
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 3, MARCH 2019 777

Robot Learning System Based on Adaptive Neural

Control and Dynamic Movement Primitives

Chenguang Yang , Senior Member, IEEE, Chuize Chen, Wei He , Senior Member, IEEE,

Rongxin Cui, Member, IEEE, and Zhijun Li , Senior Member, IEEE

Abstract— This paper proposes an enhanced robot skill
learning system considering both motion generation and trajec-
tory tracking. During robot learning demonstrations, dynamic
movement primitives (DMPs) are used to model robotic motion.
Each DMP consists of a set of dynamic systems that enhances
the stability of the generated motion toward the goal. A Gaussian
mixture model and Gaussian mixture regression are integrated
to improve the learning performance of the DMP, such that
more features of the skill can be extracted from multiple
demonstrations. The motion generated from the learned model
can be scaled in space and time. Besides, a neural-network-based
controller is designed for the robot to track the trajectories
generated from the motion model. In this controller, a radial
basis function neural network is used to compensate for the effect
caused by the dynamic environments. The experiments have been
performed using a Baxter robot and the results have confirmed
the validity of the proposed methods.

Index Terms— Dynamic movement primitives (DMPs),
Gaussian mixture model (GMM), neural network (NN), robot
learning.

I. INTRODUCTION

R
ECENTLY, robots have been widely applied in various

fields, especially in manufacturing. Adaptable robots

are required due to the increasingly fast updates of the

manufactured products. Hence, it is necessary to develop

methods for enhancing robot learning. Robot learning from

demonstration (LfD) is a valuable technique to simplify the

strategy of robot learning [1], [2]. The human tutor shows the

Manuscript received August 17, 2017; revised December 17, 2017 and
March 19, 2018; accepted June 22, 2018. Date of publication July 26, 2018;
date of current version February 19, 2019. This work was supported in
part by the National Nature Science Foundation under Grant 61473120 and
Grant 61472325, in part by the Science and Technology Planning Project of
Guangzhou under Grant 201607010006, in part by the State Key Laboratory of
Robotics and System under Grant SKLRS-2017-KF-13, and in part by Funda-
mental Research Funds for the Central Universities under Grant 2017ZD057.
(Corresponding author: Chenguang Yang.)

C. Yang and C. Chen are with the Key Laboratory of Autonomous Systems
and Networked Control, College of Automation Science and Engineering,
South China University of Technology, Guangzhou 510640, China (e-mail:
cyang@ieee.org; aucchen@outlook.com).

W. He is with the School of Automation and Electrical Engineering,
University of Science and Technology Beijing, Beijing 100083, China
(e-mail: weihe@ieee.org).

R. Cui is with the School of Marine Science and Technology,
Northwestern Polytechnical University, Xi’an 710072, China (e-mail:
rongxin.cui@gmail.com).

Z. Li is with the Department of Automation, University of Science and
Technology of China, Hefei 230026, China (e-mail: zjli@ieee.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2018.2852711

way to complete a task and then the robot learns, via motion

modeling, to reproduce the skill. Therefore, it is essential to

consider how to model motions effectively.

The dynamic system (DS) is a powerful tool for motion

modeling [3]. Compared to the conventional methods,

e.g., interpolation techniques, DS offers a flexible solu-

tion to model stable and extensible trajectories. In addition,

the motion encoded with the DS is robust to perturba-

tions. An approach based on DS was used to learn human

motions [4], where the unknown mapping of the DS was

approximated using a neural network (NN) called extreme

learning machine [5]. The learned model showed adequate

stability and generalization. However, this DS-based method

required considerable demonstration data for training. In con-

trast, the dynamic movement primitive (DMP), which is based

on a nonlinear DS [6], only requires one demonstration to

model motion; here, the DMP models the movement trajectory

as a spring-damper system integrated with an unknown func-

tion to be learned. The inherent property of the spring-damper

system enhances the stability and robustness (to perturbations)

of the generated motion.

DMPs have been often employed to solve robot learning

problems because of their flexibility. In [7], DMPs were

modified to model fast movement inherent in hitting motion.

Another study used reinforcement learning to combine DMP

sequences so that the robot could perform more complex

tasks [8]. While both these studies employed multiple DMPs

to compose a complete action, another study [9] used multiple

DMPs to model style-adaptive trajectory, where the style of the

generated motion could be changed by modulating the weight

parameters that were coupled with the goals. As mentioned

in [10], optimal demonstration is difficult to obtain and multi-

ple demonstrations can encode the ideal trajectory implicitly.

Therefore, we consider integrating multiple demonstrations

into one DMP model in this paper.

Probabilistic approaches have shown good performance in

motion encoding [11]–[13]. The inherent variability of the

demonstrations can be extracted, and thus, more features

of the demonstrations can be preserved. In [14], an LfD

framework using a Gaussian mixture model (GMM) and a

Bernoulli mixture model was used to extract the features

from multiple demonstrations. A new motion was generated

through Gaussian mixture regression (GMR). In contrast with

the above-mentioned methods, GMM combined with GMR

can provide additional motion information for robots when

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

https://orcid.org/0000-0001-5255-5559
https://orcid.org/0000-0002-8944-9861
https://orcid.org/0000-0002-3909-488X

778 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 3, MARCH 2019

Fig. 1. Block diagram of the proposed system.

learning from multiple demonstrations. In [3], a learn-

ing approach named stable estimator of dynamical sys-

tems (SEDS) was proposed for motion modeling, where an

unknown function was modeled using GMR. DS-GMR is

another method that combines the DS with the statistical

learning approach [15]. Both methods exploit the robustness

and generalization capability of the DS as well as the excellent

learning performance of the probabilistic methods.

To take advantage of the performance of the DS and

the probabilistic approach, we integrate DMP and GMM

into our proposed system, where the nonlinear function of

DMP is modeled with GMM and its estimate is retrieved

through GMR. This modification enables the robot to extract

more features of the motions from multiple demonstrations

and to generate motions that synthesize these features. The

original DMP was learned using the locally weighted regres-

sion (LWR) [16], and the locally weighted projection regres-

sion [17] was employed to optimize the bandwidth of each

kernel of LWR. Despite the added complexity of the learning

procedure, these methods enable the DMP to learn from

only one demonstration. Reservoir computing [18] is another

method used to approximate the nonlinear function, but its

computing efficiency is less than that of GMR.

The imitation performance of robots also depends on the

accuracy of the trajectory tracking controller that involves the

robot dynamics. Generally, a model-based control performs

better if the model is accurate enough [19]. However, an accu-

rate dynamic model of a manipulator cannot be obtained in

advance due to some uncertainties, e.g., unknown payload. The

approximation-based controllers have been designed to over-

come such uncertainties. They utilize function approximation

tools to learn the nonlinear characteristics of the robot dynam-

ics. NNs have been widely used in controller design because

of their approximation ability [20]–[22]. In [23], the backprop-

agation NN (BPNN) was utilized to approximate the unknown

nonlinear function in the model of the vibration suppression

device, while in [24], the radial basis function NN (RBFNN)

was utilized to approximate the unknown nonlinearity of the

telerobot system. Compared to BPNN, the learning procedure

of RBFNN is based on local approximation; thus, RBFNN

can avoid getting stuck in the local optimum and has a faster

convergence rate. Besides, the number of hidden layer units of

RBFNN can be adaptively adjusted during the training phase,

making NN more flexible and adaptive. Therefore, RBFNN is

more appropriate for the design of real-time control.

In this paper, an NN-based controller is designed to guaran-

tee the tracking performance of the manipulator in joint space,

where RBFNN is employed to approximate the nonlinear

functions of the robot dynamics. The stability of the controller

is guaranteed by the Lyapunov stability theory. As shown

in Fig. 1, the robot learning system consists of the motion

generation component and the trajectory tracking component.

The former utilizes the motion model based on DMP to learn

and generalize motion skills; these, in turn, are represented

as a set of trajectories in joint space. The latter employs the

adaptive controller to track the trajectories generated from the

former, and RBFNN is incorporated to compensate for the

uncertain dynamics.

Here, we present a novel and complete robot learning

framework that considers the performance of both motion gen-

eration and trajectory tracking. The SEDS presented in [3] is

similar to our DMP-based model. However, the constraints that

guarantee the stability of SEDS are derived by the Lyapunov

theory that increases the complexity of the learning. In contrast

to [3] and [25] which considered only motion modeling, our

system is enhanced by an NN-based controller and the effect

caused by the dynamic environments can be compensated by

neural learning. This design enables the robot to perform the

learned motions steadily and more robustly in the real world.

The remainder of this paper is organized as follows.

Section II introduces the DMP and its relevant characteristics.

The learning process of the motion model is introduced in

Section III. In Section IV, the concept of RBFNN is intro-

duced, and the controller using RBFNN is designed with the

proof of stability. The experiments are presented in Section V.

Section VI concludes this paper.

II. BASIC MODEL OF DISCRETE MOVEMENT

Motion skills can be classified into point-to-point and

periodic movements in accordance with brain activation [1].

While using DS to model motions, these two types corre-

spond to point attractor and limit cycle attractor, respectively.

YANG et al.: ROBOT LEARNING SYSTEM BASED ON ADAPTIVE NEURAL CONTROL AND DMP 779

Fig. 2. (a) Accelerations of the original spring-damper part in (1) and the
modified one in (4). (b) Evolutions of the systems (1) and (4) without an
external forcing term (f = 0).

In this paper, we focus on point-to-point movements and

use the discrete DMP as the basic motion model, which is

composed of a spring-damper system and a nonlinear function.

DMP can be employed to model motions in joint

space or Cartesian space. The motions in both spaces are

regarded as a set of 1-D trajectories, and each trajectory is

represented as one DMP model. For concision, we only discuss

the modeling problem of the motions in joint space.

The DMP model is defined as follows [26]:

τs ξ̇1 = ξ2

τs ξ̇2 = l1(θg − ξ1) − l2ξ2 + (θg − θ0)ξ3 f (ξ3) (1)

τs ξ̇3 = −α1ξ3 (2)

where ξ1 ∈ R represents the joint position and ξ2/τs ∈ R and

ξ̇2/τs ∈ R denote the joint velocity and the joint acceleration,

respectively. ξ3 > 0 is regarded as a phase variable that

is exponentially decaying. l1, l2, and α1 are the positive

constants. θ0 is the start position, θg is the goal, and (θg − θ0)

serves as the spatial scaling term. τs > 0 is the time constant.

The nonlinear term f : R → R is assumed to be a continuous

bounded function in terms of ξ3.

The system (1) is a spring-damper system perturbed by a

nonlinear term. Generally, we choose l1 = l2
2/4 to make the

former critically damped. The initial state of system (2) can

be chosen as ξ0 = 1. The stability of the whole model is clear;

the nonlinear term will converge to zero since the state ξ3 will

converge to zero and the nonlinear function f (ξ3) is bounded.

Then, the system (1) becomes a stable spring-damper system,

whose state converges to the goal θg .

The large initial acceleration of the original spring-damper

part [Fig. 2(a)] is not desirable for robots in practice. More-

over, the large variation in the acceleration will lead to a

complex external forcing term, which is adverse to the learning

of the model. Therefore, we replace the goal θg in the spring-

damper part with the state of another exponential decay

system [27]

τs ξ̇4 = −α2(ξ4 − θg) (3)

where α2 is a positive constant and the initial value of ξ4 is set

as θ0. Consequently, the system (1) is rewritten as follows [27]:

τs ξ̇1 = ξ2

τs ξ̇2 = l1(ξ4 − ξ1) − l2ξ2 + (θg − θ0)ξ3 f (ξ3). (4)

Fig. 3. (a) Actual acceleration of the spring-damper part and the expected
acceleration to reproduce the demonstration (a sine curve). (b) Difference
between two accelerations in (a), which is compensated by the nonlinear
function f (ξ3).

As shown in Fig. 2(a), the acceleration of the modified system

becomes moderate. The evolution of the system (4) with f = 0

is shown in Fig. 2(b). Since the state ξ4 will converge to θg ,

the modified model is still stable toward the goal.

The DMP model is chosen as the basic motion model

because of its concise formulation and excellent generaliz-

ability. Since the DMP model is always stable toward θg ,

the motion modeled can be scaled spatially by modulating θg

and θ0 without destabilizing the model. The spatial scaling

term (θg − θ0) ensures that the profile of the motion is

maintained and its duration can be changed by modulating τs .

III. LEARNING OF THE MOTION MODEL

A. Problem Description

DMP assumes that the motion is generated from the

nonlinear DS (4), whose uncertain part is the nonlinear

function f (ξ3). Therefore, the learning problem of DMP is

how to approximate this function, which compensates for

the difference between the actual acceleration of the spring-

damper part and the expected acceleration to reproduce the

demonstrated movement (Fig. 3). Assuming that a 1-D demon-

stration trajectory is captured and encoded as a time series

{(θt , θ̇t , θ̈t) | t = 1, 2, . . . , T }, where θt , θ̇t , and θ̈t describe

the position, velocity, and acceleration of the trajectory at time

step t , respectively, and T is the duration of the demonstration,

the expected value of f at time step t is computed using the

following equation [26]:

ft = τ 2
s θ̈t − [l1(ξ4,t − θt) − l2τs θ̇t]

(θT − θ1)ξ3,t
(5)

where ξ3,t and ξ4,t are the values of ξ3 and ξ4 at time

step t , respectively. Equation (5) is an inverse process of the

reproduction. Since f (ξ3) is a function of ξ3, we can exploit

the data set {(ξ3,t , ft) | t = 1, 2, . . . , T } to approximate the

function.

In the original DMP model, the function f (ξ3) is defined

as [26]

f (ξ3) =
Ns
�

i=1

γiφi (ξ3) (6)

780 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 3, MARCH 2019

Fig. 4. (a) Demonstrations. (b) Data set {ξi , fo} calculated from (a). (c) Data
set is encoded with the GMM. (d) Estimate of the function f (ξ3) is retrieved
using the GMR.

where γi ∈ R is the weight of φi (s) and φi (s) is the

normalized Gaussian basis function, defined as

φi (ξ3) = exp (−hi (ξ3 − ci)
2)

�Ns

j=1 exp (−h j (ξ3 − c j)2)
(7)

where hi > 0 is the width and ci > 0 is the center of the

i th Gaussian functions; Ns is the number of the Gaussian

functions. With this formulation, the LWR can be employed to

learn the model. Nevertheless, the solution is only applicable

to a single demonstration, and multiple demonstrations will

be encoded as multiple independent DMP models. Thus,

the features of the demonstrations of multiple specific tasks

cannot be integrated into one DMP model. To solve this

problem, GMM is introduced to model the intermediate data,

and then GMR is employed to estimate the nonlinear function.

B. Learning From Multiple Demonstrations

Given Nd demonstrations {(θt,n, θ̇t,n, θ̈t,n) | t =
1, 2, . . . , T ; n = 1, 2, . . . , Nd } of a specific task,

we can obtain the data set {(ξ3,t , ft,n) | t = 1, 2, . . . , T ;
n = 1, 2, . . . , Nd } using (5). Then, we need to take advantage

of the whole data set to estimate the function f (ξ3) of one

DMP model. The learning procedures can be broken down

into two steps, as shown in Fig. 4. For concision, we use

{ξi , fo} to denote the data set.

Step 1: Use GMM to encode the data set {ξi , fo}. This

model assumes that the data set is generated from multiple

Gaussian distributions. The joint probability density of GMM

is defined as follows [28]:

p(ξi , fo) =
K

�

k=1

αkN (ξi , fo; μk,6k) (8)

where

K
�

k=1

αk = 1 (9)

and

μk =
�

μξi ,k

μ fo,k

�

, 6k =
�

6ξi ,k 6ξi fo,k

6 foξi ,k 6 fo,k

�

(10)

and N is the Gaussian probability distribution defined as

follows:

N (ξi , fo; μk,6k)

=
exp[−0.5([ξi , fo]T −μk)

T 6−1
k ([ξi , fo]T − μk)]

2π
√

|6k |
. (11)

Here, K is the number of Gaussian distributions, αk ≥ 0 is

the weight, and μk ∈ R2×1 and 6k ∈ R2×2 denote the mean

and the covariance matrix of the kth Gaussian component.

αk, μk , and 6k are the parameters to be learned. We can

estimate their values and learn GMM from the given data set

using the following procedures.

1) Parameter Initialization: The expectation–maximization

(EM) algorithm used for parameter estimation is sensitive to

the initial values. Hence, the k-means algorithm [29] is utilized

to initialize the unknown parameters αk , μk , and 6k . This

algorithm divides the data set into multiple sets and aims to

find a partition D = {D1, D2, . . . , DK } to minimize the sum

of the squared deviation of each set [29]

D̂ = arg min
D

K
�

k=1

�

x∈Dk

kx − mkk2 (12)

where x = [x1, x2]T ∈ R2×1 is the data vector corresponding

to [ξ3,t , ft,n]T , mk ∈ R2×1 is the mean of the data distributed

in Dk , and
�K

k=1 Dk = {ξi , fo}. The algorithm repeats the

assignment and update steps until that partition no longer

changes. Then, the initial values of the unknown parameters

are assigned as [14]

αk = |Dk |
�K

i=1 |Di |
(13)

μk = mk, 6k =
�

6x1 6x1x2

6x2x1 6x2

�

x∈Dk

. (14)

2) Parameter Estimation: The EM algorithm is an appro-

priate method for estimating the parameters of GMM. This

algorithm aims to find parameters πk = (αk, μk ,6k) so as to

maximize the log-likelihood function [30]

π̂k = arg max
πk

log(p(ξi , fo|πk)). (15)

3) Model Selection: The number of the Gaussian compo-

nents will affect the fitting performance of GMM. GMM can

represent the data set better if more components are selected,

but it may lead to overfitting and too many parameters.

A compromise is reached using the Bayesian information

criterion (BIC) to determine the number of components. The

BIC score is defined as follows [14]:

SB I C (K) = −2 log(p(ξi , fo|πk)) + (6K − 1) log(Nd) (16)

where Nd is the size of the data set and K represents the

number of components. The number of components is finally

selected as Kms = arg min SB I C (K), and the upper bound of

Kms is determined by the designer.

YANG et al.: ROBOT LEARNING SYSTEM BASED ON ADAPTIVE NEURAL CONTROL AND DMP 781

Step 2: Use GMR to estimate the function f (ξ3). According

to [28], the probability density (8) can be rewritten as

p(ξi , fo) =
K

�

k=1

αkN
�

fo; η̂k, σ̂
2
k

�

N (ξi ; μξi ,k,6ξi ,k) (17)

where

η̂k(ξi) = μ fo,k + 6 foξi ,k(6ξi ,k)
−1(ξi − μξi ,k) (18)

and

σ̂ 2
k = 6 fo,k − 6 foξi ,k(6ξi ,k)

−16ξi fo,k . (19)

The marginal density of ξi is calculated as follows [28]:

p(ξi) =
	

p(ξi , fo)d fo

=
K

�

k=1

αkN (ξi ; μξi ,k,6ξi ,k). (20)

According to (17) and (20), the conditional probability density

of fo given ξi is

p(fo|ξi) =
K

�

k=1

βk(ξi)N (fo; η̂k, σ̂
2
k) (21)

where

βk(ξi) = αkN (ξi ; μξi ,k,6ξi ,k)
�K

k=1 αkN (ξi ; μξi ,k,6ξi ,k)
. (22)

Then, we can obtain the GMR function as follows [28]:

R(ξi) = E(fo|ξi) =
K

�

k=1

βk(ξi)η̂k(ξi). (23)

In addition, the estimate of function f (ξ3) is

f̂ (ξ3) =
K

�

k=1

βk(ξ3)η̂k(ξ3). (24)

In comparison to (6), this estimate is multiplied by an

additional term η̂k(ξ3) in form; thus, this method enables

the motion model to extract more features from multiple

demonstrations.

IV. ADAPTIVE NEURAL CONTROL

OF THE ROBOT MANIPULATOR

In practice, robot manipulators have to interact with various

payloads. To account for the influence of the unknown pay-

load on the manipulator dynamics, an NN-based controller is

designed to track the reference trajectory generated from the

motion model in joint space.

A. Dynamics Description

The dynamics of a robot manipulator with n-link is

described as follows:

M(θ)θ̈ + C(θ, θ̇)θ̇ + G0(θ) + τp = τ (25)

where θ ∈ Rn , θ̇ ∈ Rn , and θ̈ ∈ Rn are the joint position,

joint velocity, and joint acceleration, respectively. τ is the

control torque and τp is the torque caused by the payload.

M(θ) ∈ Rn×n denotes the inertia matrix, which is symmetric

positive definite. C(θ, θ̇) ∈ Rn×n represents the Coriolis and

centripetal torque matrix and G0(θ) ∈ Rn is the gravity vector.

According to [31], the matrices M(θ) and C(θ, θ̇) satisfy

sT (Ṁ − 2C)s = 0, ∀s ∈ Rn . (26)

B. RBFNN

RBFNN is an effective tool to approximate any continuous

function g : Rm → R as follows [32]:

g(ϑ) = W T S(ϑ) + ε(ϑ), ∀ϑ ∈ �ϑ (27)

where ϑ ∈ �ϑ ⊂ Rm denotes the input vector,

W = [ω1, ω2, . . . , ωN]T ∈ RN is the ideal NN weight

vector, and N is the number of NN nodes. The approximation

error ε(ϑ) is bounded. S(ϑ) = [s1(ϑ), s2(ϑ), . . . , sN (ϑ)]T

is a nonlinear vector function, where si (ϑ) is defined as the

Gaussian function

si (ϑ) = exp

− (ϑ − κi)
T (ϑ − κi)

χ2
i

�

, i = 1, 2, . . . , N (28)

where κi = [κi1, κi2, . . . , κim]T ∈ Rm represents the center of

the Gaussian function and χ2
i is the variance. The ideal weight

vector W is defined as follows:

W = arg min
Ŵ∈RN

{ sup
ϑ∈�ϑ

|g(ϑ) − Ŵ T S(ϑ)|} (29)

which minimizes the approximation error for all ϑ ∈ �ϑ .

C. Controller Design

The controller design includes the design of the joint

position controller and the joint velocity controller, as shown

in Fig. 1. RBFNN is used in the latter to approximate the

uncertain dynamics.

1) Joint Position Controller: The joint position tracking

error is defined as ep = [ep1, ep2, . . . , epn]T = θ − θd , where

θd = [θd1, θd2, . . . , θdn]T ∈ Rn is the reference trajectory,

which is smooth and bounded. The error transformation func-

tion [33] is introduced as follows:

epi (t) = δ(t)Hi

�

L i

�

epi (t)

δ(t)

, i = 1, 2, . . . , n (30)

where δ(t) = (δ0 − δ∞)e−at + δ∞ represents the tracking

performance requirement, and Hi(z) is defined as

Hi(z) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ez − σ

1 + ez
, epi (0) ≥ 0

σez − 1

1 + ez
, epi (0) < 0

(31)

782 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 3, MARCH 2019

and L i (z) is the inverse function of Hi(z)

L i (z) =

⎧

⎪

⎨

⎪

⎩

ln
z + σ

1 − z
, epi (0) ≥ 0

ln
z + 1

σ − z
, epi (0) < 0.

(32)

The parameters δ0, δ∞ < δ0, a, and σ are the positive

constants, which are used to adjust the control performance.

The joint position controller is used to generate the desired

joint velocity, which is designed as [24]

vdi = −k1δ(t)φi (t) + θ̇di(t) + δ̇(t)

δ(t)
epi (t) (33)

where

φi (t) = L i

�

epi (t)

δ(t)

. (34)

According to [24], if φi (t) is bounded, then the following is

obtained:
�

−σδ(t) < epi (t) < δ(t), epi (0) > 0

−δ(t) < epi (t) < σδ(t), epi (0) < 0.
(35)

Therefore, the function δ(t) determines the bound of error

epi (t) and the transient performance of the controller.

2) Joint Velocity Controller: The joint velocity controller

aims to generate the control torque so as to track the desired

joint velocity vd = [vd1, vd2, . . . , vdn]T . Let us define the joint

velocity error as ev = θ̇ − vd and G(θ) = G0(θ) + τp . Then,

the control torque is designed as follows [24]:

τ = −k2ev − Q̇(φ(t))φ(t)

δ(t)
+ M̂ v̇d + Ĉvd + Ĝ + r̂ (36)

where

Q̇(φ(t)) = diag(L̇1(H1(φ1(t))), . . . , L̇n(Hn(φn(t))))

φ(t) = [φ1(t), φ2(t), . . . , φn(t)]T . (37)

The matrices M̂(θ), Ĉ(θ, θ̇), Ĝ(θ), and r̂(θ, θ̇ , vd , v̇d) are

the estimates of M(θ), C(θ, θ̇), G(θ), and r(θ, θ̇ , vd , v̇d),

respectively, where r(θ, θ̇ , vd , v̇d) is defined later in (40).

Substituting (36) into (25), we can obtain the closed-loop

dynamics equation

Mėv + Cev + k2ev + Q̇(φ(t))φ(t)

δ(t)
− r̂

= −(M − M̂)v̇d − (C − Ĉ)vd − (G − Ĝ). (38)

Then, RBFNN is utilized to approximate M(θ), C(θ, θ̇),

G(θ), and r(θ, θ̇ , vd , v̇d)

M(θ) = W T
M SM (θ) + εM

C(θ, θ̇) = W T
C SC (θ, θ̇) + εC

G(θ) = W T
G SG(θ) + εG

r(θ, θ̇ , vd , v̇d) = W T
r Sr (θ, θ̇ , vd , v̇d) + εr (39)

where WM ∈ RnN×n , WC ∈ R2nN×n , WG ∈ RnN×n , and Wr ∈
R4nN×n are the ideal NN weight matrices. SM (θ) ∈ RnN×n ,

SC (θ, θ̇) ∈ R2nN×n , SG(θ) ∈ RnN×n , and Sr (θ, θ̇ , vd , v̇d) ∈
R4nN×n are the RBF matrices. εM , εC , εG , and εr are the

approximation errors. The function r(θ, θ̇ , vd , v̇d) is defined

as

r(θ, θ̇ , vd , v̇d) = εM v̇d + εCvd + εG . (40)

The estimates of M , C , G, and r are written as follows:

M̂(θ) = Ŵ T
M SM (θ)

Ĉ(θ, θ̇) = Ŵ T
C SC (θ, θ̇)

Ĝ(θ) = Ŵ T
G SG(θ)

r̂(θ, θ̇ , vd , v̇d) = Ŵ T
r Sr (θ, θ̇ , vd , v̇d). (41)

Substituting (41) into (38) and defining W̃(·) = W(·) − Ŵ(·),
we have

Mėv + Cev + k2ev + Q̇(φ(t))φ(t)

δ(t)

= −W̃ T
M SM v̇d − W̃ T

C SCvd − W̃ T
G SG − W̃ T

r Sr − εr . (42)

D. Stability Analysis

We follow the stability analysis in [24] to prove the stability

of the designed controller. Consider a Lyapunov function as

follows:

V = V1 + V2 (43)

with

V1 = 1

2
φT (t)φ(t) (44)

and

V2 = 1

2
eT
v Mev + 1

2
tr
�

W̃ T
M0−1

M W̃M + W̃ T
C 0−1

C W̃C

�

+ 1

2
tr
�

W̃ T
G 0−1

G W̃G + W̃ T
r 0−1

r W̃r

�

(45)

where 0−1
M , 0−1

C , 0−1
G , and 0−1

r are the positive definite

matrices.

Taking the derivatives of V1 and V2, we have

V̇1 = φT (t)Q̇(φ(t))ev (t)

δ(t)
− k1φ

T (t)Q̇(φ(t))φ(t) (46)

and

V̇2 = −eT
v k2ev − eT

v εr − φT (t)Q̇(φ(t))ev (t)

δ(t)

− tr
�

W̃ T
M

�

SM v̇d eT
v + 0−1

M
˙̂

WM

��

− tr
�

W̃ T
C

�

SCvd eT
v + 0−1

C
˙̂

WC

��

− tr
�

W̃ T
G

�

SGeT
v + 0−1

G
˙̂

WG

��

− tr
�

W̃ T
r

�

Sr eT
v + 0−1

r
˙̂

Wr

��

. (47)

Let us design the update law of the NN weights as follows:

˙̂
WM = −0M

�

SM v̇d eT
v + ρM ŴM

�

˙̂
WC = −0C

�

SCvd eT
v + ρC ŴC

�

˙̂
WG = −0G

�

SGeT
v + ρG ŴG

�

˙̂
Wr = −0r

�

Sr eT
v + ρr Ŵr

�

(48)

YANG et al.: ROBOT LEARNING SYSTEM BASED ON ADAPTIVE NEURAL CONTROL AND DMP 783

where ρM , ρC , ρG , and ρr are the positive constants. Then,

the derivative of V is written as follows:

V̇ = −eT
v k2ev − eT

v εr − k1φ
T (t)Q̇(φ(t))φ(t)

+ tr
�

ρM W̃ T
M ŴM

�

+ tr
�

ρC W̃ T
C ŴC

�

+ tr
�

ρG W̃ T
G ŴG

�

+ tr
�

ρr W̃ T
r Ŵr

�

. (49)

We can obtain the following inequality according to the

definition of Q̇(φ(t)):

φT (t)Q̇(φ(t))φ(t) ≥ 2

(1 + σ)
kφ(t)k2. (50)

Using Young’s inequality, we have

V̇ ≤ − 2k1

(1 + σ)
kφ(t)k2 −

�

k2 − 1

2

kevk2 + $

− ρM

2
kW̃Mk2

F − ρC

2
kW̃C k2

F

− ρG

2
kW̃Gk2

F − ρr

2
kW̃r k2

F (51)

with

$ = ρM

2
kWMk2

F + ρC

2
kWCk2

F + ρG

2
kWGk2

F

+ ρr

2
kWrk2

F + 1

2
κ2

r (52)

where κr is the upper bound of kεrk over �.

We have V̇ ≤ 0 if W̃M , W̃C , W̃G , W̃r , φ(t), and ev satisfy

the inequality as follows:

% = 2k1

(1 + σ)
kφ(t)k2 +

�

k2 − 1

2

kevk2 + ρM

2
kW̃Mk2

F

+ ρC

2
kW̃C k2

F + ρG

2
kW̃Gk2

F + ρr

2
kW̃r k2

F ≥ $. (53)

According to the LaSalles theorem, all closed-loop sig-

nals of the DS composed of (25), (36), and (48) are semi-

global uniformly bounded if the input signals θd and θ̇d are

bounded. Besides, φ(t) and ev will converge to an invariant set

�i ⊆ � [24]

�i = {(kφ(t)k, kevk, kWM k, kWC k,
kWGk, kWr k)|%/$ ≤ 1}. (54)

Since the signal φ(t) is bounded, the transient performance

and the stability of the controller are guaranteed.

V. EXPERIMENTS

The proposed system is tested by two groups of experi-

ments: the test of the NN-based controller and the test of the

DMP-based motion model.

A. Test of the NN-Based Controller

In this group of experiments, the performance of NN

learning is tested, which compensates for the uncertain manip-

ulator dynamics caused by the payload. The experiments are

performed on the Baxter robot that has two seven degrees-of-

freedom arms. The joints from the shoulder to end-effector

are named as s0, s1, e0, e1, w0, w1, and w2 in this

paper. The experiment setup is shown in Fig. 5. The pay-

load is attached using the left gripper of the robot, which

Fig. 5. Experimental setup for testing the NN-based controller.

Fig. 6. Reference joint angles (dashed lines) and actual joint angles
(solid lines) when NN learning is (a) disabled and (b) enabled. The lines
of different colors represent different joints.

weighs 0.94 kg. The robot is required to track a circular

trajectory defined as [X, Y, Z] = [0.65 + 0.1 sin(2π t/4),

0.2 + 0.1 cos(2π t/4), 0.2](m) with the orientation fixed. The

corresponding trajectories in joint space are obtained through

the inverse kinematics, which are taken as the inputs of the

proposed controller.

We select three nodes for each input dimension of NN, and

the centers of the nodes are distributed evenly within the limits

of the joint position and joint velocity. There are N = 2187

NN nodes selected for M̂(θ) and Ĝ(θ), 2N nodes for Ĉ(θ, θ̇),

and 4N nodes for r̂(θ, θ̇ , vd , v̇d). In addition, the NN weight

matrices are initialized as ŴM = 0 ∈ RnN×n , ŴC = 0 ∈
R2nN×n , ŴG = 0 ∈ RnN×n , and Ŵr = 0 ∈ R4nN×n with

n = 7. The parameters of the error transformation function

are set as δ0 = 0.2, δ∞ = 0.04, a = 1, and σ = 1.

The manipulator is controlled by the controller without NN

learning in the first experiment, and the actual joint angles

are recorded. Then, the controller with the proposed NN

learning is employed to control the manipulator in the second

experiment. The reference and actual joint angles in both

experiments are shown in Fig. 6, and the corresponding

784 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 3, MARCH 2019

Fig. 7. Tracking errors when NN learning is (a) disabled and (b) enabled.

Fig. 8. (a) Compensation torque. (b) Norm of each column of the weight

matrix ŴG .

tracking errors are shown in Fig. 7. The tracking errors are

relatively high when NN learning is disabled, which is caused

by the payload that the gripper holds, while in the second

experiment, each joint of the manipulator tracks the refer-

ence trajectory very well and all tracking errors reduce into

the interval [−0.04, 0.04](rad) with the compensation torque

increasing, which is shown in Fig. 8(a). The gravity term of the

manipulator dynamics is the main part that the payload affects,

and hence, we particularly show the norm of each column of

ŴG in Fig. 8(b). We can see that the norm of each column

vector of the weight matrix ŴG rises incrementally because

the torque generated by NN still cannot compensate for the

Fig. 9. Demonstration process of a pouring task.

Fig. 10. Learning results using the DMP-based motion model in a pouring
task of (a) joint s0, (b) joint e1, (c) joint w0, and (d) joint w1.

effect of the unknown dynamics. However, the rising speeds of

all norms decrease with the increment in torque compensation.

B. Test of the DMP-Based Motion Model

The second group of experiments aims to validate the

DMP-based motion model. The ability of generalization

YANG et al.: ROBOT LEARNING SYSTEM BASED ON ADAPTIVE NEURAL CONTROL AND DMP 785

Fig. 11. Generalization results using the DMP-based motion model in a
pouring task of (a) joint s0, (b) joint e1, (c) joint w0, and (d) joint w1.

and the learning performance are tested. In these experi-

ments, the demonstrations are performed by guiding the robot

manipulator.

1) Ability of Generalization: In this experiment, the tutor

demonstrates how to pour water into a cup placed on the table,

as shown in Fig. 9. The demonstration process is repeated

five times. The joints w0, w1, s0, and e1 are moved while

the others are fixed. The joint angles are recorded and used

for learning the modified DMP. The parameters of the DMP

model are set as τs = 1, l1 = 25, l2 = 10, and α1 = α2 = 8.

The learning results are shown in Fig. 10. The motions

of the four joints are reproduced from the demonstrations,

which synthesize the features of these demonstrations and

enable the robot to complete the pouring task successfully.

Subsequently, the target of the motion is modulated to the other

Fig. 12. (a) Robot performs the pouring task with the regenerated motion.
(b) Robot pours water into the other cup with the generalized motion.

Fig. 13. (a) Experiment setup for the drawing task. (b) Demonstration
trajectories of the drawing task.

Fig. 14. Robot performs the drawing task with the learned motion.

cup. As shown in Fig. 11, the movement trajectory of each

joint angle converges to the new goal and the profile of each

reproduction is retained. We test the reproduced motion and

the generalized motion on the robot. As shown in Fig. 12(a),

the robot completes the pouring task successfully, and as

shown in Fig. 12(b), the robot can pour water into the other

cup.

786 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 3, MARCH 2019

Fig. 15. (a) Learning result using the DMP-based motion model in a drawing
task. The motions are modeled in the task space. (b) Result of drawing.
The blue curve is drawn by the robot after learning.

2) Learning Performance: To further validate the learning

performance of the DMP-based motion model, we design a

drawing task for the robot; the experimental setup is shown

in Fig. 13(a). Here, the robot is required to draw an image of

a sinusoid on paper after the tutor demonstrates the task five

times. As shown in Fig. 13(b), the demonstrations are defective

and the curves are irregular. One of the reasons is that the

demonstrator is drawing on this paper indirectly by holding

the robot’s wrist, which affects the exertion of the drawing

skill. The demonstrations are modeled in the task space, and

the robot performs the drawing task after learning (Fig. 14).

As shown in Fig. 15(a), a smooth curve is reproduced by the

motion model given multiple demonstrations. We can also see

that the recorded trajectories are distorted due to measurement

errors of the sensors. As shown in Fig. 15(b), the curve that

the robot draws is smoother than those of the demonstrations,

thus validating the learning performance of the DMP-based

motion model.

VI. CONCLUSION

In this paper, a novel robot learning system comprised

of motion generation and trajectory tracking is developed.

A DMP model is chosen as the basis of the motion model

because of its generalization ability. To improve the learning

performance, GMM and GMR are employed for estimating the

nonlinear function of the motion model. With this modifica-

tion, the model can extract more motion features from multiple

demonstrations of a specific task and generate motions that

synthesize these additional features. Besides, an NN-based

controller is designed to overcome the impact of the unknown

payload so that the manipulator is able to track the gener-

ated motions more accurately. Several experiments have been

performed on the Baxter robot to test the performance of

our proposed methods, which can be used to facilitate robot

learning at a higher level. In the future work, we will further

integrate the reinforcement learning into our system to improve

the learning capacity of the robot.

REFERENCES

[1] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends

Cognit. Sci., vol. 3, no. 6, pp. 233–242, 1999.
[2] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot programming

by demonstration,” in Springer Handbook of Robotics. Berlin, Germany:
Springer, 2008, pp. 1371–1394.

[3] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear
dynamical systems with Gaussian mixture models,” IEEE Trans. Robot.,
vol. 27, no. 5, pp. 943–957, Oct. 2011.

[4] J. Duan, Y. Ou, J. Hu, Z. Wang, S. Jin, and C. Xu, “Fast and stable
learning of dynamical systems based on extreme learning machine,”
IEEE Trans. Syst., Man, Cybern. A, Syst., to be published. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/8002637/,
doi: 10.1109/TSMC.2017.2705279.

[5] C. Yang, K. Huang, H. Cheng, Y. Li, and C.-Y. Su, “Haptic identification
by ELM-controlled uncertain manipulator,” IEEE Trans. Syst., Man,

Cybern. A, Syst., vol. 47, no. 8, pp. 2398–2409, Aug. 2017.
[6] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,

“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Comput., vol. 25, no. 2, pp. 328–373, 2013.

[7] K. Mülling, J. Kober, O. Kroemer, and J. Peters, “Learning to select
and generalize striking movements in robot table tennis,” Int. J. Robot.

Res., vol. 32, no. 3, pp. 263–279, 2013.
[8] F. Stulp, E. A. Theodorou, and S. Schaal, “Reinforcement learning with

sequences of motion primitives for robust manipulation,” IEEE Trans.

Robot., vol. 28, no. 6, pp. 1360–1370, Dec. 2012.
[9] Y. Zhao, R. Xiong, L. Fang, and X. Dai, “Generating a style-adaptive

trajectory from multiple demonstrations,” Int. J. Adv. Robot. Syst.,
vol. 11, no. 7, pp. 103–111, 2014.

[10] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from
multiple demonstrations,” in Proc. IEEE Int. Conf. Mach. Learn., 2008,
pp. 144–151.

[11] S. Calinon and A. Billard, “Statistical learning by imitation of competing
constraints in joint space and task space,” Adv. Robot., vol. 23, no. 15,
pp. 2059–2076, 2009.

[12] S. Calinon, “Robot learning with task-parameterized generative models,”
in Robotics Research. Cham, Switzerland: Springer, 2018, pp. 111–126.

[13] L. Rozo, P. Jiménez, and C. Torras, “A robot learning from demon-
stration framework to perform force-based manipulation tasks,” Intell.

Service Robot., vol. 6, no. 1, pp. 33–51, 2013.
[14] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and

generalizing a task in a humanoid robot,” IEEE Trans. Syst., Man,

Cybern. B, Cybern., vol. 37, no. 2, pp. 286–298, Apr. 2007.
[15] S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell,

“Statistical dynamical systems for skills acquisition in humanoids,”
in Proc. IEEE-RAS Int. Conf. Humanoid Robots, Nov./Dec. 2012,
pp. 323–329.

[16] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learning
for control,” in Lazy Learning. Dordrecht, The Netherlands: Springer,
1997, pp. 75–113.

[17] S. Vijayakumar, A. D’Souza, and S. Schaal, “Incremental online learning
in high dimensions,” Neural Comput., vol. 17, no. 12, pp. 2602–2634,
2005.

[18] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Comput. Sci. Rev., vol. 3, no. 3,
pp. 127–149, 2009.

[19] C. Yang, G. Ganesh, S. Haddadin, S. Parusel, A. Albu-Schäffer, and
E. Burdet, “Human-like adaptation of force and impedance in stable and
unstable interactions,” IEEE Trans. Robot., vol. 27, no. 5, pp. 918–930,
Oct. 2011.

[20] C. Yang, Y. Jiang, Z. Li, W. He, and C.-Y. Su, “Neural control of
bimanual robots with guaranteed global stability and motion precision,”
IEEE Trans. Ind. Informat., vol. 13, no. 3, pp. 1162–1171, Jun. 2017.

[21] L. Cheng, Y. Lin, Z.-G. Hou, M. Tan, J. Huang, and W. J. Zhang,
“Integrated design of machine body and control algorithm for improving
the robustness of a closed-chain five-bar machine,” IEEE/ASME Trans.

Mechatronics, vol. 17, no. 3, pp. 587–591, Jun. 2012.
[22] Y. J. Liu, S. C. Tong, D. Wang, T. S. Li, and C. L. P. Chen, “Adaptive

neural output feedback controller design with reduced-order observer
for a class of uncertain nonlinear SISO systems,” IEEE Trans. Neural

Netw., vol. 22, no. 8, pp. 1328–1334, Aug. 2011.

http://dx.doi.org/10.1109/TSMC.2017.2705279

YANG et al.: ROBOT LEARNING SYSTEM BASED ON ADAPTIVE NEURAL CONTROL AND DMP 787

[23] Z. Mao and F. Zhao, “Structure optimization of a vibration suppression
device for underwater moored platforms using CFD and neural network,”
Complexity, vol. 2017, Dec. 2017, Art. no. 5392539. [Online]. Available:
https://www.hindawi.com/journals/complexity/2017/5392539/abs/

[24] C. Yang, X. Wang, L. Cheng, and H. Ma, “Neural-learning-based
telerobot control with guaranteed performance,” IEEE Trans. Cybern.,
vol. 47, no. 10, pp. 3148–3159, Oct. 2017.

[25] X. Yin and Q. Chen, “Learning nonlinear dynamical system for
movement primitives,” in Proc. IEEE Int. Conf. Syst., Man, Cybern.,
Oct. 2014, pp. 3761–3766.

[26] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in Proc.

IEEE Int. Conf. Robot. Autom., May 2009, pp. 763–768.
[27] T. Kulvicius, K. Ning, M. Tamosiunaite, and F. Worgötter, “Join-

ing movement sequences: Modified dynamic movement primitives for
robotics applications exemplified on handwriting,” IEEE Trans. Robot.,
vol. 28, no. 1, pp. 145–157, Feb. 2012.

[28] H. G. Sung, “Gaussian mixture regression and classification,”
Ph.D. dissertation, Rice Univ., Houston, TX, USA, 2004.

[29] J. MacQueen et al., “Some methods for classification and analysis of
multivariate observations,” in Proc. 5th Berkeley Symp. Math. Statist.

Probability, 1967, pp. 281–297.
[30] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likeli-

hood from incomplete data via the EM algorithm,” J. Roy. Statist.

Soc., B (Methodological), vol. 39, no. 1, pp. 1–38, 1977.
[31] J.-J. E. Slotine and L. Weiping, “Adaptive manipulator control: A case

study,” IEEE Trans. Autom. Control, vol. AC-33, no. 11, pp. 995–1003,
Nov. 1988.

[32] C. Yang, X. Wang, Z. Li, Y. Li, and C.-Y. Su, “Teleoperation control
based on combination of wave variable and neural networks,” IEEE

Trans. Syst., Man, Cybern., Syst., vol. 47, no. 8, pp. 2125–2136,
Aug. 2017.

[33] L. Cheng, Z.-G. Hou, M. Tan, and W.-J. Zhang, “Tracking control of a
closed-chain five-bar robot with two degrees of freedom by integration of
an approximation-based approach and mechanical design,” IEEE Trans.

Syst., Man, Cybern. B, Cybern., vol. 42, no. 5, pp. 1470–1479, Oct. 2012.

Chenguang Yang (M’10–SM’16) received the
B.Eng. degree in measurement and control from
Northwestern Polytechnical University, Xi’an,
China, in 2005, and the Ph.D. degree in control
engineering from the National University of
Singapore, Singapore, in 2010.

He received postdoctoral training with Imperial
College London, London, U.K. His current research
interests include robotics and automation.

Dr. Yang was a recipient of the Best Paper Award
in the IEEE TRANSACTIONS ON ROBOTICS and a

number of international conferences.

Chuize Chen received the B.Eng. degree in automa-
tion from the South China University of Technology,
Guangzhou, China, in 2017, where he is currently
pursuing the M.S. degree..

His current research interests include human–robot
interaction, machine learning, and robotics.

Wei He (S’09–M’12–SM’16) received the B.Eng.
and M.Eng. degrees from the College of Automation
Science and Engineering, South China University of
Technology, Guangzhou, China, in 2006 and 2008,
respectively, and the Ph.D. degree from the
Department of Electrical and Computer Engineer-
ing, National University of Singapore, Singapore,
in 2011.

He is currently a Full Professor with the School of
Automation and Electrical Engineering, University
of Science and Technology Beijing, Beijing, China.

He has co-authored two books published in Springer and authored or
co-authored over 100 international journal and conference papers. His cur-
rent research interests include robotics, distributed parameter systems, and
intelligent control systems.

Dr. He is a member of the IFAC TC on Distributed Parameter Systems,
the IFAC TC on Computational Intelligence in Control, and the IEEE CSS
TC on Distributed Parameter Systems. He was a recipient of the Newton
Advanced Fellowship from the Royal Society Award, U.K., and the IEEE
SMC Society Andrew P. Sage Best Transactions Paper Award in 2017.
He serves as an Associate Editor for the IEEE TRANSACTIONS ON NEURAL

NETWORKS AND LEARNING SYSTEMS, the IEEE TRANSACTIONS ON CON-
TROL SYSTEMS TECHNOLOGY, and an Editor for the IEEE/CAA JOURNAL

OF AUTOMATICA SINICA, Neurocomputing, and the Journal of Intelligent and

Robotic Systems.

Rongxin Cui (M’09) received the B.Eng. and Ph.D.
degrees from Northwestern Polytechnical University,
Xi’an, China, in 2003 and 2008, respectively.

From 2008 to 2010, he was a Research Fellow with
the Centre for Offshore Research and Engineering,
National University of Singapore, Singapore. He is
currently a Professor with the School of Marine
Science and Technology, Northwestern Polytechni-
cal University, Xi’an, China. His current research
interests include control of nonlinear systems, coop-
erative path planning and control for multiple robots,

control and navigation for underwater vehicles, and system development.
Dr. Cui serves as an Editor for the Journal of Intelligent and Robotic

Systems.

Zhijun Li (M’07–SM’09) received the Ph.D. degree
in mechatronics from Shanghai Jiao Tong University,
Shanghai, China, in 2002.

From 2003 to 2005, he was a Post-Doctoral
Fellow with the Department of Mechanical Engi-
neering and Intelligent Systems, University of
Electro-Communications, Tokyo, Japan. From 2005
to 2006, he was a Research Fellow with the
Department of Electrical and Computer Engineering,
National University of Singapore, Singapore, and
Nanyang Technological University, Singapore. From

2012 to 2017, he was a Professor with the College of Automation Science
and Engineering, South China University of Technology, Guangzhou, China.
Since 2017, he has been a Professor with the Department of Automation,
University of Science and Technology of China, Hefei, China. His current
research interests include service robotics, teleoperation systems, nonlinear
control, and neural network optimization.

