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The rise of deep learning has caused a paradigm shift in robotics research, favoring
methods that require large amounts of data. Unfortunately, it is prohibitively expensive to
generate such data sets on a physical platform. Therefore, state-of-the-art approaches
learn in simulation where data generation is fast as well as inexpensive and subsequently
transfer the knowledge to the real robot (sim-to-real). Despite becoming increasingly
realistic, all simulators are by construction based on models, hence inevitably imperfect.
This raises the question of how simulators can be modified to facilitate learning robot
control policies and overcome the mismatch between simulation and reality, often called
the “reality gap.”We provide a comprehensive review of sim-to-real research for robotics,
focusing on a technique named “domain randomization” which is a method for learning
from randomized simulations.

Keywords: robotics, simulation, reality gap, simulation optimization bias, reinforcement learning, domain
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1 INTRODUCTION

Given that machine learning has achieved super-human performance in image classification
(Ciresan et al., 2012; Krizhevsky et al., 2012) and games (Mnih et al., 2015; Silver et al., 2016),
the question arises why we do not see similar results in robotics. There are several reasons for this.
First, learning to act in the physical world is orders of magnitude more difficult. While the data
required by modern (deep) learning algorithms could be acquired directly on a real robot (Levine
et al., 2018), this solution is too expensive in terms of time and resources to scale up. Alternatively, the
data can be generated in simulation faster, cheaper, safer, and with unmatched diversity. In doing so,
we have to cope with unavoidable approximation errors that we make when modeling reality. These
errors, often referred to as the “reality gap,” originate from omitting physical phenomena, inaccurate
parameter estimation, or the discretized numerical integration in typical solvers. Compounding this
issue, state-of-the-art (deep) learning methods are known to be brittle (Szegedy et al., 2014;
Goodfellow et al., 2015; Huang et al., 2017), that is, sensitive to shifts in their input domains.
Additionally, the learner is free to exploit the simulator, overfitting to features which do not occur in
the real world. For example, Baker et al. (2020) noticed that the agents learned to exploit the physics
engine to gain an unexpected advantage. While this exploitation is an interesting observation for
studies made entirely in simulation, it is highly undesirable in sim-to-real scenarios. In the best case,
the reality gap manifests itself as a performance drop, giving a lower success rate or reduced tracking
accuracy. More likely, the learned policy is not transferable to the robot because of unknown physical
effects. One effect that is difficult to model is friction, often leading to an underestimation thereof in
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simulation, which can result in motor commands that are not
strong enough to get the robot moving. Another reason for failure
are parameter estimation errors, which can quickly lead to
unstable system dynamics. This case is particularly dangerous
for the human and the robot. For these reasons, bridging the
reality gap is the essential step to endow robots with the ability to
learn from simulated experience.

There is a consensus that further increasing the simulator’s
accuracy alone will not bridge this gap (Höfer et al., 2020).
Looking at breakthroughs in machine learning, we see that
deep models in combination with large and diverse data sets
lead to better generalization (Russakovsky et al., 2015; Radford
et al., 2019). In a similar spirit, a technique called domain
randomization has recently gained momentum (Figure 1). The
common characteristic of such approaches is the perturbation
of simulator parameters, state observations, or applied actions.
Typical quantities to randomize include the bodies’ inertia and
geometry, the parameters of the friction and contact models,
possible delays in the actuation, efficiency coefficients of
motors, levels of sensor noise, as well as visual properties
such as colors, illumination, position and orientation of a
camera, or additional artifacts to the image (e.g., glare).
Domain randomization can be seen as a regularization
method that prevents the learner from overfitting to
individual simulation instances. From the Bayesian
perspective, we can interpret the distribution over
simulators as a representation of uncertainty.

In this paper, we first introduce the necessary nomenclature
and mathematical fundamentals for the problem (Section 2).
Next, we review early approaches for learning from randomized
simulations, state the practical requirements, and describe
measures for sim-to-real transferability (Section 3).
Subsequently, we discuss the connections between research on
sim-to-real transfer and related fields (Section 4). Moreover, we
introduce a taxonomy for domain randomization and categorize
the current state of the art (Section 5). Finally, we conclude and
outline possible future research directions (Section 6). For those
who want to first becomemore familiar with robot policy learning

as well as policy search, we recommend these surveys: Kober et al.
(2013), Deisenroth et al. (2013), and Chatzilygeroudis et al.
(2020).

2 PROBLEM FORMULATION AND
NOMENCLATURE

We begin our discussion by defining critical concepts and
nomenclature used throughout this article.

Markov Decision Processes (MDPs): Consider a discrete-time
dynamical system

st+1 ~ Pξ st+1|st, at( ), s0 ~ μξ s0( ), at ~ πθ at|st( ), ξ ~ p ξ( ), (1)
with the continuous state st ∈ Sξ ⊆ Rns and continuous action
at ∈ Aξ ⊆ Rna at time step t. The environment, also called
domain, is characterized by its parameters ξ ∈ Rnξ (e.g., masses,
friction coefficients, time delays, or surface appearance properties)
which are in general assumed to be random variables distributed
according to an unknown probability distribution p(ξ): Rnξ → R+.
A special case of this is the common assumption that the domain
parameters obey a parametric distribution pϕ(ξ) with unknown
parameters ϕ (e.g., mean and variance). The domain parameters
determine the transition probability density function
Pξ : Sξ × Aξ × Sξ → R+ that describes the system’s stochastic
dynamics. The initial state s0 is drawn from the start state
distribution μξ : Sξ → R+. In general, the instantaneous reward is
a random variable depending on the current state and action as well
as the next state. Here we make the common simplification that the
reward is a deterministic function of the current state and action
rξ : Sξ × Aξ → R Together with the temporal discount factor γ ∈ [0,
1], the system forms a MDP described by the tuple Mξ �
〈Sξ ,Aξ ,Pξ , μξ , rξ , γ〉.

Reinforcement Learning (RL): The goal of a RL agent is to
maximize the expected (discounted) return, a numeric scoring
function which measures the policy’s performance. The expected
discounted return of a policy πθ(at|st) with the parameters
θ ∈ Θ ⊆ Rnθ is defined as

FIGURE 1 | Examples of sim-to-real robot learning research using domain randomization: (left) Multiple simulation instances of robotic in-hand manipulation
(OpenAI et al., 2020), (middle top) transformation to a canonical simulation (James et al., 2019), (middle bottom) synthetic 3D hallways generated for indoor drone flight
(Sadeghi and Levine, 2017), (right top) ball-in-a-cup task solved with adaptive dynamics randomization (Muratore et al., 2021a), (right bottom) quadruped locomotion
(Tan et al., 2018).
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J θ, ξ( ) � Es0~μξ s0( ) Est+1~Pξ st ,at( ), at~πθ at |st( ) ∑T−1
t�0 γ

t
ξ st, at( ) θ| , ξ, s0[ ][ ].

(2)
While learning from experience, the agent adapts its policy
parameters. The resulting state-action-reward tuples are
collected in trajectories, a.k.a. rollouts, τ � {st, at, rt}T−1t�0 ∈ T
with rt � rξ(st, at). In a partially observable MDP, the policy’s
input would not be the state but observations there of
ot ∈ Oξ ⊆ Rno , which are obtained through an environment-
specific mapping ot = fobs (st).

Domain randomization: When augmenting the RL setting
with domain randomization, the goal becomes to maximize
the expected (discounted) return for a distribution of domain
parameters

J θ( ) � Eξ~p ξ( ) J θ, ξ( )[ ]
� Eξ~p ξ( ) Eτ~p τ( ) ∑T−1

t�0 γ
t
ξ st, at( ) θ| , ξ, s0[ ][ ]. (3)

The outer expectation with respect to the domain parameter
distribution p(ξ) is the key difference compared to the standard
MDP formulation. It enables the learning of robust policies, in the
sense that these policies work for a whole set of environments
instead of overfitting to a particular problem instance.

3 FOUNDATIONS OF SIM-TO-REAL
TRANSFER

Modern research on learning from (randomized) physics
simulations is based on solid foundation of prior work
(Section 3.1). Parametric simulators are the core component
of every sim-to-real method (Section 3.2). Even though the
details of their randomization are crucial, they are rarely
discussed (Section 3.3). Estimating the sim-to-real
transferability during or after learning allows one to assess or
predict the policy’s performance in the target domain
(Section 3.4).

3.1 Early Methods
The roots of randomized simulations trace back to the invention
of the Monte Carlo method (Metropolis and Ulam, 1949), which
computes its results based on repeated random sampling and
subsequent statistical analysis. Later, the concept of common
random numbers, also called correlated sampling, was developed
as a variance reduction technique (Kahn and Marshall, 1953;
Wright and Ramsay, 1979). The idea is to synchronize the
random numbers for all stochastic events across the
simulation runs to achieve a (desirably positive) correlation
between random variables reducing the variance of an
estimator based on a combination of them. Many of the sim-
to-real challenges which are currently tackled have already been
identified by Brooks (1992). In particular, Brooks addresses the
overfitting to effects which only occur in simulation as well as the
idealized modeling on sensing and actuation. To avoid
overfitting, he advocated for reactive behavior-based
programming which is deeply rooted in, hence tailored to, the

embodiment. Focusing on RL, Sutton (1991) introduced the
Dyna architecture which revolves around predicting from a
learned world model and updating the policy from this
hypothetical experience. Viewing the data generated from
randomized simulators as “imaginary,” emphasizes the
parallels of domain randomization to Dyna. As stated by
Sutton, the usage of “mental rehearsal” to predict and reason
about the effect of actions dates back even further in other fields of
research such as psychology (Craik, 1943; Dennett, 1975). Instead
of querying a learned internal model, Jakobi et al. (1995) added
random noise the sensors and actuators while learning, achieving
the arguably first sim-to-real transfer in robotics. In follow-up
work, Jakobi (1997) formulated the radical envelope of noise
hypothesis which states that “it does not matter how inaccurate or
incomplete [the simulations] are: controllers that have evolved to
be reliably fit in simulation will still transfer into reality.” Picking
up on the idea of common random numbers, Ng and Jordan
(2000) suggested to explicitly control the randomness of a
simulator, i.e., the random number generator’s state, rendering
the simulator deterministic. This way the same initial
configurations can be (re-)used for Monte Carlo estimations of
different policies’ value functions, allowing one to conduct policy
search in partially observable problems. Bongard et al. (2006)
bridged the sim-to-real gap through iterating model generation
and selection depending on the short-term state-action history.
This process is repeated for a given number of iterations, and then
yields the self-model, i.e., a simulator, which best explains the
observed data.

Inspired by these early approaches, the systematic analysis of
randomized simulations for robot learning has become a highly
active research direction. Moreover, the prior work above also
falsifies the common belief that domain randomization
originated recently with the rise of deep learning. Nevertheless,
the current popularity of domain randomization can be explained
by its widespread use in the computer vision and locomotion
communities as well as its synergies with deep learning methods.
The key difference between the early and the recent domain
randomization methods (Section 5) is that the latter (directly)
manipulate the simulators’ parameters.

3.2 Constructing Stochastic Simulators
Simulators can be obtained by implementing a set of physical laws
for a particular system. Given the challenges in implementing an
efficient simulator for complex systems, it is common to use
general purpose physics engines such as ODE, DART, Bullet,
Newton, SimBody, Vortex, MuJoCo, Havok, Chrono, RaiSim,
PhysX, FleX, or Brax. These simulators are parameterized
generative models, which describe how multiple bodies or
particles evolve over time by interacting with each other. The
associated physics parameters can be estimated by system
identification (Section 4.6), which generally involves executing
experiments on the physical platform and recording associated
measurement. Additionally, using the Gauss-Markov theorem
one could also compute the parameters’ covariance and hence
construct a normal distribution for each domain parameter.
Differentiable simulators facilitate deep learning for robotics
(Degrave et al., 2019; Coumans, 2020; Heiden et al., 2021) by
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propagating the gradients though the dynamics. Current research
extends the differentiability to soft body dynamics (Hu et al.,
2019). Alternatively, the system dynamics can be captured using
nonparametric methods like Gaussian Processes (GPs)
(Rasmussen and Williams, 2006) as for example demonstrated
by Calandra et al. (2015). It is important to keep inmind that even
if the domain parameters have been identified very accurately,
simulators are nevertheless just approximations of the real world
and are thus always imperfect.

Several comparisons between various physics engines were
made (Ivaldi et al., 2014; Erez et al., 2015; Chung and Pollard,
2016; Collins et al., 2019; Körber et al., 2021). However, note that
these results become outdated quickly due to the rapid
development in the field, or are often limited to very few
scenarios and partially introduce custom metrics to measure
their performance or accuracy.

Apart from the physics engines listed above, there is an
orthogonal research direction investigating human-inspired
learning of the physics laws from visual input (Battaglia et al.,
2013; Wu et al., 2015) as well as physical reasoning given a
configuration of bodies (Battaglia et al., 2016), which is out of the
scope of this review.

3.3 Randomizing a Simulator
Learning from randomized simulations entails significant design
decisions:

Which parameters should be randomized? Depending on the
problem, some domain parameters have no influence (e.g., the
mass of an idealized rolling ball) while others are pivotal (e.g., the
pendulum length for a stabilization task). It is recommended to
first identify the essential parameters (Xie et al., 2020). For
example, most robot locomotion papers highlight the
importance of varying the terrain and contact models, while
applications such as drone control benefit from adding
perturbations, e.g., to simulate a gust of wind. Injecting
random latency and noise to the actuation is another frequent
modeling choice. Starting from a small set of randomized domain
parameters, identified from prior knowledge, has the additional
benefit of shortening the evaluation time which involves
approximating an expectation over domains, which scales
exponentially with the number of parameters. Moreover,
including at least one visually observable parameter (e.g., an
extent of a body) helps to verify if the values are set as expected.

When should the parameters be randomized? Episodic
dynamics randomization, without a rigorous theoretical
justification, is the most common approach. Randomizing the
domain parameters at every time step instead would drastically
increase the variance, and pose a challenge to the
implementations since this typically implies recreating the
simulation at every step. Imagine a stack of cubes standing on
the ground. If we now vary the cubes’ side lengths individually
while keeping their absolute positions fixed, they will either lose
contact or intersect with their neighboring cube(s). In order to
keep the stack intact, we need to randomize the cubes with respect
to their neighbors, additionally moving them in space. Executing
this once at the beginning is fine, but doing this at every step
creates artificial “movement” which would almost certainly be

detrimental. Orthogonal to the argumentation above, alternative
approaches apply random disturbance forces and torques at every
time step. In these cases, the distribution over disturbance
magnitudes is chosen to be constant until the randomization
scheme is updated. To the best of our knowledge, event-triggered
randomization has not been explored yet.

How should the parameters be randomized? Answering this
question is what characterizes a domain randomization method
(Section 5). There are a few aspects that needs to be considered in
practice when designing a domain randomization scheme, such
as the numerical stability of the simulation instances. Low masses
for example quickly lead to stiff differential equations which
might require a different (implicit) integrator. Furthermore, the
noise level of the introduced randomness needs to match the
precision of the state estimation. If the noise is too low, the
randomization is pointless. On the other side, if the noise level is
too high, the learning procedure will fail. To find the right balance
between these considerations, we can start by statistically
analyzing the incoming measurement signals.

What about physical plausibility? The application of pseudo-
random color patterns, e.g., Perlin noise (Perlin, 2002), has
become a frequent choice for computer vision applications.
Despite that these patterns do not occur on real-world objects,
this technique has improved the robustness of object detectors
(James et al., 2017; Pinto et al., 2018). Regarding the
randomization of dynamics parameters, no research has so far
hinted that physically implausible simulations (e.g., containing
bodies with negative masses) are useful. On the other hand, it is
safe to say that these can cause numerical instabilities. Thus,
ensuring feasibility of the resulting simulator is highly desirable.
One solution is to project the domain parameters into a different
space, guaranteeing physical plausibility via the inverse
projection. For example, a body’s mass could be learned in the
log-space such that the subsequent exp-transformation, applied
before setting the new parameter value, yields strictly positive
numbers. However, most of the existing domain randomization
approaches can not guarantee physical plausibility.

Even in the case of rigid body dynamics there are notable
differences between physics engines, as was observed byMuratore
et al. (2018) when transferring a robot control policy trained
using Vortex to Bullet and vice versa. Typical sources for
deviations are different coordinate representations, numerical
solvers, friction and contact models. Especially the latter two
are decisive for robot manipulation. For vision-based tasks,
Alghonaim and Johns (2020) found a strong correlation
between the renderer’s quality and sim-to-real transferability.
Additionally, the authors emphasize the importance of
randomizing both distractor objects and background textures
for generalizing to unseen environments.

3.4 Measuring and Predicting the
Reality Gap
Coining the term “reality gap,”Koos et al. (2010) hypothesize that
the fittest solutions in simulation often rely on poorly simulated
phenomena. From this, they derive a multi-objective formulation
for sim-to-real transfer where performance and transferability
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need to be balanced. In subsequent work, Koos et al. (2013)
defined a transferability function that maps controller parameters
to their estimated target domain performance. A surrogate model
of this function is regressed from the real-world fitness values that
are obtained by executing the controllers found in simulation.

The Simulation Optimization Bias (SOB) (Muratore et al.,
2018; 2021b) is a quantitative measure for the transferability of a
control policy from a set of source domains to a different target
domain originating from the same distribution. Building on the
formulation of the optimality gap from convex optimization
(Mak et al., 1999; Bayraksan and Morton, 2006), Muratore
et al. (2018) proposed a Monte Carlo estimator of the SOB as
well as an upper confidence bound, tailored to reinforcement
learning settings. This bound can be used as an indicator to stop
training when the predicted transferability exceeds a threshold.
Moreover, the authors show that the SOB is always positive,
i.e., optimistic, and in expectation monotonically decreases with
an increasing number of domains.

Collins et al. (2019) quantify the accuracy of ODE, (Py)Bullet,
Newton, Vortex, and MuJoCo in a real-world robotic setup. The
accuracy is defined as the accumulated mean-squared error
between the Cartesian ground truth position, tracked by a
motion capture system, and the simulators’ prediction. Based
on this measure, they conclude that simulators are able to model
the control and kinematics accurately, but show deficits during
dynamic robot-object interactions.

To obtain a quantitative estimate of the transferability, Zhang
et al. (2020) suggest to learn a probabilistic dynamics model
which is evaluated on a static set of target domain trajectories.
This dynamics model is trained jointly with the policy in the same
randomized simulator. The transferability score is chosen to be
the average negative log-likelihood of the model’s output given
temporal state differences from the real-world trajectories. Thus,
the proposedmethod requires a set of pre-recorded target domain
trajectories, and makes the assumption that for a given domain
the model’s prediction accuracy correlates with the policy
performance.

With robot navigation in mind, Kadian et al. (2020) define the
Sim-vs-Real Correlation Coefficient (SRCC) to be the Pearson
correlation coefficient on data pairs of scalar performance
metrics. The data pairs consist of the policy performance
achieved in a simulator instance as well as in the real
counterpart. Therefore, in contrast to the SOB (Muratore et al.,
2018), the SRCC requires real-world rollouts. A high SRCC value,
i.e., close to 1, predicts good transferability, while low values,
i.e., close to 0, indicates that the agent is exploited the simulation
during learning. Kadian et al. (2020) also report tuning the domain
parameters with grid search to increase the SRCC. By using the
Pearson correlation, the SRCC is restricted to linear correlation,
which might not be a notable restriction in practice.

4 RELATION OF SIM-TO-REAL TO OTHER
FIELDS

There are several research areas that overlap with sim-to-real in
robot learning, more specifically domain randomization

(Figure 2). In the following, we describe those that either
share the same goal, or employ conceptually similar methods.

4.1 Curriculum Learning
The key idea behind curriculum learning is to increase the
sample efficiency by scheduling the training process such that
the agent first encounters “easier” tasks and gradually
progresses to “harder” ones. Hence, the agent can bootstrap
from the knowledge it gained at the beginning, before learning
to solve more difficult task instances. Widely known in
supervised learning (Bengio et al., 2009; Kumar et al.,
2010), curriculum learning has been applied to RL (Asada
et al., 1996; Erez and Smart, 2008; Klink et al., 2019, 2021).
The connection between curriculum learning and domain
randomization can be highlighted by viewing the task as a
part of the domain, i.e., the MDP, rendering the task
parameters a subspace of the domain parameters. From
this point of view, the curriculum learning schedule
describes how the domain parameter distribution is
updated. There are several challenges to using a curriculum
learning approach for sim-to-real transfer. Three such
challenges are: 1) we can not always assume to have an
assessment of the difficulty level of individual domain
parameter configurations, 2) curriculum learning does not
aim at finding solutions robust to model uncertainty, and 3)
curriculum learning methods may require a target
distribution which is not defined in the domain
randomization setting. However, adjustments can be made
to circumvent these problems. OpenAI et al. (2019) suggested
a heuristic for the domain randomization schedule that
increases the boundaries of each domain parameter
individually until the return drops more than a predefined
threshold. Executing this approach on a computing cluster,
the authors managed to train a policy and a vision system
which in combination solve a Rubik’s cube with a tendon-
driven robotic hand. Another intersection point of curriculum
learning and sim-to-real transfer is the work by Morere et al.
(2019), where a hierarchical planning method for discrete
domains with unknown dynamics is proposed. Learning
abstract skills based on a curriculum enables the algorithm
to outperform planning and RL baselines, even in domains
with a very large number of possible states.

4.2 Meta Learning
Inspired by the human ability to quickly master new tasks by
leveraging the knowledge extracted from solving other tasks,
meta learning (Santoro et al., 2016; Finn et al., 2017) seeks to
make use of prior experiences gained from conceptually
similar tasks. The field of meta learning currently enjoys
high popularity, leading to abundant follow-up work. Grant
et al. (2018) for example casts meta learning as hierarchical
Bayesian inference. Furthermore, the meta learning
framework has been adapted to the RL setting (Wang et al.,
2017; Nagabandi et al., 2019). The optimization over an
ensemble of tasks can be translated to the optimization
over an ensemble of domain instances, modeled by
different MDPs (Section 2). Via this duality one can view
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domain randomization as a special form of meta learning
where the robot’s task remains qualitatively unchanged but
the environment varies. Thus, the tasks seen during the meta
training phase are analogous to domain instances experienced
earlier in the training process. However, when looking at the
complete procedure, meta learning and domain
randomization are fundamentally different. The goal of
meta learning, i.e., Finn et al. (2017), is to find a suitable
set of initial weights, which when updated generalizes well to a
new task. Domain randomization on the other hand strives to
directly solve a single task, generalizing over domain
instances.

4.3 Transfer Learning
The term transfer learning covers a wide range of machine
learning research, aiming at using knowledge learned in the
source domain to solve a task in the target domain. Rooted in
classification, transfer learning is categorized in several subfields
by for example differentiating 1) if labeled data is available in the
source or target domain, and 2) if the tasks in both domains are
the same (Pan and Yang, 2010; Zhuang et al., 2021). Domain
adaptation is one of the resulting subfields, specifying the case
where ground truth information is only available in the target
domain which is not equal to the source domain while the task
remains the same. Thus, domain adaptation methods are in
general suitable to tackle sim-to-real problems. However, the
research fields evolved at different times in different
communities, with different goals in mind. The keyword “sim-
to-real” specifically concerns regression and control problems
where the focus lies on overcoming the mismatch between
simulation and reality. In contrast, most domain adaptation
techniques are not designed for a dynamical system as the
target domain.

4.4 Knowledge Distillation
When executing a controller on a physical device operating at
high frequencies, it is of utmost importance that the forward pass
finishes with the given time frame. With deep Neural Network
(NN) policies, and especially with ensembles of these, this
requirement can become challenging to meet. Distilling the
knowledge of a larger network into a smaller one reduces the
evaluation time. Knowledge distillation (Hinton et al., 2015) has
been successfully applied to several machine learning applications
such as natural language processing (Cui et al., 2017), and object
detection (Chen et al., 2017). In the context of RL, knowledge
distillation techniques can be used to compress the learned
behavior of one or more teachers into a single student (Rusu

et al., 2016a). Based on samples generated by the teachers, the
student is trained in a supervised manner to imitate them. This
idea can be applied to sim-to-real robot learning in a
straightforward manner, where the teachers can be policies
optimal for specific domain instances (Brosseit et al., 2021).
Complementarily, knowledge distillation has been applied to
multitask learning (Parisotto et al., 2016; Teh et al., 2017),
promising to improve sample efficiency when learning a new
task. A technical comparison of policy distillation methods for RL
is provided by Czarnecki et al. (2019).

4.5 Distributional Robustness
The term robustness is overloaded with different meanings, such
as the ability to (quickly) counteract external disturbances, or the
resilience against uncertainties in the underlying model’s
parameters. The field of robust control aims at designing
controllers that explicitly deal with these uncertainties (Zhou
and Doyle, 1998). Within this field, distributional robust
optimization is a framework to find the worst-case
probabilistic model from a so-called ambiguity set, and
subsequently set a policy which acts optimally in this worst
case. Mathematically, the problem is formulated as bilevel
optimization, which is solved iteratively in practice. By
restricting the model selection to the ambiguity set,
distributional robust optimization regularizes the adversary to
prevent the process from yielding solutions that are overly
conservative policies. Under the lens of domain
randomization, the ambiguity set closely relates to the
distribution over domain parameters. Abdulsamad et al.
(2021) for example define the ambiguity set as a Kullback-
Leibler (KL) ball the nominal distribution. Other approaches
use a moment-based ambiguity set (Delage and Ye, 2010) or
introduce chance constrains (Van Parys et al., 2016). For a review
of distributional robust optimization, see Zhen et al. (2021).
Chatzilygeroudis et al. (2020) point out that performing policy
search under an uncertain model is equivalent to finding a policy
that can perform well under various dynamics models. Hence,
they argue that “model-based policy search with probabilistic
models is performing something similar to dynamics
randomization.”

4.6 System Identification
The goal of system identification is to find the set of model
parameters which fit the observed data best, typically by
minimizing the prediction-dependent loss such as the mean-
squared error. Since the simulator is the pivotal element in every
domain randomization method, the accessible parameters and

FIGURE 2 | Topological overview of the sim-to-real research and a selection of related fields.
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their nominal values are of critical importance. When a
manufacturer does not provide data for all model parameters,
or when an engineer wants to deploy a new model, system
identification is typically the first measure to obtain an
estimate of the domain parameters. In principle, a number of
approaches can be applied depending on the assumptions on the
internal structure of the simulator. The earliest approaches in
robotics recognized the linearity of the rigid body dynamics with
respect to combinations of physics parameters such as masses,
moments of inertia, and link lengths, thus proposed to use linear
regression (Atkeson et al., 1986), and later Bayesian linear
regression (Ting et al., 2006). However, it was quickly
observed that the inferred parameters may be physically
implausible, leading to the development of methods that can
account for this (Ting et al., 2011). With the advent of deep
learning, such structured physics-based approaches have been
enhanced with NNs, yielding nonlinear system identification
methods such as the ones based on the Newton-Euler forward
dynamics (Sutanto et al., 2020; Lutter et al., 2021b). Alternatively,
the simulator can be augmented with a NN to learn the domain
parameter residuals, minimizing the one step prediction error
(Allevato et al., 2019). On another front, system identification
based on the classification loss between simulated and real
samples has been investigated (Du et al., 2021; Jiang et al.,
2021). System identification can also be interpreted as an
episodic RL problem by treating the trajectory mismatch as
the cost function and iteratively updating a distribution over
models (Chebotar et al., 2019). Recent simulation-based inference
methods yield highly expressive posterior distributions that
capture multi-modality as well as correlations between the
domain parameters (Section 4.8).

4.7 Adaptive Control
The well-established field of adaptive control is concerned with the
problem of adapting a controller’s parameters at runtime to operate
initially uncertain or varying systems (e.g., aircraft reaching
supersonic speed). A prominent method is model reference
adaptive control, which tracks a reference model’s output
specifying the desired closed-loop behavior. Model Identification
Adaptive Control (MIAC) is a different variant, which includes an
online system identification component that continuously
estimates the system’s parameters based on the prediction error
of the output signal (Åström and Wittenmark, 2008; Landau et al.,
2011). Given the identified system, the controller is updated
subsequently. Similarly, there exists a line of sim-to-real
reinforcement learning approaches that condition the policy on
the estimated domain parameters (Yu et al., 2017, 2019b; Mozifian
et al., 2020) or a latent representation thereof (Yu et al., 2019a; Peng
et al., 2020; Kumar et al., 2021). The main difference to MIAC lies
in the adaption mechanism. Adaptive control techniques typically
define the parameters’ gradient proportional to the prediction
error, while the approaches referenced above make the domain
parameters an input to the policy.

4.8 Simulation-Based Inference
Simulators are predominantly used as forward models, i.e., to
make predictions. However, with the increasing fidelity and

expressiveness of simulators, there is a growing interest to also
use them for probabilistic inference (Cranmer et al., 2020). In the
case of simulation-based inference, the simulator and its
parameters define the statistical model. Inference tasks differ
by the quantity to be inferred. Regarding sim-to-real transfer,
the most frequent task is to infer the simulation parameters from
real-world time series data. Similarly to system identification
(Section 4.6), the result can be a point estimate, or a posterior
distribution. Likelihood-Free Inference (LFI) methods are a type
of simulation-based inference approaches which are particularly
well-suited when we can make very little assumptions about the
underlying generative model, treating it as an implicit function.
These approaches only require samples from the model (e.g., a
non-differentiable black-box simulator) and a measure of how
likely real observations could have been generated from the
simulator. Approximate Bayesian computation is well-known
class of LFI methods that applies Monte Carlo sampling to
infer the parameters by comparing summary statistics of
synthetically generated and observed data. There exist plenty
of variants for approximate Bayesian computation (Marjoram
et al., 2003; Beaumont et al., 2009; Sunnåker et al., 2013) as well as
studies on the design of low-dimensional summary statistics
(Fearnhead and Prangle, 2012). In order to increase the
efficiency and thereby scale LFI higher-dimensional problems,
researchers investigated amortized approaches, which conduct
the inference over multiple sequential rounds. Sequential neural
posterior estimation approaches (Papamakarios and Murray,
2016; Lueckmann et al., 2017; Greenberg et al., 2019)
approximate the conditional posterior, allowing for direct
sampling from the posterior. Learning the likelihood
(Papamakarios et al., 2019) can be useful in the context for
hypothesis testing. Alternatively, posterior samples can be
generated from likelihood-ratios (Durkan et al., 2020;
Hermans et al., 2020). However, simulation-based inference
does not explicitly consider policy optimization or domain
randomization. Recent approaches connected all three
techniques, and closed the reality gap by inferring a
distribution over simulators while training policies in
simulation (Ramos et al., 2019; Barcelos et al., 2020; Muratore
et al., 2021c).

5 DOMAIN RANDOMIZATION FOR
SIM-TO-REAL TRANSFER

Wedistinguish between static (Section 5.1), adaptive (Section 5.2),
and adversarial (Section 5.3) domain randomization (Figure 3).
Static, as well as adaptive, methods are characterized by randomly
sampling a set of domain parameters ξ ~ p(ξ) at the beginning of

FIGURE 3 | Topological overview of domain randomization methods.
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each simulated rollout. A randomization scheme is categorized as
adaptive if the domain parameter distribution is updated during
learning, otherwise the scheme is called static. The main advantage
of adaptive schemes is that they alleviate the need for hand-tuning
the distributions of the domain parameters, which is currently a
decisive part of the hyper-parameter search in a static scheme.
Nonetheless, the prior distributions still demand design decisions.
On the downside, every form of adaptation requires data from the
target domain, typically the real robot, which is significantly more
expensive to obtain. Another approach for learning robust policies
in simulation is to apply adversarial disturbances during the
training process. We classify these perturbations as a form of
domain randomization, since they either depend on a highly
stochastic adversary learned jointly with the policy, or directly
contain a random process controlling the application of the
perturbation. Adversarial approaches may yield exceptionally
robust control strategies. However, without any further
restrictions, it is always possible to create scenarios in which the
protagonist agent can never win, i.e., the policy can not learn the
task. Balancing the adversary’s power is pivotal to an adversarial
domain randomization method, adding a sensitive hyper-
parameter.

Another way to distinguish domain randomization concepts is
the representation of the domain parameter distribution. The vast
majority of algorithms assume a specific probability distribution
(e.g., normal or uniform) independently for every parameter.
This modeling decision has the benefit of greatly reducing the
complexity, but at the same time severely limits the
expressiveness. Novel LFI methods (Section 5.2) estimate the
complete posterior, hence allow the recognition of correlations
between the domain parameters, multi-modality, and skewness.

5.1 Static Domain Randomization
Approaches that sample from a fixed domain parameter
distribution typically aim at performing sim-to-real transfer
without using any real-world data (Figure 4). Since running
the policy on a physical device is generally the most difficult and
time-consuming part, static approaches promise quick and
relatively easy to obtain results. In terms of final policy
performance in the target domain, these methods are usually
inferior to those that adapt the domain parameter distribution.
Nevertheless, static domain randomization has bridged the reality
gap in several cases.

5.1.1 Randomizing Dynamics Without Using
Real-World Data at Runtime
More than a decade ago, Wang et al. (2010) proposed to
randomize the simulator in which the training data is

generated. The authors examined the randomization of initial
states, external disturbances, goals, and actuator noise, clearly
showing an improved robustness of the learned locomotion
controllers in simulated experiments (sim-to-sim). Mordatch
et al. (2015) used a finite model ensembles to run (offline)
trajectory optimization on a small-scale humanoid robot,
achieving one of the first sim-to-real transfers in robotics
powered by domain randomization. Similarly, Lowrey et al.
(2018) employed the Natural Policy Gradient (Kakade, 2001)
to learn a continuous controller for a three-finger positioning
task, after carefully identifying the system’s parameters.
Conforming with Mordatch et al. (2015), their results showed
that the policy learned from the identified model was able to
perform the sim-to-real transfer, but the policies learned from an
ensemble of models was more robust to modeling errors. In
contrast, Peng et al. (2018) combined model-free RL with
recurrent NN policies that were trained using hindsight
experience replay (Andrychowicz et al., 2017) in order to push
an object by controlling a robotic arm. Tan et al. (2018) presented
an example for learning quadruped gaits from randomized
simulations, where particular efforts were made to conduct a
prior system identification. They empirically found that sampling
domain parameters from a uniform distribution together with
applying random forces and regularizing the observation space
can be enough to cross the reality gap. For quadrotor control,
Molchanov et al. (2019) trained feedforward NN policies which
generalize over different physical drones. The suggested
randomization includes a custom model for motor lag and
noise based on an Ornstein-Uhlenbeck process. Rajeswaran
et al. (2017) explored the use of a risk-averse objective
function, optimizing a lower quantile of the return. The
method was only evaluated on simulated MuJoCo tasks,
however it was also one of the first methods that draws upon
the Bayesian perspective. Moreover, this approach was employed
as a baseline by Muratore et al. (2021b), who introduced a
measure for the inter-domain transferability of controllers
together with a risk-neutral randomization scheme. The
resulting policies have the unique feature of providing a
(probabilistic) guarantee on the estimated transferability and
managed to directly transfer to the real platform in two
different experiments. Siekmann et al. (2021) achieved the
sim-to-real transfer of a recurrent NN policy for bipedal
walking. The policy was trained using model-free RL in
simulation with uniformly distributed dynamics parameters as
well as randomized task-specific terrain. According to the
authors, the recurrent architecture and the terrain
randomization were pivotal.

5.1.2 Randomizing Dynamics Using Real-World Data
at Runtime
The work by Cully et al. (2015) can be seen as both static and
adaptive domain randomization, where a large set of hexapod
locomotion policies is learned before execution on the physical
robot, and subsequently evaluated in simulation. Every policy is
associated with one configuration of the so-called behavioral
descriptors, which can be interpreted as domain parameters.
Instead of retraining or fine-tuning, the proposed algorithm

FIGURE 4 | Conceptual illustration of static domain randomization.
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reacts to performance drops, e.g., due to damage, by querying
Bayesian Optimization (BO) to sequentially select one of the
pretrained policies and measure its performance on the robot.
Instead of randomizing the simulator parameters, Cutler and
How (2015) explored learning a probabilistic model, chosen to be
a GP, of the environment using data from both simulated and
real-world dynamics. A key feature of this method is to
incorporate the simulator as a prior for the probabilistic
model, and subsequently use this information of the policy
updates with PILCO (Deisenroth and Rasmussen, 2011). The
authors demonstrated policy transfer for a inverted pendulum
task. In follow-up work, Cutler and How (2016) extended the
algorithm to make a remote-controlled toy car learn how to drift
in circles. Antonova et al. (2019) propose a sequential Variational
AutoEncoder (VAE) to embed trajectories into a compressed
latent space which is used with BO to search for controllers. The
VAE and the domain-specific high-level controllers are learned
jointly, while the randomization scheme is left unchanged.
Leveraging a custom kernel which measures the KL divergence
between trajectories and the data efficiency of BO, the authors
report successful sim-to-real transfers after 10 target domain
trials for a hexapod locomotion task as well as 20 trials for a
manipulation task. Kumar et al. (2021) learned a quadruped
locomotion policy that passed joint positions to a lower level PD
controller without using any real-wold data. The essential
components of this approach are the encoder that projects the
domain parameters to a latent space and the adaption module
which is trained to regress the latent state from the recent history
of measured states and actions. The policy is conditioned on the
current state, the previous actions, and the latent state which
needs to be reconstructed during deployment in the physical
world. Emphasizing the importance of the carefully engineered
reward function, the authors demonstrate the method’s ability to
transfer from simulation to various outdoor terrains.

5.1.3 Randomizing Visual Appearance and
Configurations
Tobin et al. (2017) learned an object detector for robot grasping
using a fixed domain parameter distribution, and bridged the gap
with a deep NN policy trained exclusively on simulated RGB
images. Similarly, James et al. (2017) added various distracting
shapes as well as structured noise (Perlin, 2002) when learning a
robot manipulation task with an end-to-end controller that
mapped pixels to motor velocities. The approach presented by
Pinto et al. (2018) combines the concepts of static domain
randomization and actor-critic training (Lillicrap et al., 2016),
enabling the direct sim-to-real transfer of the abilities to pick,
push, or move objects. While the critic has access to the
simulator’s full state, the policy only receives images of the
environment, creating an information asymmetry. Matas et al.
(2018) used the asymmetric actor-critic idea from Pinto et al.
(2018) as well as several other improvements to train a deep NN
policy end-to-end, seeded with prior demonstrations. Solving
three variations of a tissue folding task, this work scales sim-to-
real visuomotor manipulation to deformable objects. Purely
visual domain randomization has also been applied to aerial
robotics, where Sadeghi and Levine (2017) achieved sim-to-real

transfer for learning to fly a drone through indoor environments.
The resulting deep NN policy was able to map from monocular
images to normalized 3D drone velocities. Similarly, Polvara et al.
(2020) demonstrated landing of a quadrotor trained in end-to-
end fashion using randomized environments. Dai et al. (2019)
investigated the effect of domain randomization on visuomotor
policies, and observed that this leads to more redundant and
entangled representations accompanied with significant
statistical changes in the weights. Yan et al. (2020) apply
Model Predictive Control (MPC) to manipulate of deformable
objects using a forward model based on visual input. The novelty
of this approach is that the predictive model is trained jointly with
an embedding to minimizing a contrastive loss (van den Oord
et al., 2018) in the latent space. Finally, domain randomization
was applied to transfer the behavior from simulation to the
real robot.

5.1.4 Randomizing Dynamics, Randomizing Visual
Appearance, and Configurations
Combining Generative Adversarial Networks (GANs) and
domain randomization, Bousmalis et al. (2018) greatly reduced
the number of necessary real-world samples for learning a robotic
grasping task. The essence of their method is to transform
simulated monocular RGB images in a way that is closely
matched to the real counterpart. Extensive evaluation on the
physical robot showed that domain randomization as well as the
suggested pixel-level domain adaptation technique were
important to successfully transfer. Despite the pixel-level
domain adaptation technique being learned, the policy
optimization in simulation is done with a fixed randomization
scheme. In related work James et al. (2019) train a GAN to
transform randomized images to so-called canonical images, such
that a corresponding real image would be transformed to the
same one. This approach allowed them to train purely from
simulated images, and optionally fine-tune the policy on target
domain data. Notably, the robotic in-hand manipulation
conducted by OpenAI et al. (2020) demonstrated that domain
randomization in combination with careful model engineering
and the usage of recurrent NNs enables sim-to-real transfer on an
unprecedentedly difficulty level.

5.2 Adaptive Domain Randomization
Static domain randomization (Section 5.1) is inherently limited
and implicitly assumes knowledge of the true mean of the domain
parameters or accepts biased samples (Figure 5). Adapting the
randomization scheme allows the training to narrow or widen the
search distribution in order to fulfill one or multiple criteria

FIGURE 5 | Conceptual illustration of adaptive domain randomization.
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which can be chosen freely. The mechanism devised for updating
the domain parameter distribution as well as the procedure to
collect meaningful target domain data are typically the center
piece of adaptive randomization algorithms. In this process the
execution of intermediate policies on the physical device is the
most likely point of failure. However, approaches that update the
distribution solely based on data from the source domain are less
flexible and generally less effective.

5.2.1 Conditioning Policies on the Estimated Domain
Parameters
Yu et al. (2017) suggested the use of a NN policy that is
conditioned on the state and the domain parameters. Since
these parameters are not assumed to be known, they have to be
estimated, e.g., with online system identification. For this purpose,
a second NN is trained to regress the domain parameters from the
observed rollouts. By applying this approach to simulated
continuous control tasks, the authors showed that adding the
online system identification module can enable an adaption to
sudden changes in the environment. In subsequent research, Yu
et al. (2019a) intertwined policy optimization, system
identification, and domain randomization. The proposed
method first identifies bounds on the domain parameters which
are later used for learning from the randomized simulator. In a
departure from their previous approach, the policy is conditioned
on a latent space projection of the domain parameters. After
training in simulation, a second system identification step runs
BO for a fixed number of iterations to find the most promising
projected domain parameters. The algorithm was evaluated on
sim-to-real bipedal robot walking. Mozifian et al. (2020) also
introduce a dependence of the policy w.r.t. to the domain
parameters. These are updated by gradient ascent on the
average return over domains, regularized by a penalty
proportional to the KL divergence. Similar to Ruiz et al. (2019),
the authors update the domain parameter distribution using the
score function gradient estimator.Mozifian et al. (2020) tested their
method on sim-to-sim robot locomotion tasks. It remains unclear
whether this approach scales to sim-to-real scenarios since the
adaptation is done based on the return obtained in simulation, thus
is not physically grounded. Bootstrapping from pre-recorded
motion capture data of animals, Peng et al. (2020) learned
quadruped locomotion skills with a synthesis of imitation
learning, domain randomization, and domain adaptation
(Section 4.3). The introduced method is conceptually related to
the approach of Yu et al. (2019b), but adds an information
bottleneck. According to the authors, this bottleneck is
necessary because without it, the policy has access to the
underlying dynamics parameters and becomes overly dependent
on them, which leads to brittle behavior. To avoid this overfitting,
Peng et al. (2020) limit the mutual information between the
domain parameters and their encoding, realized as penalty on
the KL divergence from a zero-mean Gaussian prior on the latent
variable.

5.2.2 The Bilevel Optimization Perspective
Muratore et al. (2021a) formulated adaptive domain
randomization as a bilevel optimization that consists of an

upper and a lower level problem. In this framework, the upper
level is concerned with finding the domain parameter
distribution, which when used for training in simulation leads
to a policy with maximal real-world return. The lower level
problem seeks to find a policy in the current randomized
source domain. Using BO for the upper level and model-free
RL for the lower level, Muratore et al. (2021a) compare their
method in two underactuated sim-to-real robotic tasks against
two baselines. Picturing the real-world return analogous to the
probability for optimality, this approach reveals parallels to
control as inference (Rawlik et al., 2012; Levine and Koltun,
2013; Watson et al., 2021), where the control variates are the
parameters of the domain distribution. BO has also been
employed by Paul et al. (2019) to adapt the distribution of
domain parameters such that using these for the subsequent
training maximizes the policy’s return. Their method models the
relation between the current domain parameters, the current
policy and the return of the updated policy with a GP. Choosing
the domain parameters that maximize the return in simulation is
critical, since this creates the possibility to adapt the environment
such that it is easier for the agent to solve. This design decision
requires the policy parameters to be fed into the GP which is
prohibitively expensive if the full set of parameters are used.
Therefore, abstractions of the policy, so-called fingerprints, are
created. These handcrafted features, e.g., a Gaussian
approximation of the stationary state distribution, replace the
policy to reduce the input dimension. Paul et al. (2019) tested the
suggested algorithm on three sim-to-sim tasks, focusing on the
handling of so-called significant rare events. Embedding the
domain parameters into the mean function of a GP which
models the system dynamics, Chatzilygeroudis and Mouret
(2018) extended a black-box policy search algorithm
(Chatzilygeroudis et al., 2017) with a simulator as prior. The
approach explicitly searches for parameters of the simulator that
fit the real-world data in an upper level loop, while optimizing the
GP’s hyper-parameters in a lower level loop. This method allowed
a damage hexapod robot to walk in less than 30 s. Ruiz et al.
(2019) proposed a meta-algorithm which is based on a bilevel
optimization problem and updates the domain parameter
distribution using REINFORCE (Williams, 1992). The
approach has been evaluated in simulation on synthetic data,
except for a semantic segmentation task. Thus, there was no
dynamics-dependent interaction of the learned policy with the
real world. Mehta et al. (2019) also formulated the adaption of the
domain parameter distribution as an RL problem where different
simulation instances are sampled and compared against a
reference environment based on the resulting trajectories. This
comparison is done by a discriminator which yields rewards
proportional to the difficulty of distinguishing the simulated and
real environments, hence providing an incentive to generate
distinct domains. Using this reward signal, the domain
parameters of the simulation instances are updated via Stein
Variational Policy Gradient (Liu et al., 2017). Mehta et al. (2019)
evaluated their method in a sim-to-real experiment where a
robotic arm had to reach a desired point. In contrast,
Chebotar et al. (2019) presented a trajectory-based framework
for closing the reality gap, and validated it on two sim-to-real
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robotic manipulation tasks. The proposed procedure adapts the
domain parameter distribution’s parameters by minimizing
discrepancy between observations from the real-world system
and the simulation. To measure the discrepancy, Chebotar et al.
(2019) use a linear combination of the L1 and L2 norm between
simulated and real trajectories. These values are then plugged in
as costs for Relative Entropy Policy Search (REPS) (Peters et al.,
2010) to update the simulator’s parameters, hence turning the
simulator identification into an episodic RL problem. The policy
optimization was done using Proximal Policy Optimization
(PPO) (Schulman et al., 2017), a step-based model-free RL
algorithm.

5.2.3 Removing Restrictions on the Domain Parameter
Distribution
Ramos et al. (2019) perform a fully Bayesian treatment of the
simulator’s parameters by employing Likelihood-Free Inference
(LFI) with a Mixture Density Network (MDN) as model for the
density estimator. Analyzing the obtained posterior over domain
parameters, they showed that the proposed method is, in a sim-to-
sim scenario, able to simultaneously infer different parameter
configurations which can explain the observed trajectories. An
evaluation over a gird of domain parameters confirms that the
policies trained with the inferred posterior are more robust model
uncertainties. The key benefit over previous approaches is that the
domain parameter distribution is not restricted to belong to a specific
family, e.g., normal or uniform. Instead, the true posterior is
approximated by the density estimator, fitted using LFI
(Papamakarios and Murray, 2016). In follow-up work, Possas
et al. (2020) addressed the problem of learning the behavioral
policies which are required for the collection of target domain
data. By describing the integration policy optimization via model-
free RL, the authors created an online variant of the original method.
The sim-to-real experiments were carried out using MPC where
(only) the model parameters are updated based on the result from
the LFI routine. Matl et al. (2020) scaled the Bayesian inference
procedure of Ramos et al. (2019) to the simulation of granularmedia,
estimating parameters such as friction and restitution coefficients.
Barcelos et al. (2020) presented a method that interleaves domain
randomization, LFI, and policy optimization. The controller is
updated via nonlinear MPC while using the unscented transform
to simulate different domain instances for the control horizon.
Hence, this algorithm allows one to calibrate the uncertainty as
the system evolves with the passage of time, attributing higher costs
to more uncertain paths. For performing the essential LFI, the
authors build upon the work of Ramos et al. (2019) to identify
the posterior domain parameters, which aremodeled by amixture of
Gaussians. The approach was validated on a simulated inverted
pendulum swing-up task as well as a real trajectory following task
using a wheeled robot. Since the density estimation problem is the
center piece of LFI-based domain randomization, improving the
estimator’s flexibility is of great interest. Muratore et al. (2021c)
employed a sequential neural posterior estimation algorithm
(Greenberg et al., 2019) which uses normalizing flows to estimate
the (conditional) posterior over simulators. In combination with a
segment-wise synchronization between the simulations and the
recorded real-world trajectories, Muratore et al. (2021c)

demonstrated the neural inference method’s ability to learn the
posterior belief over contact-rich black-box simulations. Moreover,
the proposed approachwas evaluatedwith policy optimization in the
loop on an underactuated swing-up and balancing task, showing
improved results compared to BayesSim (Ramos et al., 2019) as well
as Bayesian linear regression.

5.3 Adversarial Domain Randomization
Extensive prior studies have shown that deep NN classifiers are
vulnerable to imperceptible perturbations their inputs, obtained
via adversarial optimization, leading to significant drops in
accuracy (Szegedy et al., 2014; Fawzi et al., 2015; Goodfellow
et al., 2015; Kurakin et al., 2017; Ilyas et al., 2019). This line of
research has been extended to reinforcement learning, showing
that small (adversarial) perturbations are enough to significantly
degrade the policy performance (Huang et al., 2017). To defend
against such attacks, the training data can be augmented with
adversarially-perturbed examples, or the adversarial inputs can be
detected and neutralized at test-time (Figure 6). However, studies
of existing defenses have shown that adversarial examples are
harder to detect than originally believed (Carlini and Wagner,
2017). It is safe to assume that this insight gained from computer
vision problems transfers to the RL setting, on which we
focus here.

5.3.1 Adversary Available Analytically
Mandlekar et al. (2017) proposed physically plausible
perturbations by randomly deciding when to add a scaled
gradient of the expected return w.r.t. the state. Their sim-to-
sim evaluation on four MuJoCo tasks showed that agents trained
with the suggested adversarial randomization generalize slightly
better to domain parameter configurations than agents trained
with a static randomization scheme. Lutter et al. (2021a) derived
the optimal policy together with different optimal disturbances
from the value function in a continuous state, action, and time RL
setting. Despite outstanding sim-to-real transferability of the
resulting policies, the presented approach is conceptually
restricted by assuming access to a compact representation of
the state domain, typically obtained through exhaustive sampling,
which hinders the scalability to high-dimensional tasks.

5.3.2 Adversary Learned via Two-Player Games
Domain randomization can be described using a game theoretic
framework. Focusing on two-player games for model-based RL,
Rajeswaran et al. (2020) define a “policy player” which maximizes
rewards in the learned model and a “model player” which
minimizes prediction error of data collected by policy player.

FIGURE 6 | Conceptual illustration of adversarial domain randomization.
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This formulation can be transferred to the sim-to-real scenario in
different ways. One example is to make the “policy player”model-
agnostic and to let the “model player” control the domain
parameters. Pinto et al. (2017) introduced the idea of a second
agent whose goal it is to hinder the first agent from fulfilling its
task. This adversary has the ability to apply force disturbances at
predefined locations of the robot’s body, while the domain
parameters remain unchanged. Both agents are trained in
alternation using RL make this a zero-sum game. Similarly,
Zhang et al. (2021) aim to train an agent using adversarial
examples such that it becomes robust against test-time attacks.
As in the approach presented by Pinto et al. (2017), the adversary
and the protagonist are trained alternately until convergence at
every meta-iteration. Unlike prior work, Zhang et al. (2021) build
on state-adversarial MDPs manipulating the observations but not
the simulation state. Another key property of their approach is
that the perturbations are applied after a projection to a bounded
set. The proposed observation-based attack as well as training
algorithm is supported by four sim-to-sim validations in MuJoCo
environments. Jiang et al. (2021) employed GANs to distinguish
between source and target domain dynamics, sharing the concept
of a learned domain discriminator with Mehta et al. (2019).
Moreover, the authors proposed to augment an analytical physics
simulator with a NN that is trained to maximize the similarity
between simulated and real trajectories, turning the identification
of the hybrid simulator into an RL problem. The comparison on a
sim-to-real quadruped locomotion task showed an advantage
over static domain randomization baselines. On the other hand,
this method added noise to the behavioral policy in order to
obtain diverse target domain trajectories for the simulator
identification, which can be considered dangerous.

6 DISCUSSION AND OUTLOOK

To conclude this review, we discuss practical aspects of choosing
among the existing domain randomization approaches (Section
6.1), emphasizing that sim-to-real transfer can also be achieved
without randomizing (Section 6.2). Finally, we sketch out several
promising directions for future sim-to-real research
(Section 6.3).

6.1 Choosing a Suitable Domain
Randomization Approach
Every publication on sim-to-real robot learning presents an
approach that surpasses its baselines. So, how should we select
the right algorithm given a task? Up to now, there is no
benchmark for sim-to-real methods based on the policy’s
target domain performance, and it is highly questionable if
such a comparison could be fair, given that these algorithms
have substantially different requirements and goals. The absence
of one common benchmark is not necessarily bad, since bundling
a set of environments to define a metric would bias research to
pursue methods which optimize solely for that metric. A
prominent example for this mechanism is the OpenAI Gym
(Brockman et al., 2016), which became the de facto standard

for RL. Contrarily, a similar development for sim-to-real research
is not desirable since the overfitting to a small set of scenarios
would be detrimental to the desired transferability and the vast
amount of other scenarios.

When choosing from the published algorithms, the
practitioner is advised to check if the approach has been tested
on at least two different sim-to-real tasks, and if the (sometimes
implicit) assumptions can be met. Adaptive domain
randomization methods, for example, will require operating
the physical device in order to collect real-world data. After
all, we can expect that approaches with randomization will be
more robust than the ones only trained on a nominal model. This
has been shown consistently (Section 5). However, we can not
expect that these approaches work out of the box on novel
problems without adjusting the hyper-parameters. Another
starting point could be the set of sim-to-sim benchmarks
released by Mehta et al. (2020), targeting the problem of
system identification for state-of-the-art domain
randomization algorithms.

6.2 Sim-To-Real Transfer Without Domain
Randomization
Domain randomization is one way to successfully transfer control
policies learned in simulation to the physical device, but by no
means the only way.

6.2.1 Action Transformation
In order to cope with the inaccuracies of a simulator, Christiano
et al. (2016) propose to train a deep inverse dynamics model to
map the action commanded by policy to a transformed action.
When applying the original action to the real system and the
transformed action to the simulated system, they would lead to
the same next robot state, thus bridging the reality gap. To
generate the data for training the inverse dynamics model,
preliminary policies are augmented with hand-tuned
exploration noise and executed in the target domain. Their
approach is based on the observation that a policy’s high-level
strategy remains valid after sim-to-real transfer, and assumes that
the simulator provides a reasonable estimate of the next state.
With the same goal in mind, Hanna and Stone (2017) suggest an
action transformation that is learned such that applying the
transformed actions in simulation has the same effects as
applying the original actions had on the real system. At the
core approach is the estimation of neural forward and inverse
models based on rollouts executed with the real robot.

6.2.2 Novel Neural Policy Architectures
Rusu et al. (2017) employ a progressively growing NN
architecture (Rusu et al., 2016b) to learn an end-to-end
approach mapping from pixels to discretized joint velocities.
This NN framework enables the reuse of previously gained
knowledge as well as the adaptation to new input modalities.
The first part of the NN policy is trained in simulation, while the
part added when transferring needs to be trained using real-world
data. For a relatively simple reaching task, the authors reported
requiring approximately 4 h of runtime on the physical robot.
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6.2.3 Identifying and Improving the Simulator
Xie et al. (2019) describe an iterative process including motion
tracking, system identification, RL, and knowledge distillation, to
learn control policies for humanoid walking on the physical
system. This way, the authors can rely on known building
blocks resulting in initial and intermediate policies which are
reasonably safe to execute. To run a policy on the real robot while
learning without the risk of damaging or stopping the device,
Kaspar et al. (2020) propose to combine operational space control
and RL. After carefully identifying the simulator’s parameters, the
RL agent learns to control the end-effector via forces on a unit
mass-spring-damper system. The constrains and nullspace
behavior are abstracted away from the agent, making the RL
problem easier and the policy more transferable.

6.3 Promising Future Research Directions
Learning from randomized simulations still offers abundant
possibilities to enable or improve the sim-to-real transfer of
control policies. In the following section, we describe multiple
opportunities for future work in this area of research.

6.3.1 Real-To-Sim-To-Real Transfer
Creating randomizable simulation environments is time-
intensive, and the initial guesses for the domain parameters as
well as their variances are typically very inaccurate. It is of great
interest to automate this process grounded by real-world data.
One viable scenario could be to record an environment with a
RGBD camera, and subsequently use the information to
reconstruct the scene. Moreover, the recorded data can be
processed to infer the domain parameters, which then specifies
the domain parameter distributions. When devising such a
framework, we could start from prior work on 3D scene
reconstruction Kolev et al. (2009), Haefner et al. (2018) as well
as methods to estimate the degrees of freedom for rigid bodies
(Martin-Martin and Brock, 2014). A data-based automatic
generation of simulation environments (real-to-sim-to-real)
not only promises to reduce the workload, but would also
yields a meaningful initialization for domain distribution
parameters.

6.3.2 Policy Architectures With Inductive Biases
tDeep NNs are by far the most common policy type, favored
because of their flexibility and expressiveness. However, they are
also brittle w.r.t. changes in their inputs (Szegedy et al., 2014;
Goodfellow et al., 2015; Huang et al., 2017). Due to the
inevitable domain shift in sim-to-real scenarios this input
sensitivity is magnified. The success of domain
randomization methods for robot learning can largely be
attributed to their ability of regularizing deep NN policies by
diversifying the training data. Generally, one may also introduce
regularization to the learning by designing alternative models
for the control policies, e.g., linear combination of features and
parameters, (time varying) mixtures of densities, or movement
primitives. All of these have their individual strengths and
weaknesses. We believe that pairing the expressiveness of
deep NNs with physically-grounded prior knowledge leads to

controllers that achieve high performance and suffer less from
transferring to the real world, since they are able to bootstrap
from their prior. There are multiple ways to incorporate abstract
knowledge about physics. We can for example restrict the policy
to obey stable system dynamics derived from first principles
(Greydanus et al., 2019; Lutter et al., 2019). Another approach is
to design the model class such that the closed-loop system is
passive for all parameterizations of the learned policy, thus
guaranteeing stability in the sense of Lyapunov as well as
bounded output energy given bounded input energy
(Brogliato et al., 2007; Yang et al., 2013; Dai et al., 2021). All
these methods would require significant exploration in the
environment, making it even more challenging to learn
successful controllers in the real-world directly. Leveraging
randomized simulation is likely going to be a critical
component in demonstrating solving sequential problems on
real robots.

6.3.3 Towards Dual Control via Neural Likelihood-Free
Inference
Continuing the direction of adaptive domain randomization,
we are convinced that neural LFI powered by normalizing
flows are auspicious approaches. The combination of highly
flexible density estimators with widely applicable and sample-
efficient inference methods allows one to identify multi-
modal distributions over simulators with very mild
assumptions (Ramos et al., 2019; Barcelos et al., 2021;
Muratore et al., 2021c). By introducing an auxiliary
optimality variable and making the policy parameters
subject to the inference, we obtain the posterior over
policies quantifying their likelihood of being optimal.
While this idea is well-known in the control-as-inference
community (Rawlik et al., 2012; Levine and Koltun, 2013;
Watson et al., 2021), prior methods were limited to less
powerful density estimation procedures. Taking this idea
one step further, we could additionally include the domain
parameters for inference, and thereby establish connections to
dual control (Feldbaum, 1960; Wittenmark, 1995).

6.3.4 Accounting for the Cost of Information Collection
Another promising direction for future research is the
combination of simulated and real-world data collection with
explicit consideration of the different costs when sampling from
the two domains, subject to a restriction of the overall
computational budget. One part of this problem was already
addressed by Marco et al. (2017), showing how simulation can be
used to alleviate the need for real-world samples when finding a
set of policy parameters. However, the question of how to
schedule the individual (simulated or real) experiments and
when to stop the procedure, i.e., when does the cost of
gathering information exceed its expected benefit, is not
answered for sim-to-real transfer yet. This question relates to
the problems of optimal stopping (Chow and Robbins, 1963) as
well as multi-fidelity optimization (Forrester et al., 2007), and can
be seen as a reformulation thereof in the context of simulation-
based learning.
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6.3.5 Solving Sequential Problems
The problem settings considered in the overwhelming majority of
related publications, are (continuous) control tasks which do not have
a sequential nature. In contrast, most real-world tasks such as the ones
posed at theDARPARobotics Challenge (Krotkov et al., 2017) consist
of (disconnected) segments, e.g., a robot needs to turn the knob before
it can open a door. One possible way to address these more
complicated tasks is by splitting the control into high and low
level policies, similar to the options framework (Sutton et al.,
1999). The higher level policy is trained to orchestrate the low-
level policies which could be learned or fixed. Existing approaches
typically realize this with discrete switches between the low-level
policies, leading to undesirable abrupt changes in the behavior. An
alternative would be a continuous blending of policies, controlled by a
special kind of recurrent NN which has originally been proposed by
Amari (1977) to model activities in the human brain. Used as policy
architectures they can be constructed to exhibit asymptotically stable
nonlinear dynamics (Kishimoto and Amari, 1979). Themain benefits
of this structure are its easy interpretability via exhibition and
inhibition of neural potentials, as well as the relatively low number
of parameters necessary to create complex and adaptive behavior. A
variation of this idea with hand-tuned parameters, i.e., without
machine learning, has been applied by Luksch et al. (2012) to
coordinate the activation pre-defined movement primitives.

SELECTION OF REFERENCES
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