robot’s movements is fixed, so the human is

the main actor responsible for setting the pace of the interaction

through his behavior. Why do these two conditions reflect in dif-

ferent reaction times in the verification phase? There could be

several reasons. One possible reason is that in the RI condition,

participants learned how to “read” the robot behavior to advance

in the teaching phase, and reply to its questions contingently.

Therefore, in the verification phase they could be facilitated in

responding promptly to the robot attention request. Another pos-

sibility is that, in the RI condition, the robot is interacting in a

more “active” way, because it asks questions about the objects. As

12In the experiment, the robot was programmed in a way that it was waiting

for the human to match its referential focus. So an erroneous situation—i.e.,

the human looking at a different object than the one chosen by the robot—

would have been caught. However, during the experiments this situation never

occurred: the human always looked at the correct object pointed by the robot.
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Table 6 | Post-experiment questionnaire for external observers.

Answer A (%) B (%)

Q10: In your opinion, what is the main problem in the

teaching phase?

The robot movements are not natural 27.08 29.41

The robot is slow 52.08 26.47

Not natural speech interaction 2.08 −

The robot does not understand the human speech 2.08 −

The human is slow 4.17 2.94

Difficult to understand what the robot wants to do 4.17 11.76

There are no problems in this phase 8.30 14.71

Human movements are not natural − 5.88

The learning task is not natural − 2.94

Q11: In your opinion, which of these features will make the robot

more human-like?

A faster interaction 45.83 35.29

A better voice, more natural 18.75 26.47

The robot making gestures 22.92 23.53

The robot speaking with a different vocabulary 2.08 −

Body language (incl. walking) 4.17 −

The robot giving more feedback to the human 6.25 14.71

Second part (“first choice” selection).

observed by Breazeal (2003), this pro-active behavior regulates the

interaction and provides a feedback signal to the human about the

internal state of the robot. This behavior is also likely to induce in

humans a social parenting effect: humans could have the impres-

sion that they are teaching the objects properties to a curious

child. Conversely, in the HI case the robot acts “passively”: it asks

the human to provide the attention stimulus. So not only the

learning process is led by the human, but the human could also be

more hesitating in front of such request. The active/passive atti-

tude could be responsible for making the robot more transparent

to the human, in a way that the human would have or not a clear

intuition about the robot’s internal state. This claim is partially

supported by some negative evaluations provided by the partici-

pants in the post-experiment questionnaire (see Table 4), such as

Questions 3–5. To summarize, the prior experience of an “active”

robot leading the learning task makes the human react faster to

the robot’s attention utterances. Among the possible reasons, the

robot active attitude improves its readability and the intuition of

the human about the robot’s state, hence the human reacts faster

when he is interrogated by the robot. Our observations can be put

in relation with the ones of Huang and Thomaz (2011), where

they showed that “a robot responding to joint attention is more

transparent, such that interactive task performance is faster and

more efficient.”

4.2. FUNCTIONAL ROLES AND SOCIAL TASKS

The learning experiment described in this paper is rather simple,

yet it addresses an up-to-date issue in the domain of human–

robot cooperation, regarding functional roles of partners dur-

ing interactions. Roles can be described in terms of behaviors,

rights, expectations and norms that humans follow during social

interactions. We speculated that the different roles of the robot in

the task (initiator vs. follower) could have an impact on the pace

of the interaction. In the two conditions proposed in the exper-

iment, the robot initiative determined its attitude as a “leader”

of the interaction or as a “receiver.” Leaders (or “givers”) express

proactive behaviors, stimulate the partner and generally set the

time in turn taking scenarios. On the other hand, “receivers” fol-

low the leaders’ initiative by responding to the stimuli proposed

by them. In the RI condition, the robot was leading the interaction

by actively choosing the object of interest and asking questions

to the human, but especially setting the onset of each turn. The

HI condition, the robot was marking the beginning of each turn,

by asking the human to choose an object, but in fact the pace

was determined by the human reaction time to the robot request

and the human decision about where to gaze, when and how. It is

clear that the pro-active element in the two conditions was deci-

sive for setting the rhythm of the interaction in the two phases.

The remarkable result of our study is that it also influenced the

rhythm of the verification phase. Though preliminary, our study

suggests that the leading role of the robot can influence the pace

of the interaction in a social task. The more general question

is whether different functional roles (i.e., teacher vs. learner or

requester vs. giver for example) can have impact on the dynamics

and performance of the interaction.

During social tasks, people rely on their ability to share rep-

resentations, predict the partner’s actions and intentions, inte-

grate the other’s actions and the predicted effects; they need a

constant verification about the mutual understanding and the

“mutual awareness” of the partners across the evolution of the

interaction (Sebanz et al., 2006). As discussed in section 4.1,

in our experiment the robot’s pro-activity makes its behavior

more understandable, as it provides an additional element to

the human to estimate the “internal status” of the robot and

be aware of the progression of their interaction. The same hap-

pens in human–human interaction, where mentalization and

meta-cognition are entailed to take account of the knowledge

and intentions of others (Frith, 2012). This is well explained

in Clark’s theory of human–human collaboration (Clark, 1996):

people enter in joint activities when they have to solve coordi-

nation problems, and to achieve coordination partners need to

constantly update their common ground via the available meth-

ods of communication (verbal or non-verbal). Tomasello (2009)

identifies in coordination and communication the primary pro-

cesses for establishing cooperation. Role theory provides further

arguments to explain this behaviors from a sociological point of

view, based on the premise that persons in social positions hold

expectations for their own behaviors and those of others: accord-

ing to Biddle (1986), humans behave differently and in a way

that can be predicted depending on their respective social iden-

tity and the situation. Role taking has been also studied in the

context of social and infant development for cognition (Piaget,

1962). In a study of verbal communication during a collabora-

tive task, Clark and Wilkes-Gibbs (1986) modeled the acceptance

as a step by step process, started by a “initiator,” where the part-

ners establish the mutual belief based on the evidence of common

references.
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The modality of interaction, the relationship between the

human pairs, has also influence on the action patterns at

kinematic level: Georgiou et al. (2007) showed for example that

cooperative and competitive behaviors translate into different

kinematic trajectories for reach-to-grasp tasks in human–human

interaction. The definition of roles and the timing of their actions

are critical. Synchronization in particular depends on “readabil-

ity” of the partners, the way humans detect and read non-verbal

cues, the ability to anticipate the reactions or the intent of the

human partner and enter into synchrony. The idea is simple: the

less feedback you have from the partner (or the more this feed-

back is ambiguous), the more time the task will take. In humans,

the study of synchronization skills has fundamental applications

in the early diagnosis of social disorders as autism (Delaherche

et al., 2013). Regarding synchrony and temporization, Yamazaki

et al. (2008) analyzed human–human interaction to highlight

some transition relevant places (TRPs) corresponding to the

moments when a speaker’s turn is about to end. Emphasized key-

words, unfamiliar and deictic words are other examples of focus

points. When placing the non-verbal actions at these points, the

participants of the interaction perform more non-verbal actions

with a precision timing.

In robotics, for the design of social agents that can enter

into synchrony with the partner (Andry et al., 2011), for the

design of robot controllers that adapt to the human decisions

during collaborative tasks (Wilcox et al., 2012). As discussed

by Stefanov et al. (2009), however, “there are only a few studies

discussing roles in human–human interaction,” and most of them

are focused on verbal communication (e.g., the dominant partner

in a conversation Hung et al., 2008) whereas it would be more

interesting for robotics to explore the impact of such roles for

tasks where non-verbal cues are predominant, such as joint atten-

tion and haptic human–human interaction (Reed et al., 2007). An

interesting review of roles assignment policies for human–robot

motor interaction can be found in Jarrassé et al. (2013).

To summarize, there is evidence that verbal and non-verbal

behaviors, interplays and interpersonal synchrony are critical to

determine the functional role of humans during social tasks

(Dong et al., 2013). However, while the literature in psychol-

ogy analyzing the social and cognitive aspects of roles is notable,

there are only few studies describing the impact of roles into the

dynamics of interaction.

Since interpersonal synchrony can be used as a measure of

engagement between social partners (Wiltermuth and Heath,

2009; Rich et al., 2010; Delaherche et al., 2012), from the results

presented in section 3 we can contend that the leader role of the

robot increases the rhythm of interaction for our social learning

task. Whether this statement can be generalized to other tasks or

to different roles, it is an open question. Surely more experiments

are needed to elucidate this question.

4.3. READABILITY AND GAZE ESTIMATION

Humans are extraordinarily capable of inferring with accuracy

the spatial direction of attention of their partners. They can

integrate cues from the partner’s posture, eyes, and anticipatory

signals (Sumioka et al., 2007) as well as linguistic informa-

tion (Tanenhaus et al., 1995). If the robot is sufficiently “readable,”

i.e., provides cues about its intentions or manifest them explic-

itly, the human would have no difficulty in inferring its focus of

attention. In our experiment, we made the robot readable with

a simple combination of gaze and speech, which is known from

literature to be sufficient for accomplishing the proposed learn-

ing task (Staudte and Crocker, 2010). This fact was confirmed

by our experiments: subjects interacting with the robot indicated

that it was easy to identify the object indicated by the robot (see

Table 4). Nevertheless, participants also pointed out the necessity

of adding more gestures and making movements more natural,

which suggests that our attention system was not sufficient for a

“human-like” interaction. It is likely that the constraints we put

on the robot’s body were the main cause: adding the torso motion

(for example a swing toward the left/right), pointing actions and

gestures, would have certainly made the robot movements fancier

and more natural—that is closer to the ones a human natu-

rally makes when showing objects to another partner. Indeed if

the robot has arms and torso, why is it not moving them? We

already explained that our choice was motivated by the need to

avoid proactive gaze in the human, but neither the naive partic-

ipants performing the experiment or the external observers were

informed about this issue. However, it is very likely that the main

constraint that perturbed the participants was in the attention

system in first place. When two people interact in face-to-face

scenarios, their eyes/heads are constantly moving, following the

referential focus of the partner. Realizing such joint attention

mechanism in the context of human–robot interaction is tech-

nically challenging, because of the difficulty in estimating the

human referential focus from the robot’s cameras. Researchers

often relies on external wearable devices, eye-trackers (Yu et al.,

2010), or simplified object pointers to select explicitly the target

of joint attention (Huang and Thomaz, 2011). Those solutions

either circumvent the eye tracking problem or provide an accu-

rate gaze tracking, but at the cost of an atypical interaction. Our

solution for estimating the human gaze using head pose track-

ing is certainly a simplification, however, it makes the interaction

with the robot seamless. Moreover, it provides a measurable feed-

back signal that can be exploited by the robot to adapt on-line its

actions to the human behavior. This is a pre-requisite for imple-

menting an on-line robot controller that is capable of taking into

account the human (his posture, actions, intent, etc.) when inter-

acting with the robot during a collaborative task. It is also our

belief that natural interaction is a requirement for measuring the

timing of the human reactions in response to the robot’s attention

stimuli in a open-ended interaction scenario.

4.4. TOWARD A NATURAL HUMAN–ROBOT INTERACTION

In prior work (Ivaldi et al., 2013), we have been investigating

how social interaction can influence the learning process of the

robot. We showed that social guidance combined with the robot’s

curiosity could make the robot explore its environment and learn

“like a toddler,” focusing on the most informative objects (Oakes

and Baumgartner, 2012). The experiments were conducted with

biased and unbiased caregivers, proving that even social partners

who are not aware of the learning task of the robot were not

influencing drastically the performance of the learning process

of the robot. The robot’s intrinsic motivation system was able to
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compensate for the different teaching inputs. Those experiments

were not completely realistic: the human and the robot were inter-

acting together exchanging objects and toys on a table, which

is a natural experimental setting; however, the learning process

supposed that the two agents were totally engaged in accom-

plishing the learning task. In fact this happens quite rarely with

participants unfamiliar with the robot, who do not have a perfect

understanding of the robot’s capabilities and could misinterpret

as faults or disengagement, for example, the robot’s inactivity

periods when its learning system decides what to do and how.

In our opinion this is one of the main limitations that prevents

performing such experiments with naive participants: it is critical

to endow the robot with the social abilities to engage the partner,

arouse interest and make interaction as natural as possible, so that

everyone could teach to the robot or collaborate with it for doing

a task.

With this paper, we made a first attempt in answering how

to make the social interaction not only effective for the accom-

plishment of the task (i.e., teaching something to the robot) but

also natural as if the human was teaching to another human.

With a simple joint attention mechanism almost all participants

perceived the robot as engaged and its behavior quite readable.

A remarkable result that suggest a natural interaction is the

average amount of time that the participants in our study spent

looking at the robot. According to Argyle and Cook (1976), dur-

ing human–human interaction people look at each other about

60% of the time, and look more while listening than while talk-

ing (during which they give frequent short glances). Interestingly,

as shown in Table 3, the participants in our study looked at the

robot about 65–67% of the time, which is comparable with the

human–human case. This could be a positive indicator of natural

interaction13.

We showed that the initiating role of the robot in the teaching

phase of the task has a consequence on the rhythm of the interac-

tion in the second phase. Intuitively, we were expecting a different

perceived engagement in groups HI and RI (that is different rat-

ings in the questionnaire of Table 4), which could reflect the

difference in the reaction times of the two groups. The question-

naire results, however, show that there is no significant statistical

difference in the evaluation of the quality of interaction in the two

cases. While the initiating role of the robot influences the rhythm

of interaction, it does not influence the perceived engagement.

This means that while the volunteers with a prior experience of

the “active” robot react faster in response to a robot’s attention

utterance, their perception of the quality of the interaction is not

different from the one of people with a prior interaction with a

“passive” robot. This result could be biased by several factors: the

participants’ attitude toward robots in general, or to new tasks;

their natural attitude when teaching, their engagement toward

the task (that was not challenging or motivating for an adult).

We plan to perform additional experiments to verify the indepen-

dence of the engagement with respect to these factors, with more

subjects.

13Whether this value is affected by the embodiment induced by the humanoid

shape, it is hard to tell: further experiments with different robots are necessary

to investigate this question.

Though preliminary, our results provide insights for improv-

ing the engagement system of the robot and make interaction with

the human more natural and effective. Qualitatively, results indi-

cate that people would certainly prefer the robot to react faster

(which is mainly a technological limitation due to the process-

ing time of our modules, but points toward the implementation

of anticipatory behaviors); they would also like to see improved

behaviors even if they were not necessary for the task accomplish-

ment (more gestures, more natural voice). We plan to perform

more experiments to study how introducing these desirable fea-

tures will change the participant’s and observer’s perception of

the human-likeness of the interaction, particularly their effect on

the performance of the robot during learning tasks: could a more

natural human–robot interaction yield better robot learning per-

formance? Our intuition is that it could, especially if the people

interacting with the robot are naive. Therefore, this work is a

first step toward replicating the teaching experiments of Ivaldi

et al. (2013) in more ecological and natural conditions with naive

people.

Of course, it still remains an open question about how

much the iCub’s human-like/child-like appearance can influ-

ence people’s expectations about its behavior. This question

was equally raised by Huang and Thomaz (2011) about

people interacting with Simon, a Meka humanoid with a

child-like head. It is indeed possible that people expecta-

tion about the robot performances and movements were dis-

appointed during our interaction experiment, because they

were attributing human-like properties and cognitive processes

to it, which did not correspond to reality (Stenzel et al.,

2012). Hence the negative evaluation of the robot behavior.

This is indeed very plausible, because most of the partici-

pants were unfamiliar with robots, and not aware of their real

capabilities.
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