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Abstract 

This  paper  introduces  a class of linearizing coordinate 
transformations for mechanical  systems whose moment of 
inertia  matrix  has  a  square  root which is a  jacobian.  The 
transformations.  when  they  exist. clcfine a local isometry 
from  joint  space  to  euclidean spacc. hence.  may afford 
further insight into  the  transient  behavior of robot mo- 
tion.  It  remains to be seen whether any appreciably  large 
class of robots  admit such  linearizing isometries. 

1 Introduction 

This  paper will propose  a  smooth  coordinate  transfor- 
mation  which,  when it exists. exactly  linearizes the dy- 
namical  equations of a  mechanical  system  with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 degrees 
of freedom.  The  transformarion is considerably  simpler 
than well known exact  linearization schemes based  upon 
cancelling  all nonlinear  terms  through  actuator  inputs. 
Moreover. it is defined on the  entire  phase  space  and gives 
rise to  a local isometry betweex configuration  space  and 
euclidean  n-space.  The existelice of this  transformation 
depends  upon  the  solution to a systcm of partial differen- 
tial  equations governed by the  robot's  kinematics along 
with  its  dynamical  parameters.  Thus.  this  paper raises 
but does not answer the  question as to which robots  be- 
have isometrically like a  system of linear time  invariant 
double  integrators  with memoryless nonlinear  input  and 
output  functions. 

After introducing  some  tenninology. below. a "feed- 
back cancellation"  coordinate  transformation commonly 
encountered in the  robotics  literarure is presenred in Sec- 
tion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. The new transformation is presented in Section 3. 

A brief discussion of the difficulties involved in develop- 
ing practical existence tests  and  construction  techniques 
is provided in  the concluding section. Definitions and 
notation  are relegated to  the  appendix. 

Consider  the rigid body model of robot  dynamics for 
an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn degree of freedom  kinematic  chain. 

where  the generalized positions  take values in joint space. 
q E J ,  and  there is an  acuator for every degree of free- 
dom, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU c R". For ease of exposition n e  will assume 
that J is a  compact  simply  connected  subset of R" - a 
condition prevailing  for  all robots whose revolute  joints 
are  constrained  to move over an  arc less than 360". and 
which may  be  relased. in any  case. with  more  attention 
to  technical  details. Every robot of practical  interest  pos- 
sesses a positive  definite moment  o j  inertia  matrix. and 
we assume  this  true of -11. Throughout  the sequel. we will 
assume  that  the  gravitational  torques. X.. are zero. For 
many  kinematic designs. for instance "SC.IR.1" arms, 
this is a realistic assumption.  Otherwise.  command in- 
puts, u .  discussed below must be augmented by a cancel- 
lation  term. 

u,,g = u + k ( q ) .  
A 

to  be  meaningful. 
\\e adopt  the  usual  model of workspace. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW = SO(3) X 

R3. and  denote  the kinematics g : J - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU'. Equation (1) 
may  be derived according  to  the  Lagrangian  formulation 
of Sewton's laws. In so doing. it beconles clear that  the 
particular  form of :If. and.  therefore. B. is governed by 
the  kinematics  in  conjunction  with  the  robot's  dynami- 
cal parameters. p E Ria". \\e  assume  this  derivation is 
familiar.  and  simply  note for later use that 

A 
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2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALinearizations of Mechanical Sys- 
tems 

It is  well known that rigid body  dynamical  models of 
robot  arms may be linearized  exactly  using  a  suitable 
coordinate  transformation, for instance, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas follows. 

Lemma 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConsider the rigid body model of a mechanical 
system, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3), in the  absence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof gravity, k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh : J -+ 

R" be a local diffeomorphism. Then under the  change of 
coordinates, defined b y  T : P X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU - R3", 

x2 - dl1 Ai [Bzz - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu ]  

(4) 
the system h a  linear time  invariant  dynamics given b y  

il =z2 

z2 =V 

with  output map 

y = g 0 l l - l ( z l ) .  

Proof: According to  the definition of' zl, z2,  

i l  = d h  5 2  = 2 2 :  

by applying  the  chain  rule.  Similarly, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i 2  = diz 5 2  - dl1 M-'[Bx2 + k - u ] .  

0 

This is not  the  most  general  class of transformations 
that  might  be  used  to  linearize  (3),  according  to  the  re- 
cent  nonlinear  syst,ems  literature,  e.g. [?], but it includes 
methods  commonly  encountered in the field of robotics. 
In  particular, for non-redundant  kinematics, if we iden- 
tify h:  the first  component of T  with  the  kinematic  map, 

h(z1) = g(s l ) ,  
A 

then, locally, T not only  linearizes (3j?  but dynamically 
decouples  each  input  and  output  pair,  e.g., as report,ed 
in [3]. 

Evidently, the  advantage  attending  this  point of view, 
is the possibility of applying classical  t,heory  directly to 
the control of nonlinear  plants. For instance, if K ,  r,  re- 
spectively,  define  a  linear  feedback law and  precompen- 
sating  filter: 

V, = - K z  + r ( r ) ,  (6 )  
A 

under whose action  the  out,put, zl: of ( 5 )  behaves  in  a  de- 
sired  fashion  with  respect to  the reference input, r then 
the  input  to  the  robot  (3) defined by the inverse  coordi- 
nate  transformation for u under T ,  (4): 

u, = Bz2 + Mdg- ' [ v ,  - dg zz]: 
A 

(7) 

2 

forces the  output y ( t )  E z1 ( t ) .  Similar  observations  have 
been  made  independently by a variet'y of researchers  in 
the field of robotics  using different  language. A well 
known  example is provided by t'he  "resolved  acceleration" 
method of 141: the  control law: u ,  is applied to  the  robot 
with  the choice of r given as 

the inverse of the filter  specified by the equivalent  closed 
loop  linear  time  invariant  system (5). 

Note that  this choice  for h satisfies the  hypothesis of 
the  lemma  almost  everywhere in J !  but will not define a 
viable  transformation  at  the  "kinematic  singularities", 

C = { q  E J : r a n k ( d g )  < d i m W } ,  

the  critical  points of g .  Most  realistic  robots  have  kine- 
matic  singularities whose  image under g is in the  interior 
of W and which  may  not  be  easily  located,  hence  such a 
transformation may be  impracticable. 

It is apparent  from (i) that  the success of this  pro- 
cedure is based  upon  exact  cancellation of each term in 
B,  as well as the  ability  to  match every term in M .  
In all likelihood,  such  a  control  methodology will be very 
sensitive to inaccuracies in the original  model, (l), uncer- 
tainties  in  the  available  estimates of system  parameters, 
as well as computational  error  arising  from  the  digital  im- 
plmentation of the  control law. It is reasonable  to  inquire 
regarding  the  existence of simpler  linearization  schemes. 

A 

3 A Linearizing Isometry 

The  contribution of this  paper is the observation that if 
the  kinematics  and  dynamical  parameters which gire  rise 
to  system (1) define  a  moment of inertia  matrix whose 
square  root is the  jacobian of some  coordinate  transfor- 
mation  then  the  previous  inquiry  may  be  answered  in 
the affirmative.  For  ease of discussion we define the  set 
of square  roots of a  smooth  positive  definite  symmetric 
matrix valued function, M ( q ) ,  as 

N ( M )  { N  E Coc [J ,R"xn ]  : NA-'= M} 

Theorem 1 Consider the  rigid body model of a mechan- 
ical system, (1) , in the  absence of gravity, k (q )  = 0. 
Suppose  there exists a smooth  map? h : J + R " ,  such 
that dhT = N E JI(h4). Then under the  change of coor- 
dinates, defined b y  T : P x U + R3"! 

[ ] = T(z l ,z2 ,u)  = A [ ::::: NTz2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj , (8) 

the system has  linear time  invariant  dynamics given b y  

(5). 

Proof: First  note  that  since -14 is assumed to be 
positive definite: N ( M )  is not  empty,  and  any h 
satisfying the hypothesis is an immersion. By con- 
struction, we have z2 = d h  x2 = 21. Aforeover: 

A 

&=dh x2 + d h  x 2  

=WzZ - NT[NNT]-1[Br2 - u]  from (3) 
=[NT - N-'B]z2 + N - 1 ? L ,  

'And,  in the presence of gravity,  cancellation of k as well via uQUO 

as dicussed  in  the  introduction. 



and it remains  to show that [.YT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- S-lB] = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0. TO 
see this. recall, from  equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2).  

= [ - \ - S T  + .\-sT;z~ - [-$d,zl]Tz2 
= +\--\-Tx2. 

from which the  result follows. Sote  that  the ex- 
changed  order of differenriation in the  third line 
is justified since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 is continuously differentiable in 
both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq and t .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 

Corollary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 If it exists.  the  m.apj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. deJined in Theorem 
1 is a local isometry  j rom ( J .  (. 1 a),,{) to (R". (. 1 . ) I ) .  

Proof: Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11'; = d h  cg. IC: = d h  v i  be tlvo tan- 
gent vectors in TzR". at z = h ( q ) .  the  respective 
images of tangent vectors L ' ~ .  vh E T,J. under  the 
differential of h. lye  must show that  their  inner 
products  are  identical,  namely 

( vq 1 u' q / .  ' \{ = l$2f l'I, 

-l.T - \--\-Tr,' 
q -  v 

=dh l p h  1.; 

=( tu ;  1 d ) I .  

as required. 0 

Some of the  advantages of a  coordinate  transforma- 
tion  based  upon  the  square  root of the  moment of inertia 
matrix  are  immediately  evident. Given the choice of clas- 
sical controller. ur.  from  equation (G) .  tlle inverse trans- 
formation for u in terms of z .  1' is considerably simplified. 

u ,  = d h T e ,  
A 

in comparison  to ( 7 ) .  Noreover. since 11 is an  immersion, 
T may  be  computed everywhere  on J .  Finally. from  the 
point of view of sensitivity  raised  at  the  end of the previ- 
ous  section,  there is likely to  be  some  advantage gained in 
not  attempting  the  cancellation of B (which is quadratic 
in 4) via  feedback. 

The  existence of a local isometry between joint  space 
with it,s inertia  metric.  and  ordinary  euclidean  space would 
imply a close relationship between the  motions of systems 
(3) and (5) which is bound  to have important  implications 
for the  analysis of robot  transient  response. 

4 Which Robots Possess  Lineariz- 
ing  Isometries? 

It  seems ill-advised to  pursue tlle pragmatic  implications 
of these  observations  until it becomes clear that  tlle  trans- 

'Of course. dh  depends  upon  the  uncertain  dynamical  parameters. 
and can  be  no  more  accurately  computed  chan .If. as in ( 7 ) .  Again. 
in  the  presence of gravitational  disturbances. u ,  will  contain  an 
emra  term as well. 

formation is not  a mere chimera.  Conditions for the ex- 
istence of a  smooth  map whose jacobian is in N ( ( J f )  are 
identical  to  conditions for tlle  existence of solutions  to  a 
system of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 partial differential equations  in 71 vari- 
ables defined by the  entries of -11. .in  important  and un- 
resolved question,  then. concerns t,lle class of kinematic 
chains for  which there exist dynamical  parameters defin- 
ing a  moment of inertia  mat,rix  admitting  solutions  to 
t,hese equations. 

Even when such a  transformation  exists. it may not 
be easy to evaluate.  Consider  the one degree of freedom - 
"mechanical system"  built  from kinetic  energy defined by 

(not necessarily corresponding  to any physical system) 
where m is a positive scalar  function. 

x1 = x2 

An isometry defined by 

always exists for this  system.  but i t  is e s y  to choose func- 
tions,  e.g. m = l+cos2q. for nhich 12 appears  to  admit  no 
closed form expression in terms of elementary  functions. 
Such transformations  might have more  analytical  utility 
than  practical  function in an on-line control  setting. 

Despite  these  serious unresolved questions.  the pot'en- 
tial value of linearizing  isometries appears  intriguing. A 
more definitive account of the  problems  introduced  here 
is the  topic of a  future  paper. 

A 

Appendix 

The diflerential of a  smooth  function. f. \vi11 be  denoted 
df, which will be used to  denote  its jacobian matrix  rep- 
resentation as well. For functions. f (.. y). n.e denote  the 
"partial" differentials 

Denoting  the vector field in (3) as S ( r .  u ) ,  there should 
be no  confusion introduced by denoting tlle Lie derivative 
of any smooth  map. 11. along the flow of S as 

A = A L.x ( 1 2 ) .  

or? occasionally, 
A Riemannian  Metric is a positive  definite quadratic 

form defined on the  tangent  space  at each point of a 
smooth manifold in such  a fashion that  the  entries of 
any  matrix  representation  are  smooth  scalar  maps  on  the 
manifold. Every such  quadratic  form defines an inner 
product. (. 1 -) defined for all tangent  vectors. A Rie- 
mannian  Manifold is a  manifold. R ,  possessed of a Rie- 
mannian  Metric (. 1 .). Thus. ( J .  (. l is a  Riemannian 
Manifold  when we define 

for  all q E J and cq. e: E T,J. A local isometry is a 
smooth  map between tlvo Riemannian  .\ianifolds 

: ( R l ,  (. I . ) l )  - (R2: (. I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.)*I 
3 A  simple  reference for the  definitions  introduced  in  this  paragraph 
is the book by Thorpe 111. 

3 



which is a local  diffeomorphism and preserves inner  prod- 
uct,s:  i.e. for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE R1 and vq,ub E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATqR1 if 

z = h ( q )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
w, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd h  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
wi = d h  v i  

then 
(urn I &)1 = ( w  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 4 ) 2 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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