
Robot Learning from Demonstration by

Constructing Skill Trees

George Konidaris1,2 Scott Kuindersma2,3

Roderic Grupen3 Andrew Barto2

1Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge MA

USA

gdk@csail.mit.edu

2Autonomous Learning Laboratory

University of Massachusetts Amherst

Amherst MA

USA

3Laboratory for Perceptual Robotics

University of Massachusetts Amherst

Amherst MA
USA

Abstract

We describe CST, an online algorithm for constructing skill trees from

demonstration trajectories. CST segments a demonstration trajectory

into a chain of component skills, where each skill has a goal and is as-

signed a suitable abstraction from an abstraction library. These proper-

ties permit skills to be improved efficiently using a policy learning algo-

rithm. Chains from multiple demonstration trajectories are merged into

a skill tree. We show that CST can be used to acquire skills from human

demonstration in a dynamic continuous domain, and from both expert

demonstration and learned control sequences on the uBot-5 mobile ma-

nipulator.

1

1 Introduction

If we are to fulfill the promise of robotics and achieve ubiquitous general purpose
automation, we must move beyond designing specialized task-specific robots,
and toward general purpose commercial machines suitable for a wide range of
potentially user-specified applications. Such flexibility, however, poses a chal-
lenge: how can such machines be programmed by end-users, rather than engi-
neers?

Learning from demonstration (or LfD) [Argall et al., 2009] is a promising method-
ology that offers a natural and intuitive approach to robot programming: rather
than investing effort into writing a detailed control program, we simply show
the robot how to achieve a task. This has the immediate advantage of requiring
no (or very little) specialized skill or training, and makes use of a human demon-
strator’s existing procedural knowledge both to identify which control program
to acquire, and to avoid having to learn a control program from scratch—which
is presently infeasible for most tasks of interest on real robots. LfD has conse-
quently received a great deal of attention in recent years.

An important goal of current research in LfD is deriving controllers that are
robust to noise and initial conditions, and generalizable so that the resulting
controllers can handle reasonable variations in task automatically. To this end
we present CST (for Constructing Skill Trees), an LfD algorithm with four
properties that, taken together, distinguish it from previous work:

1. Rather than converting a demonstration trajectory into a single controller,
CST segments demonstration trajectories into a sequence of controllers
(which we term skills, but are often also called behaviors, motion primi-
tives or options in the literature). Breaking a complex policy into compo-
nents results in skills that can be reused in other problems, or replayed in
a different sequence.

2. CST extracts skills which have goals—in particular, the objective of skill
n is to reach a configuration where skill n + 1 can be successfully ex-
ecuted. Given a cost function, we can therefore use a policy learning
algorithm to improve the robot’s performance for each skill individually.
This is especially important in cases where it is easy to provide a “poor”
demonstration but difficult to provide a “good” one. More generally, this
is essential in cases where we wish to improve upon the demonstrator’s
performance. For example, it may be possible to manually control a robot
to demonstrate catching only balls traveling very slowly. Ideally, we would
like such a robot to use demonstration to obtain an initial baseline pol-
icy and then improve it using its own experience to become able to catch
fast-moving balls.

3. CST supports the use of skill-specific abstractions, where each skill policy
is defined using only a small number of relevant state and motor variables.
Given a library of candidate abstractions, CST selects the appropriate

2

abstraction for each component skill. This can greatly reduce the sample
complexity of policy improvement and facilitate skill transfer.

4. CST merges skill chains from multiple demonstrations into a skill tree,
allowing it to deal with collections of trajectories that use different com-
ponent skills to achieve the same goal, while also determining which tra-
jectory segments are instances of the same policy.

Given an abstraction library, CST segments demonstration trajectories into
sequences of skills, where the skill boundaries are determined using changepoint
detection—a principled statistical method that detects points on the trajectory
where either the most relevant abstraction changes, or where the trajectory on
both sides of the point is too complex to represent as a single skill. We restrict its
per-step computational complexity to a constant using a particle filter, resulting
in an online algorithm that processes each data point as it occurs and stores
only constant-sized sufficient statistics.

Skill-specific abstractions (though optional, because the abstraction library could
simply contain a single “whole problem” abstraction) aid in acquiring policies
that are too high-dimensional to be feasibly learned as a single skill. By break-
ing them into sequences of much simpler policies, we can define each subpolicy
using only a small number of relevant variables. Thus, a complex task such as
waking up in the morning and driving to work—which requires far too many
state variables to acquire efficiently as a single problem—could be broken down
into a series of subtasks (getting out of bed, taking a shower, leaving the apart-
ment, starting the car, etc.) that require sufficiently few state variables to be
feasible to learn.

2 Background

This work relies on several tools and frameworks to model sequential skill ex-
ecution. We adopt the options framework [Sutton et al., 1999]—a hierarchical
reinforcement learning formalism—for representing and reasoning about skills.
Our approach builds on prior work based on the notion that each skill has its
own policy (represented implicitly by a value function) defined using an asso-
ciated abstraction that includes only the relevant features of the environment
and ignores the others. Finally, we use a statistical changepoint detection algo-
rithm to detect changes in demonstrated policy, which occur when a trajectory
segment is best represented using more than one value function, or when the
most relevant abstraction changes.

The remainder of this section briefly covers each of these areas in turn, before
we proceed to the derivation of the CST algorithm in Sections 3 and 4.

3

2.1 Reinforcement Learning

In the reinforcement learning (RL) [Sutton and Barto, 1998] setting, we usu-
ally model the problem of learning a robot control policy as a continuous-state
Markov Decision Process (MDP), which can be described as a tuple:

M = (S, A, P,R, γ), (1)

where S ⊂ R
d is a set of possible state vectors, A is either a set of available

actions (the discrete action case) or a subset of R
n (the continuous action case),

P is the transition model (with P (s′|s, a) modeling the probability distribution
of next states s′ given the agent executing action a in state s), and R is the
reward function (with R(s, a, s′) giving the reward obtained from executing
action a in state s and transitioning to state s′). The objective is to learn a
policy π that maps state vectors to actions so as to maximize expected return
from each state s:

Rπ(s) = E

[

∞
∑

i=0

γiri

∣

∣

∣

∣

∣

s0 = s

]

, (2)

where 0 < γ ≤ 1 discounts future rewards. Note that although the agent receives
a reward ri for each transition, it aims to maximize the expected discounted sum
of future rewards. This mismatch between the agent’s immediate feedback and
its objective is what makes policy learning difficult in general.

In episodic MDPs, some set of states (termed absorbing states) cause interaction
with the environment to cease and for the agent to receive no further reward.
When the agent reaches such a state, we consider it to have completed an
episode, and allow it to begin interaction again. Learning then consists of a
series of episodes. In this case, we model the absorbing states as states that only
allow self-transitions with a reward of zero, and we obtain from each episode a
finite-length sample of Rπ(s), called a Monte Carlo sample of return from state
s [Sutton and Barto, 1998]:

R̄π(s) =
n

∑

i=0

γiri. (3)

We will make extensive use of such samples in this paper.

Two broad classes of policy learning algorithms have found application in robotics.
The first class of algorithms, value function methods, aim to learn a policy in-
directly by representing a value function V that maps a given state vector to
expected return, and then selecting actions that result in the state with highest
V . This suffices for control when P is known. When it is not available, the
agent must either learn it, or instead learn an action-value function, Q, that
maps state-action pairs to expected return.1 V is commonly approximated as a

1Because the theory underlying the two cases is similar we consider only the value function
case in this paper.

4

weighted sum of a given set of basis functions φ1, ..., φk:

V̂ (x) =
k

∑

i=1

wiφi(x). (4)

This is termed linear value function approximation because the value function
is linear in the vector of weights w = [w1, ..., wk]. Learning entails finding the
weights corresponding to an approximate optimal value function V̂ ∗. Linear
function approximation methods are attractive because they result in simple
update rules (often using gradient descent) and possess a quadratic error surface
that (except in degenerate cases) has a single minimum. In addition, they can
represent complex value functions because the basis functions themselves can
be arbitrarily complex.

We use the Fourier basis, a generic basis that generally exhibits good perfor-
mance, throughout this paper. The kth order Fourier Basis for d state variables
is the set of basis functions defined as:

φi(x) = cos
(

πci · x
)

, (5)

where ci = [c1, ..., cd], cj ∈ {0, ..., k}, 1 ≤ j ≤ d. Each basis function is obtained
using a vector ci that attaches an integer coefficient (between 0 and k, inclusive)
to each variable in x (after that variable has been scaled to [0, 1]). The set of
basis functions is obtained by enumerating all such ci vectors. For more details
please see Konidaris et al. [2011b].

The second class of methods, policy gradient algorithms, represent π directly
as a parametrized policy and then ascend the gradient of expected return with
respect to its parameters. These methods have found wide applicability in robot
applications [Ng et al., 2003, Peters et al., 2003, Kohl and Stone, 2004, Tedrake
et al., 2004, Peters and Schaal, 2008, Neumann et al., 2009, Kober and Peters,
2010] because they can easily represent policies defined over continuous actions
and can include task constraints or policy structure in π directly. When π
is differentiable, an approximate value function can be used to obtain a low-
variance estimator of the policy gradient [Sutton et al., 2000], so that value
function approximation is a key step in most policy gradient algorithms. Even
when it is not, an approximate value function is still a useful guide to the
structure of the policy and contains richer information for use in segmentation
than the policy itself (which is often piecewise constant). Therefore, we focus
on segmentation using value function approximation.

2.2 Hierarchical Reinforcement Learning with Options

The options framework [Sutton et al., 1999] adds to the standard RL framework
methods for hierarchical planning and learning using temporally-extended ac-
tions. Rather than restricting the agent to selecting actions that take a single
time step to complete, it models higher-level decision making using options:

5

actions that have their own policies and which may require multiple time steps
to complete. An option, o, consists of three components: an option policy, πo,
giving the probability of executing each action in each state in which the option
is defined; an initiation set indicator function, Io, which is 1 for states where
the option can be executed and 0 elsewhere; and a termination condition, βo,
giving the probability of option execution terminating in states where the op-
tion is defined. Given an option reward function (often just a cost function with
a termination reward), determining the option’s policy can be viewed as just
another RL problem, and an appropriate policy learning algorithm can be ap-
plied. Once acquired, a new option can be added to an agent’s action repertoire
alongside its primitive actions, and the agent chooses when to execute it in the
same way.

An option is a useful model for a robot controller: it contains all the information
required to determine when a controller can be run (its initiation set), when it is
done (its termination condition), and how it performs control (its policy). The
use of an option reward function allows us to model robot controllers that can
be improved through experience. In the remainder of this paper, we will use
the terms skill and option interchangeably.

2.3 Skill Chaining and Abstraction Selection

CST builds on two ideas from hierarchical RL: skill chaining and abstraction
selection.

Skill chaining is a skill discovery method for continuous RL domains similar
in spirit to pre-image backchaining [Lozano-Perez et al., 1984, Burridge et al.,
1999, Tedrake, 2009]. Given a continuous RL problem where the policy is either
too difficult to learn directly or too complex to represent monolithically, skill
chaining constructs a skill tree such that the agent can obtain a trajectory
from every start state to a solution state by executing a sequence (or chain) of
acquired skills.

This is accomplished by first creating a skill to reach the problem goal. This
skill’s policy is learned using an RL algorithm, and its initiation set is learned
using a classifier, with training examples obtained by trial and error (states from
which the skill successfully executes are used as positive examples, and those
from which it executes and fails are used as negative examples). Once that skill
is learned, another skill is created whose goal is to reach the initiation set of
the first skill. This process is repeated, so that an agent applying it along a
single trajectory will create a chain of skills that grows backward from the task
goal toward the start region (as depicted in Figure 1). More generally, multiple
solution trajectories, noise in control, or stochasticity in the environment will
result in skill trees rather than skill chains because more than one option will be
created to reach some target events. Eventually, the acquired skills will cover
the areas of the state space repeatedly visited by the agent. A more detailed
description can be found in Konidaris and Barto [2009b].

6

(a) (b) (c) (d)

Figure 1: An agent creates options using skill chaining. (a) First, the agent
encounters a target event and creates an option to reach it. (b) Entering the
initiation set of this first option triggers the creation of a second option whose
target is the initiation set of the first option. (c) Finally, after many trajectories
the agent has created a chain of options to reach the original target. (d) When
multiple options are created that target a single initiation set, the chain splits
and the agent creates a skill tree.

Skill chaining provides a mechanism for adaptively representing a complex pol-
icy using a collection of simpler policies. Abstraction selection [Konidaris and
Barto, 2009a] extends this approach by providing an algorithm for assigning an
abstraction to each option. Abstractions are one formalization of the idea that
policies often need not depend on all of the perceptual and motor resources
available to the robot; instead, many policies can be expressed using only a
small number of relevant features.

We define an abstraction M to be a pair of functions (σM , τM), where

σM : S → SM (6)

is a state abstraction mapping the overall state space S to a smaller state space
SM (often simply a subset of the variables in S, but potentially a more complex
mapping involving significant feature processing), and

τM : A → AM (7)

is a motor abstraction mapping the full action space A to a smaller action space
AM (often simply a subset of A). When performing policy learning using an
abstraction, the agent’s sensor input is filtered through σM and its policy π
maps from SM to AM .

In addition, we assume that each abstraction has an associated set of basis func-
tions ΦM defined over SM which we can use to define a value function. There-
fore, using an abstraction amounts to representing the relevant value function
using only that abstraction’s set of basis functions.

Given a library of candidate abstractions and a set of sample trajectories, ab-
straction selection finds the abstraction best able to represent the value function
inferred from the sample trajectories. It can be combined with skill chaining to
acquire a skill tree where each skill has its own abstraction.

7

2.4 Changepoint Detection

Unfortunately, performing skill chaining iteratively is slow because it creates
skills incrementally and sequentially. This requires several episodes for a new
skill to be learned followed by another several episodes to learn its initiation
set by trial-and-error execution of the skill. Rather than creating a skill tree
through repeated interaction with the environment, in this work we aim to do
so by segmenting demonstration trajectories.

The algorithm we introduce in the following sections is based on statistical
changepoint detection, which we now describe in a general regression setting.

We are given observed data and a set of candidate models. We assume that the
data are sequentially generated by an instance of a single model, occasionally
switching between models at certain points in time, called changepoints. We
are to infer the number and positions of the changepoints and select and fit an
appropriate model instance for each segment. Figure 2 shows a simple example.

5 10 15 20 25 30 35 40 45 50 55 60

0

50

100

150

200

(a)

5 10 15 20 25 30 35 40 45 50 55 60

0

50

100

150

200

(b)

Figure 2: Artificial example data with multiple segments. The observed data (a)
are generated by three different models (b) plus noise. The models are shown
using solid lines, and the changepoints using dashed lines. The first and third
segments are generated by a linear model, whereas the second is quadratic.

Because our data are received sequentially and possibly at a high rate, we would
like to perform changepoint detection online—processing transitions as they
occur and then discarding them. Fearnhead and Liu [2007] introduced online
algorithms for both Bayesian and maximum a posteriori (MAP) changepoint
detection. We use the simpler method that obtains the MAP changepoints and
models via an online Viterbi algorithm.

Their algorithm proceeds as follows. A set, Q, of models is given with prior p(q)
for each q ∈ Q. Data tuples (xt, yt) are observed for times t ∈ {1, 2, . . . , T}.
The marginal probability of a segment length l is modeled with probability mass
function g(l) and cumulative distribution function G(l) =

∑l

i=1 g(i). Finally, a
segment from time j + 1 to t can be fit using model q to obtain P (j, t, q), the
probability of the data segment conditioned on q.

This results in a Hidden Markov Model where the hidden state at time t is
the model qt and the observed data is yt given xt. The hidden state transition

8

probability from any model qi at time i to model qj at time j is given by:

T (qi, qj) = g(j − i − 1)p(qj), (8)

representing the probability of a segment of length j − i− 1 times the prior for
model qj . Note that a transition between two instances of the same model (but
with different parameters) is possible.

Similarly, the probability of an observed data segment starting at time i+1 and
continuing through j using q is given by:

P (yi+1 : yj |q) = P (i, j, q)(1 − G(j − i − 1)), (9)

modeling the probability of the segment data given model q (obtained by fitting
the model to the data) times the probability of a segment lasting at least j−i−1
steps.

qi qj

yi yi+1 yjyj-1...

i < j, q

P(i, j, qi)(1 - G(j - i - 1))

g(j - i - 1)p(qj)

Figure 3: The Hidden Markov Model for changepoint detection. The model qt

at each time t is hidden, but produces observable data yt. Transitions occur
when the model changes, either to a new model or the same model with dif-
ferent parameters. The transition from model qi to qj occurs with probability
g(j − i− 1)p(qj), while the emission probability for observed data yi, ..., yj−1 is
P (i, j, qi)(1−G(j− i−1)). These probabilities are considered for all times i < j
and models qi, qj ∈ Q.

This model is depicted in Figure 3. Notice that all of its transition probabilities
are known or computed directly from the data. Rather than attempting to learn
the transition probabilities of the hidden states, we are instead trying to com-
pute the maximum likelihood sequence of hidden states given their transition
probabilities and the data. We can therefore use an online Viterbi algorithm to
compute Pt(j, q), the probability of the changepoint previous to time t occurring
at time j using model q:

Pt(j, q) = (1 − G(t − j − 1))P (j, t, q)p(q)PMAP
j , (10)

9

for each j < t, which represents the probability of a segment continuing for at
least t − j + 1 steps, multiplied by the probability of the segment data given
model q, the prior of q, and the probability of the MAP changepoint at time j:

PMAP
j = max

i,q

Pj(i, q)g(j − i)

1 − G(j − i − 1)
. (11)

At time j, the i and q maximizing Equation 11 are the MAP changepoint posi-
tion and model for the current segment, respectively. This procedure is repeated
for time i and continued until time 1 is reached to obtain the changepoints and
models for the entire sequence. Thus, at each time step t the algorithm com-
putes Pt(j, q) for each model q and changepoint time j < t (using PMAP

j) and

then computes and stores PMAP
t .2 This requires O(T) storage and O(TL|Q|)

time per timestep, where L is the time required to compute P (j, t, q).

Because most Pt(j, q) values will be close to zero, we can employ a particle
filter to discard most combinations of j and q and retain a constant number
per timestep. Each particle then stores j, q, PMAP

j , sufficient statistics and its
Viterbi path. We use the Stratified Optimal Resampling algorithm of Fearnhead
and Liu [2007] to filter down to M particles whenever the number of particles
reaches N .

In addition, for most models of interest L can be reduced to a constant by storing
a small sufficient statistic and updating it incrementally in time independent of
t, obtaining P (j, t, q) from P (j, t − 1, q). This results in a time complexity of
O(NL) and storage complexity of O(Nc), where there are O(c) changepoints in
the data. The resulting algorithm is given in Figure 4.

3 Segmenting a Trajectory into a Skill Chain

Our aim in this work is to develop a method that can segment demonstration
trajectories into skill chains and merge skill chains from multiple demonstrations
into a skill tree. Recall that a problem is broken into multiple skills in skill
chaining because it either consists of policies that use different abstractions, or
it consists of policies that are too complex to be approximated using a single
function approximator.

These conditions are analogous to the conditions with which we segment data
using changepoint detection: we wish to detect when either the model (i.e.,
abstraction) changes or a when trajectory segment is too complex to fit using a
single instance of the same model (i.e., using a single value function).

Therefore, we propose segmenting a trajectory into a skill chain by performing
changepoint detection: we form Q using the set of basis functions associated with
each abstraction as each candidate model, and the sample return Rt = R̄(st)
(see Equation 3) at time t as the target variable yt.

2In practice all equations are computed in log form to ensure numerical stability.

10

Initialization1

particles = ∅2

Process each incoming data point3

for t = 1:T do4

Compute fit probabilities for all particles5

for p ∈ particles do6

p tjq = (1 - G(t - p.pos - 1)) × p.fit prob() × prior(p.model) ×7

p.prev MAP

p.MAP = p tjq × g(t - p.pos) / (1 - G(t - p.pos - 1))8

Filter if necessary9

if |particles| >= N then10

particles = filter(particles, particles.MAP, M)11

Determine the Viterbi path12

if t == 1 then13

max path = []14

max MAP = 1/|Q|15

else16

max particle = maxp p.MAP17

max path = max particle.path ∪ max particle18

max MAP = max particle.MAP19

Create new particles for a changepoint at time t20

for q ∈ Q do21

new p = create particle(model = q, pos = t, prev MAP =22

max MAP, path = max path)
particles = particles ∪ new p23

Update all particles24

for p ∈ particles do25

p.update particle(xt, yt)26

Return the most likely path to the final point.27

return max path28

Figure 4: Fearnhead and Liu’s online MAP changepoint detection algo-
rithm.

This is a natural mapping to RL because we are thus performing changepoint
detection on the value function sample obtained from the trajectory. Segmenta-
tion thus breaks that value function sample up into simpler segments, or detects
a change in model (and therefore abstraction). This is depicted in Figure 5.

11

R
e
tu
rn

F
e
a
tu
re
s Door Key

Lock

Figure 5: An illustration of a trajectory segmented into skills by CST. A robot
executes a trajectory where it goes through a door, approaches and picks up
a key, and then takes the key to a lock (bottom). The robot is equipped with
three possible abstractions: state variables giving its distance to the doorway,
the key, and the lock, respectively. The values of these variables change during
trajectory execution (middle) as the distance to each object changes while it is
in the robot’s field of view. The robot also obtains a sample of return for each
point along the trajectory (top). CST splits the trajectory into segments by
finding a MAP segmentation such that the return estimate is best represented
by a piecewise linear value function where each segment is defined over a single
abstraction. Changepoints are indicated by dashed vertical lines.

This requires that an appropriate model of expected skill (segment) length, and
an appropriate model for fitting the data. We assume a geometric distribution
for skill lengths with parameter p, so that g(l) = (1 − p)l−1p and G(l) = (1 −
(1 − p)l). This gives us a natural way to set p via k = 1/p, the expected skill
length.3

3Although we assume all skills have the same expected length, the model could also be
modified to have different expected skills lengths for different abstractions. For example, skills

12

Because RL in continuous state spaces usually employs linear function approxi-
mation, it is natural to use a linear regression model with Gaussian noise as our
model of the data. Following Fearnhead and Liu [2007], we assume conjugate
priors: the Gaussian noise prior has mean zero and an inverse gamma variance
prior with parameters v

2
and u

2
.4 The prior for each weight is a zero-mean Gaus-

sian with variance σ2δ. Integrating the likelihood function over the parameters
results in:

P (j, t, q) =
π−

n

2

δm
|(Aq + D)−1|

1
2

u
v

2

(yq + u)
n+v

2

Γ(n+v
2

)

Γ(v
2
)

, (12)

where n = t − j, q has m basis functions, Γ is the Gamma function, D is an m
by m matrix with δ−1 on the diagonal and zeros elsewhere, and:

Aq =

t
∑

i=j

Φq(xi)Φq(xi)
T (13)

yq = (

t
∑

i=j

R2
i) − bT

q (Aq + D)−1bq, (14)

where Φq(xi) is a vector of the m basis functions associated with q evaluated

at state xi, Ri =
∑T

j=i γj−irj is the return sample obtained from state i, and

bq =
∑t

i=j RiΦq(xi). P (j, t, q) from Equation 12 is the probability of the data
segment from time t to time j conditioned on model q, and can be used in
Equation 10.

Note that we are using each Rt as the target regression variable in this formu-
lation, even though we only observe rt for each state. However, to compute
Equation 12 we need only retain sufficient statistics Aq, bq and (

∑t

i=j R2
i) for

each model. Each can be updated incrementally using rt (the latter two using
traces). Thus, the sufficient statistics required to obtain the fit probability can
be computed incrementally and online at each timestep, without storing any
transition data. The algorithm for this update is given in Figure 6.

Note that Aq and bq are the same matrices used for performing a least-squares
fit to the data using model q and Rt as the regression target. They can thus be
used to produce a value function fit (equivalent to a least-squares Monte Carlo
estimate) for the skill segment if so desired; again, without the need to store
the trajectory.

In practice, segmenting a sample trajectory should be performed using a lower-
order function approximator than is to be used for policy learning, because the

that involve manipulation objects with a gripper might be expected to take less time than
skills that involve the robot traveling across a building.

4These parameters may seem cryptic, but they can be set indirectly using an expected
variance σ2

v and scaling parameter βv . The scaling parameter controls how sharply the distri-
bution is peaked around σ2

v ; values closer to zero indicate a flatter distribution. We can then

set u = σ2
v + βv and v = βv

σ2
v

− 1.

13

input : xt: the current state
rt: the current reward

Initialization1

if t == 0 then2

Aq = zero matrix(q.m, q.m)3

bq = zero vector(q.m)4

sum rq = 05

zq = zero vector(q.m)6

tr 1q, tr 2q = 0;7

Compute the basis function vector for the current state8

Φt = Φq(xt)9

Update sufficient statistics10

Aq = Aq + ΦtΦ
T
t11

zq = γzq + Φt12

bq = bq + rtzq13

tr 1q = 1 + γ2 tr 1q14

sum rq = sum rq + r2
t tr 1q + 2γrt tr 2q15

tr 2q = γ tr 2q + rttr 1q16

Figure 6: Incrementally updating the changepoint detection sufficient
statistics for model q.

agent sees merely a single trajectory sample rather than a dense sample over
the state space.

4 Merging Skill Chains into a Skill Tree

The above algorithm segments a single trajectory into a skill chain. Given
multiple skill chains from different trajectories, we would like to merge them
into a skill tree by determining which pairs of trajectory segments belong to the
same skills and which are distinct.

Because we wish to build skills that can be sequentially executed, we can only
consider merging two segments when they have the same target—which means
that their goals are either to reach the initiation set of the same target skill,
or to reach the same final goal. This means that we can consider merging
the final segment of each trajectory, or two segments whose successor segments
have been merged. Thus, two chains are merged by starting at their final skill
segments. Each pair of segments are merged if they are a good statistical match.
This process is repeated until a pair of skill segments fail to merge, after which
the remaining skill chains branch off on their own. This process is depicted in

14

Figure 7. A similar process can be used to merge a chain into an existing tree
by following the chain with the highest merge likelihood when a branch in the
tree is reached.

(a) (b) (c) (d)

Figure 7: Merging two skill chains into a skill tree. First, the final trajectory
segment in each of the chains is considered (a). If these segments use the same
model, overlap, and can be well represented using the same function approxi-
mator, they are merged and the second segment in each chain can be considered
(b). This process continues until it encounters a pair of segments that should
not be merged (c). Merging then halts and the remaining skill chains form
separate branches of the tree (d).

Because P (j, t, q) as defined in Equation 12 is the integration over its parameters
of the likelihood function of model q given segment data, we can reuse it as a
measure of whether a pair of trajectories are better modeled as one skill or as
two separate skills. Given sufficient statistics Aa,ba and sum of squared return
Ra from segment a (having na transitions) and Ab,bb and Rb from segment
b (having nb transitions), the probability of both data segments given a single
skill model can be computed by evaluating Equation 12 using the sum of these
quantities: Aab = Aa + Ab, bab = ba + bb, Rab = Ra + Rb, and nab = na + nb.
Note that this model uses the same number of basis functions (m) as either
model in isolation.

The probability of data segments a and b coming from two different skill models
can be evaluated using Equation 12 with Rab = Ra + Rb and nab = na + nb as
before, but with:

Aab =

[

Aa 0
0 Ab

]

, and bab =

[

ba

bb

]

. (15)

This models the situation where each segment is given its own set of basis func-
tions. It is equivalent to using a larger set of basis functions, Φab = [Φa,Φb]

T
,

where the basis functions from each segment are each non-zero only in their own

15

segments. Although we may find a better fit (in terms of error) using the two
sets of basis functions independently, because we have a higher number of basis
functions (m is twice as large), we obtain a higher probability only when the two
segments really are much better fit separately. This occurs because the over-
all probability of fit contains a natural Bayesian penalty for higher-dimensional
models.

When considering a merge between more than two segments (as occurs when
merging a chain into a tree at points where the tree has already split), a similar
operation is performed that evaluates the total probability of the data in all
segments given that a pair of segments have merged and the remainder are
independent, evaluated for all candidate merging pairs and the case where no
merge occurs. This is necessary so that the probabilities obtained from Equation
12 for each case are over the same data, and therefore comparable.

Before merging, a fast boundary test is performed to ensure that the trajectory
pairs actually overlap in state space—if they are completely spatially disjoint,
we will often be able to represent them both simultaneously with very low error
and hence this metric may incorrectly suggest a merge.

If we are to merge skills obtained over multiple trajectories into trees we re-
quire the component skills to be aligned, meaning that the changepoints occur
in roughly the same places. This will occur naturally in domains where change-
points are primarily caused by a change in relevant abstraction. When this
is not the case, the changepoint positions may vary because segmentation is
then based on function approximation boundaries, and hence two trajectories
segmented independently may be poorly aligned. Therefore, when segmenting
two trajectories sequentially in anticipation of a merge, we may wish to include
a bias on changepoint locations in the second trajectory. We model this bias
as a Mixture of Gaussians, centering an isotropic Gaussian at each location in
state-space where a changepoint previously occurred. This bias can be included
during changepoint detection by multiplying Equation 10 with the resulting
PDF evaluated at the current state.

Note that, although segmentation is performed using a lower-order function ap-
proximator than skill policy learning, merging should be performed using the
same function approximator used for learning. This necessitates the mainte-
nance of two sets of sufficient statistics during segmentation. Fortunately, the
major computational expense is computing P (j, t, q), which during segmenta-
tion is only required using the lower-order approximator.

5 Acquiring Skills from Human Demonstration

in the Pinball Domain

In this section, we evaluate the performance benefits obtained using a skill tree
generated from a pair of human-provided solution trajectories in the Pinball

16

domain. Because the domain is relatively small (4 continuous state variables),
we do not use an abstraction library.

5.1 The Pinball Domain

The Pinball domain is a continuous domain with dynamic aspects, sharp discon-
tinuities, and extended control characteristics that make it difficult for control
and function approximation.5 Previous experiments have shown that skill chain-
ing is able to find a very good policy while flat learning finds a poor solution
[Konidaris and Barto, 2009b]. In this section, we evaluate the performance
benefits obtained using a skill tree generated from a pair of human-provided
solution trajectories, as opposed to performing skill chaining incrementally.

The goal of PinBall is to maneuver the small ball (which starts in one of two
places) into the large red hole. The ball is dynamic (drag coefficient 0.995), so
its state is described by four variables: x, y, ẋ and ẏ. Collisions with obstacles
are fully elastic and cause the ball to bounce, so rather than merely avoiding
obstacles the agent may choose to use them to efficiently reach the hole. There
are five primitive actions: incrementing or decrementing ẋ or ẏ by a small
amount (which incurs a reward of −5 per action), or leaving them unchanged
(which incurs a reward of −1 per action). Reaching the goal obtains a reward
of 10, 000. We use the Pinball domain instance shown in Figure 8 with 5 pairs
(one trajectory in each pair for each start state) of human expert demonstration
trajectories.

Figure 8: The Pinball instance used in our experiments, and a representative
solution trajectory pair.

5.2 Implementation Details

Initiation sets were learned using a logistic regression classifier. For CST agents,
we used only the training examples from the demonstration trajectories for

5Java source code for Pinball can be downloaded at: http://www-all.cs.umass.edu/~gdk/
pinball

17

learning initiation sets (positive examples are those in the skill segment, neg-
ative examples all others). After this initial phase the initiation set classifiers
were considered to be learned and only updated incrementally when new neg-
ative training examples were received. All skill chaining parameters were as in
Konidaris and Barto [2009b].

We used an expected skill length of k = 100, δ = 0.0001, particle filter param-
eters N = 30 and M = 50, and a first-order Fourier Basis (16 basis functions)
for segmentation. We used expected variance mean σ2

v = 152 and scaling pa-
rameter βv = 0.0001 for the noise prior. After segmenting the first trajectory
we used isotropic Gaussians with variance 0.52 to bias the segmentation of the
second. The full 3rd-order Fourier basis representation was used for merging.
To obtain a fair comparison with the linear-time online learning algorithm used
in the incremental skill chaining case, we initialized the CST skill policies using
10 episodes of experience replay [Lin, 1991] of the demonstrated trajectories,
rather than using the sufficient statistics to perform a batch least-squares value
function fit.

5.3 Results

Trajectory segmentation was successful for all demonstration trajectories, and
all pairs were merged successfully into skill trees when the alignment bias was
used to segment the second trajectory in the pair (two of the five could not be
merged due to misalignments when the bias was not used). Example segmen-
tations and the resulting merged trajectories are shown in Figure 9, and the
resulting initiation sets are shown in their tree structure in Figure 10.

Figure 9: Segmented skill chains from the sample pinball solution trajectories
shown in Figure 8, and the trajectory assignments obtained when the two chains
are merged.

The learning curves obtained by reinforcement learning agents given the result-
ing skill trees, averaged over 100 runs (20 runs using each demonstrated skill
tree) are shown in Figure 11. We compare these agents against two baselines:
one where the agents acquire skills from scratch (using skill chaining), and one
where the agents are pre-equipped with all of the skills acquired by skill chaining

18

Figure 10: The initiation sets for each option in the tree shown in Figure 9.

over 250 episodes, but not given an overall task policy (and so must learn how to
sequence the skills they have been given). The results show that the CST poli-
cies are not good enough to use immediately, as the agents do worse than those
given pre-learned skills for the first few episodes (although they immediately
do better than skill chaining agents). However, very shortly thereafter—by the
10th episode—the CST agents are able to learn excellent policies, immediately
performing much better than skill chaining agents, and shortly thereafter ac-
tually temporarily exceeding the performance of agents with pre-learned skills.
This is likely because the skill tree structure obtained from demonstration has
fewer but better skills than that learned incrementally by skill chaining agents,
resulting in a faster initial startup while the agents given pre-learned skills learn
to correctly sequence them.

In addition, segmenting demonstration trajectories into skills results in much
faster learning than attempting to acquire the entire demonstrated policy at
once. Agents that perform experience replay using the demonstration trajecto-
ries to initialize their overall task value function and then proceed using skill
chaining have virtually identical learning curves (not shown) to those of agents
performing skill chaining from scratch.

6 Acquiring Mobile Manipulation Skills from Hu-

man Demonstration

In the previous section, we showed that CST is able to segment demonstration
trajectories in Pinball and merge them into a tree suitable as a basis for further
learning. However, Pinball is a relatively small domain and therefore did not
require the use of skill-specific abstractions.

19

20 40 60 80 100 120 140
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2
x 10

4

Episodes

R
et

ur
n

Pre−learned
Skill Chaining
CST

Figure 11: Learning curves in the PinBall domain, for agents employing skill
trees created from demonstration trajectories, skill chaining agents, and agents
starting with pre-learned skills.

In this section we show that CST can scale up to much higher-dimensional do-
mains using skill-specific abstractions. We apply CST along with an abstraction
library to create skill chains from human demonstration on the uBot-5 [Deegan
et al., 2006, Kuindersma et al., 2009], a dynamically balancing mobile manip-
ulator. The robot’s task (illustrated in Figure 12) in this section is to enter a
corridor, approach a door, push the door open, turn right into a new corridor,
and finally approach and push on a panel. Twelve demonstration trajectories
were obtained from an expert human operator.

6.1 Implementation Details

To simplify perception, purple, orange and yellow colored circles were placed on
the door and panel, beginning of the back wall, and middle of the back wall,
respectively, as perceptually salient markers. The distances (obtained using
onboard stereo vision) between the uBot to each marker were computed at 8Hz
and filtered. The uBot was able to engage one of two motor abstractions at a
time: either performing end-point position control of its hand, or controlling
the speed and angle of its forward motion.

Using these features, we constructed six sensorimotor abstractions, one for each
pairing of salient object and motor command set. When a marker was paired
with the hand, the abstraction’s state variables consisted of the real-valued
difference between the hand and the marker centroid in 3 dimensions. Actions
were real-valued vectors moving the hand in 3 dimensions. When a marker was
paired with the robot’s torso, the abstraction’s state variables consisted of two
real values representing the distance and angle to the marker centroid. Actions
were real-valued vectors controlling the translation and rotation of the robot

20

(a) (b)

(c) (d)

(e) (f)

Figure 12: The task demonstrated on the uBot-5. Starting at the beginning
of a corridor (a), the uBot approaches (b) and pushes open a door (c), turns
through the doorway (d), then approaches (e) and pushes a panel (f).

torso using differential drive. We assumed a reward function of −1 received at
8Hz.

Particles were generated according to the currently executing motor abstraction,
and a switch in motor abstraction always caused a changepoint.6 The param-

6Informal experiments with removing this restriction did not seem to change the number
or type of skills found but in some cases changed their starting and stopping positions by a
few timesteps.

21

eters used for performing CST on the uBot were k = 50, M = 60, N = 120,
σ2

v = 82 and βv = 0.00001, using a 1st order Fourier basis. For merging, we
used a 5th order Fourier basis with σ2

v = 902 and βv = 0.00001.

When performing policy regression to fit the segmented policies for replay, we
used ridge regression over a 5th order Fourier basis to directly map to continu-
ous actions. The regularization parameter λ was set by 10-fold cross-validation.
We then tested how many demonstration trajectories were required to be able
to robustly replay the skill policy by adding in one demonstration trajectory
at a time, varying the starting point of the robot by hand, and observing pol-
icy execution. We used hand-coded stopping conditions corresponding to the
initiation set of the subsequent skill.

6.2 Results

Of the 12 demonstration trajectories gathered from the uBot, 3 had to be dis-
carded because of data loss due to excess perceptual noise. Of the remaining 9,
all segmented sensibly and 8 were able to be merged into a single skill chain.7

Figure 13 shows a segmented trajectory obtained using CST, with Table 1 pro-
viding a brief description of the skills extracted along with their selected ab-
stractions, and the number of demonstration trajectories required for each skill
to be replayed successfully 9 times out of 10.

Figure 13: A demonstration trajectory from the uBot-5 segmented into skills.

7In four of these trajectories, a delay starting the robot moving after opening the door
caused a “wait skill” to appear in the segmentation, where the robot did nothing. We excised
these skills before merging.

22

Abstraction Description Trajectories

Required

a torso-purple Drive to door. 2
b hand-purple Push the door open. 1
c torso-orange Drive toward wall. 1
d torso-yellow Turn toward the end wall. 2
e torso-purple Drive to the panel. 1
f hand-purple Press the panel. 3

Table 1: A brief description of each of the skills extracted from the trajectory
shown in Figure 13, along with their selected abstractions, and the number of
example trajectories required for accurate replay.

The different numbers of example trajectories required to accurately replay the
demonstrated skills occurred because of the varying difficulty of each skill. Push-
ing the door open proved relatively easy—a general forward motion by the hand
toward the purple circle will almost always succeed. By contrast, pushing the
panel required greater precision, because the hand was required to be within the
panel area when it touched the wall, even when the uBot was facing the wall at
an angle. Finally, approaching a target turned out to be difficult in some cases
because small mistakes in its angular velocity when the uBot neared the target
could cause the target to drift out of the robot’s narrow field of view.

A similar experiment that used CST in combination with model-based control
methods for obtaining the skill policies was able to produce consistent replay
using just a single demonstration trajectory [Kuindersma et al., 2010].

7 Acquiring Mobile Manipulation Skills from a

Learned Policy

In the previous section we used CST to extract skills from trajectories obtained
by expert human demonstration. We now describe a robot system that produces
its own demonstration trajectories by learning to sequence existing controllers
and extracts skills from the resulting learned solution. This was part of a larger
experiment aimed at demonstrating that a robot could perform skill acquisition
by sequencing existing skills and then extracting higher-level skills from raw
sensorimotor experience [Konidaris et al., 2011a].

In the Red Room task, the uBot-5 is placed in a small room containing a button
and a handle. When the handle is pulled after the button has been pressed, a
door in the side of the room opens, allowing the robot access to a compartment
which contains a switch. The goal of the task is to press the switch. Sensing
and control for the objects in the room are performed using touch sensors, with

23

state tracked and communicated to the uBot via an MIT Handy Board [Martin,
1998]. A schematic and photographs of the domain are given in Figure 14.

Button

Handle

Switch

Door

245 cm

3
5

5
 c

m

Start

Figure 14: The Red Room Domain.

The robot is given a fixed set of innate controllers for navigating to visible
objects of interest and for interacting with them using its end-effector (by ex-
tending its arm and moving it to the right, left, up, down, or forwards). In
order to actuate the button and the switch, the robot must extend its arm
and then move it outwards; in order to actuate the handle, it must extend its
arm and then move it downwards. The robot constructed a transition model
of the domain through interaction and used it to compute a policy using dy-
namic programming. The robot was able to find the optimal solution after five
episodes, which required roughly one hour of cumulative interaction time with
the environment. This reduces the interaction time required to complete one
episode of the task from approximately 13 minutes (when the robot starts with
no knowledge of the solution) to around 3 minutes. More details are available
in Konidaris et al. [2011a].

The resulting optimal sequence of controllers are then used to generate 5 demon-
stration trajectories for use in CST (using a first-order Fourier Basis, k = 150,
M = 60, N = 120, σv = 602, and βv = 0.000001). The resulting trajectories
all segment into the same sequence of 10 skills, and are all merged successfully
(using a 5th order Fourier Basis, σv = 5002, and βv = 0.000001). An example
segmentation is shown in Figure 15; a description of each skill along with its
relevant abstraction is given in Table 2.

CST consistently extracted skills that corresponded to manipulating objects in

24

Figure 15: A trajectory from the learned solution to the Red Room task, seg-
mented into skills.

Abstraction Description

A torso-button Align with the button.
B torso-button Turn and approach the button.
C hand-button Push the button.
D torso-handle Align with the handle.
E torso-handle Turn and approach the handle.
F hand-handle Pull the handle.
G torso-entrance Align with the entrance.
H torso-entrance Turn and drive through the entrance.
I torso-switch Approach the switch.
J hand-switch Press the switch.

Table 2: A brief description of each of the skills extracted from the trajectory
shown in Figure 15, along with their selected abstractions.

the environment, and navigating towards them. In the navigation case, each
controller execution was split into two separate skills. These skills correspond
exactly to the two phases of the navigation controller: first, aligning the robot
with the normal of the target object, and second, moving the robot toward
that feature. In the object-manipulation case, a sequence of two controllers is
collapsed into a single skill: for example, extending the arm and then extending
it further toward the object of interest is collapsed into a single skill which we
might label push the button. We constructed closed-loop manipulation policies
by fitting splines over relative spatial waypoints and obtained reliable replay
using a single demonstration trajectory for each.

25

8 Discussion

Although CST is an online, incremental algorithm, in practice its parameters
may require robot-specific tuning. In our experience its performance is robust to
all of its parameters (including, within reason, the maximum number of parti-
cles) with the exception of the noise prior. When σ2

v is too low the segmentation
is “brittle”, and when it is too high it is too accommodating—far too high, and
it prefers to fit a constant model and treat the trajectory data as noise. Fortu-
nately, these parameters need only be manually set once per domain, although
a model of the growth in value function variance as function of the length of the
sample trajectory would improve the robustness of the method.

The availability of a suitable abstraction library is key to the application of
CST in high-dimensional domains. This requires significant (though in principle
once-off) design effort to create a set of abstractions suitable for representing
anything the robot may decide to learn. We expect that for many robots and
tasks, a small library consisting of pairings of motor abstractions and one or
two visible objects will be sufficient. If necessary, abstraction selection could
be paired with a feature selection method [Kolter and Ng, 2009, Johns et al.,
2010] to augment the selected abstraction during policy learning. Future work
may also consider approaches to acquiring the abstraction library from data or
building skill-specific abstractions at runtime, although the sample complexity
of such approaches may render them impractical.

Another important assumption is that each segmentation should form a chain
and the merged chains should form a tree. In some cases, however, they may
form a more general graph (e.g., when the demonstrated policy has a loop, or
when sequences of corresponding skills are interleaved by sequences of distinct
skills). Under such conditions the procedure to merge skill chains will incorrectly
fail to merge some skills, although it could be straightforwardly generalized to
better accommodate more cases.

Although CST is designed to handle multiple, unstructured demonstrations
which begin at different states, we have made the assumption that the demon-
strations all lead to the same goal. When this is not the case, we expect that
the very first test during skill chain merging will fail, leading to a skill forest
rather than a skill tree. Extending the procedure for merging trees to this case
is straightforward—we can determine which of several possible trees is the most
likely fit to a new skill chain in the same way that we determine which of several
possible branches in an individual tree is the best match. The skill segmentation
process itself would remain unchanged.

We also assume that the domain reward function is observed and that each
option reward can be obtained from it by adding in a termination reward. By
contrast, apprenticeship learning [Abbeel and Ng, 2004] methods infer the re-
ward function from the demonstrated trajectory. Our approach assumes that
the robot is minimizing an internal and known cost function (perhaps a measure
of energy or time) while achieving a goal specified by the termination reward.

26

This captures many practical learning by demonstration problems, but not all.

Finally, we assume that the best abstraction for combining a pair of skills is the
abstraction selected for representing both individually, from just a single demon-
stration trajectory. This may not always hold—two skills best represented in-
dividually by one abstraction may be better represented together using another
(perhaps more general) abstraction; or, a single demonstration trajectory may
not contain sufficient information to distinguish between two or more seemingly
relevant abstractions (e.g., when the robot and two features are collinear along
the entire trajectory). The likelihood of such a failure depends strongly on both
the information contained in the demonstration trajectory and the basis function
set used for each abstraction. However, because the correct abstraction would
presumably be at least competitive during segmentation, such cases can be re-
solved by considering segmentations or abstractions other than the final MAP
selection when merging. Ideally, the trajectories could be segmented jointly—
however, it remains unclear how to achieve this without losing the incremental
and online properties of CST; the fully Bayesian (as opposed to MAP) but still
online changepoint detection algorithm given by Fearnhead and Liu [2007] may
be a good starting point for such an extension.

The experiments reported here used three different ways to represent skill poli-
cies: value function regression in Pinball, regression on motor output for ac-
quiring policies from a human expert on the uBot, and a trajectory following
closed-loop controller for acquiring skills from learned controller sequences on
the uBot. Broadly, these representations have progressed from useful in simple
policy improvement algorithms and general to requiring more complex policy
improvement algorithms but data-efficient and robust. For robust and reliable
robot control from demonstration we expect that closed-loop trajectory-based
controllers, such as those produced by dynamic motion primitives [Ijspeert et al.,
2002, Schaal, 2003], will provide a good balance between learnability and effi-
ciency.

9 Related Work

Several RL methods exist for skill acquisition from demonstration trajectories,
but only in discrete domains. Representative recent methods are by Mehta et al.
[2008] and Zang et al. [2009].

A great deal of work exists under the general heading of LfD (surveyed by Argall
et al. [2009]). Most methods learn an entire policy monolithically from data,
although some perform segmentation.

A sequence of policies represented using linear function approximators is similar
to the notion of a switching (or sequenced) linear dynamical system, where the
policy (rather than the value function) is represented as a sequence of linear
systems. The approach most closely related to CST is by Dixon and Khosla
[2004a], where a demonstration trajectory is segmented into a sequence of linear

27

dynamical systems using a heuristic measure that causes a segmentation when
an error metric exceeds a threshold parameter. Each linear dynamical system is
used to derive a convergent controller, with a small region around the final state
considered its goal. The algorithm can be run online and was used in conjunction
with several other methods to build a mobile robot system that performed LfD
by tracking a human user [Dixon and Khosla, 2004b]. This system differs from
CST in three ways. First, it does not use skill-specific abstractions, which makes
it difficult to scale up to humanoid robots. Second, it segments demonstration
trajectories into policies that are linear in the robot’s state variables, which is a
stronger condition than a value function that is linear in a set of basis functions.
Finally, it uses a heuristic method for segmentation.

Chiappa et al. [2009] and Chiappa and Peters [2010] described a principled
statistical approach to acquiring motion primitive libraries from data, where the
demonstrated trajectories are modeled as Bayesian linear Gaussian state space
models. This approach automatically segments the demonstrated data into
policies, and it can handle multivariate target variables and models that repeat
within a single trajectory. Although these systems have achieved impressive
results on real robots, they use computationally intensive batch processing, do
not use skill-specific abstractions, and do not result in skills with goals.

Other principled and sophisticated methods exist for learning switching linear
dynamical systems from data [Xuan and Murphy, 2007, Fox et al., 2008]. These
methods are more complex and computationally intensive than the much simpler
changepoint detection method we use, and they have not been used in the
context of skill acquisition.

Krüger et al. [2010] use an interesting segmentation method where demonstra-
tion trajectories are segmented according to the movement of the objects the
robot interacts with, rather than its own motion. This can be viewed as trajec-
tory segmentation using one specific kind of abstraction. The resulting segmen-
tation is used to define a library of parametrized motion primitives.

Another closely related LfD framework is the Performance-Derived Behavior
Vocabularies (PDBV) framework [Jenkins and Matarić, 2004], which segments
demonstrated data into motion primitives and thereby builds a motion primitive
library. Segments are compressed using a dimensionality reduction technique,
and clustered into grouped exemplars, from which closed-loop controllers are
derived. Our work differs from PDBV in four major aspects. First, PDBV
is a batch method, which allows it to identify repeated skills, whereas CST is
suitable for online data processing. Second, PDBV discovers a low-dimensional
representation (a motion-manifold) for each motion primitive, which requires no
prior knowledge but may be difficult to scale up to high-dimensional spaces. By
contrast, CST selects skill-specific abstractions from a given library, which re-
quires some design effort but eases scaling and transfer. Third, PDBV extracts
motion policies rather than goals, resulting in a motion primitive library that is
not amenable to automatic improvement. Finally, PDBV performs segmenta-
tion using Kinematic Centroid Segmentation, a heuristic specific to human-like

28

kinematic motions in free-space, whereas CST uses a more generally applica-
ble and statistically principled but potentially more expensive segmentation
method. However, more recent work has used computationally expensive but
principled statistical methods [Grollman and Jenkins, 2010, Butterfield et al.,
2010] to segment the data into multiple models as a way to avoid perceptual
aliasing in the policy.

Kulić et al. [2009] use a principled, online and incremental method to perform
segmentation, and use acquired motion primitives to build a hierarchy that can
be used to improve later segmentation. Their method (unlike CST) is able to
recognize and exploit repeated skills, but does not result in skills with goals and
does not select skill-specific abstractions.

To the best of our knowledge, our method is the first that simultaneously per-
forms statistically principled trajectory segmentation, employs skill-specific ab-
stractions, and extracts skills that have goals (and are therefore suitable for
further learning).

10 Conclusion

The four characteristics that, taken together, distinguish CST from existing
algorithms are that it extracts skills, rather than individual controllers, from
demonstration; that each skill has a goal; that each skill is allocated its own
abstraction; and that multiple demonstrations can be segmented and merged
into a skill tree.

In general we expect to obtain demonstration trajectories from unstructured
demonstration. Segmenting a demonstration into component skills results in
controllers that the robot can reuse in other contexts or in different sequences;
skills with both goals and initiation sets are particularly well suited for use in
backward chaining planners. In addition, unsuccessful or partial trajectories
can still improve skills whose goals were nevertheless reached, and we can apply
confidence-based learning methods [Chernova and Veloso, 2007] to each skill
individually.

Extracting skills also enables the use of skill-specific abstractions, which are
critical for efficient skill representation, policy improvement and generalization.
In addition, skills represented using agent-centric features (such as in our uBot
example) can be detached from a problem-specific setting and transferred to
new problems [Konidaris and Barto, 2007].

Similarly, segmenting a demonstration trajectory into skills provides a natural
way to merge multiple unstructured demonstration trajectories by considering
merges at the level of each individual skill. Multiple, unstructured demonstra-
tions where it is unclear (to the robot) where the demonstrated policy should
really begin and where the demonstrations should overlap are the most natural
LfD setting.

29

Finally, skills that have goals can be refined using policy improvement methods,
and simplify the use of robust closed-loop controllers. A human will almost
never be able to demonstrate a policy perfectly suited to a robot with a dif-
ferent morphology, motor scheme, and control regime. The goal of LfD should
be to provide a satisficing initial policy that the robot can efficiently and au-
tonomously improve over time.

Each of these aspects confers advantages that have enabled the successful use
of CST in the three challenging LfD scenarios presented here. Together, they
offer a promising avenue of development toward general-purpose robot learning
from demonstration.

Acknowledgments

We thank the members of the Laboratory for Perceptual Robotics for their tech-
nical assistance. Andrew Barto and George Konidaris were supported by the
Air Force Office of Scientific Research under grant FA9550-08-1-0418. George
Konidaris was additionally supported by the Singapore Ministry of Education
under a grant to the Singapore-MIT International Design Center. Scott Kuin-
dersma is supported by a NASA GSRP fellowship from Johnson Space Center.
Rod Grupen was supported by the Office of Naval Research under MURI award
N00014-07-1-0749.

References

P. Abbeel and A.Y. Ng. Apprenticeship learning via inverse reinforcement learn-
ing. In Proceedings of the 21st International Conference on Machine Learning,
2004.

B. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of robot learning
from demonstration. Robotics and Autonomous Systems, 57:469–483, 2009.

R.R. Burridge, A.A. Rizzi, and D.E. Koditschek. Sequential composition of
dynamically dextrous robot behaviors. International Journal of Robotics Re-
search, 18(6):534–555, 1999.

J. Butterfield, S. Osentoski, G. Jay, and O.C. Jenkins. Learning from demonstra-
tion using a multi-valued function regressor for time-series data. In Proceed-
ings of the Tenth IEEE-RAS International Conference on Humanoid Robots,
2010.

S. Chernova and M. Veloso. Confidence-based policy learning from demonstra-
tion using Gaussian mixture models. In Proceedings of the 6th International
Joint Conference on Autonomous Agents and Multiagent Systems, 2007.

30

S. Chiappa and J. Peters. Movement extraction by detecting dynamics switches
and repetitions. In Advances in Neural Information Processing Systems 23,
pages 388–396, 2010.

S. Chiappa, J. Kober, and J. Peters. Using Bayesian dynamical systems for
motion template libraries. In Advances in Neural Information Processing
Systems 21, pages 297–304, 2009.

P. Deegan, B. Thibodeau, and R. Grupen. Designing a self-stabilizing robot for
dynamic mobile manipulation. In Proceedings of the Robotics: Science and
Systems Workshop on Manipulation for Human Environments, August 2006.

K.R. Dixon and P.K. Khosla. Trajectory representation using sequenced linear
dynamical systems. In Proceedings of the IEEE International Conference on
Robotics and Automation, pages 3925–3930, 2004a.

K.R. Dixon and P.K. Khosla. Learning by observation with mobile robots: a
computational approach. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 102–107, 2004b.

P. Fearnhead and Z. Liu. On-line inference for multiple changepoint problems.
Journal of the Royal Statistical Society B, 69:589–605, 2007.

E.B. Fox, E.B. Sudderth, M.I. Jordan, and A.S. Willsky. Nonparametric
Bayesian learning of switching linear dynamical systems. In Advances in
Neural Information Processing Systems 21, 2008.

D.H. Grollman and O.C. Jenkins. Incremental learning of subtasks from un-
segmented demonstration. In International Conference on Intelligent Robots
and Systems, 2010.

A.J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for
learning motor primitives. In S. Becker, S. Thrun, and K. Obermayer, editors,
Advances in Neural Information Processing Systems 15, pages 1547–1554,
2002.

O.C. Jenkins and M. Matarić. Performance-derived behavior vocabularies: data-
driven acquisition of skills from motion. International Journal of Humanoid
Robotics, 1(2):237–288, 2004.

J. Johns, C. Painter-Wakefield, and R. Parr. Linear complementarity for regular-
ized policy evaluation and improvement. In Advances in Neural Information
Processing Systems 23, 2010.

J. Kober and J. Peters. Policy search for motor primitives in robotics. Machine
Learning, 84(1-2):171–203, 2010.

N. Kohl and P. Stone. Machine learning for fast quadrapedal locomotion. In
Proceedings of the Nineteenth National Conference on Artificial Intelligence,
pages 611–616, 2004.

31

J.Z. Kolter and A.Y. Ng. Regularization and feature selection in least-squares
temporal difference learning. In Proceedings of the 26th International Con-
ference on Machine Learning, pages 521–528, 2009.

G.D. Konidaris and A.G. Barto. Building portable options: Skill transfer in
reinforcement learning. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence, 2007.

G.D. Konidaris and A.G. Barto. Efficient skill learning using abstraction selec-
tion. In Proceedings of the Twenty First International Joint Conference on
Artificial Intelligence, July 2009a.

G.D. Konidaris and A.G. Barto. Skill discovery in continuous reinforcement
learning domains using skill chaining. In Advances in Neural Information
Processing Systems 22, pages 1015–1023, 2009b.

G.D. Konidaris, S.R. Kuindersma, R.A. Grupen, and A.G. Barto. Autonomous
skill acquisition on a mobile manipulator. In Proceedings of the Twenty-Fifth
Conference on Artificial Intelligence, pages 1468–1473, 2011a.

G.D. Konidaris, S. Osentoski, and P.S. Thomas. Value function approxima-
tion in reinforcement learning using the Fourier basis. In Proceedings of the
Twenty-Fifth Conference on Artificial Intelligence, pages 380–385, 2011b.

V. Krüger, D.L. Herzog, S. Baby, A. Ude, and D. Kragic. Learning actions from
observations. IEEE Robotics and Automation Magazine, 17(2):30–43, 2010.

S.R. Kuindersma, E. Hannigan, D. Ruiken, and R.A. Grupen. Dexterous mo-
bility with the uBot-5 mobile manipulator. In Proceedings of the 14th Inter-
national Conference on Advanced Robotics, June 2009.

S.R. Kuindersma, G.D. Konidaris, R.A. Grupen, and A.G. Barto. Learning
from a single demonstration: Motion planning with skill segmentation. In
Proceedings of the NIPS Workshop on Learning and Planning from Batch
Time Series Data, December 2010.

D. Kulić, W. Takano, and Y. Nakamura. Online segmentation and clustering
from continuous observation of whole body motions. IEEE Transactions on
Robotics, 25(5):1158–1166, 2009.

L-J Lin. Programming robots using reinforcement learning and teaching. In
Proceedings of the Ninth National conference on Artificial Intelligence, pages
781–786, 1991.

T. Lozano-Perez, M.T. Mason, and R.H. Taylor. Automatic synthesis of fine-
motion strategies for robots. The International Journal of Robotics Research,
3(1):3–24, 1984.

F.G. Martin. The Handy Board Technical Reference. MIT Media Lab, Cam-
bridge MA, 1998.

32

N. Mehta, S. Ray, P. Tadepalli, and T. Dietterich. Automatic discovery and
transfer of MAXQ hierarchies. In Proceedings of the Twenty Fifth Interna-
tional Conference on Machine Learning, pages 648–655, 2008.

G. Neumann, W. Maass, and J. Peters. Learning complex motions by sequencing
simpler motion templates. In Proceedings of the 26th International Conference
on Machine Learning, 2009.

A.Y. Ng, H.J Kim, M.I. Jordan, and S. Sastry. Autonomous helicopter flight
via reinforcement learning. In Advances in Neural Information Processing
Systems 16, 2003.

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–
1190, 2008.

J. Peters, S. Vijayakumar, and S. Schaal. Reinforcement learning for humanoid
robotics. In Proceedings of the Third IEEE-RAS International Conference on
Humanoid Robotics, 2003.

S. Schaal. Dynamic movement primitives—a framework for motor control in
humans and humanoid robots. In Proceedings of the International Symposium
on Adaptive Motion of Animals and Machines, 2003.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT
Press, Cambridge, MA, 1998.

R.S. Sutton, D. Precup, and S.P. Singh. Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial In-
telligence, 112(1-2):181–211, 1999.

R.S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Advances in
Neural Information Processing Systems 12, pages 1057–1063, 2000.

R. Tedrake. LQR-Trees: Feedback motion planning on sparse randomized trees.
In Proceedings of Robotics: Science and Systems, pages 18–24, 2009.

R. Tedrake, T.W. Zhang, and H.S. Seung. Stochastic policy gradient reinforce-
ment learning on a simple 3D biped. In Proceedings of the IEEE International
Conference on Intelligent Robots and Systems, volume 3, pages 2849–2854,
2004.

X. Xuan and K. Murphy. Modeling changing dependency structure in multivari-
ate time series. In Proceedings of the Twenty-Fourth International Conference
on Machine Learning, 2007.

P. Zang, P. Zhou, D. Minnen, and C.L. Isbell. Discovering options from example
trajectories. In Proceedings of the Twenty Sixth International Conference on
Machine Learning, pages 1217–1224, 2009.

33

