
UCLA
UCLA Previously Published Works

Title
Robot life: simulation and participation in the study of evolution and 
social behavior.

Permalink
https://escholarship.org/uc/item/2295v3j2

Journal
History and philosophy of the life sciences, 40(1)

ISSN
0391-9714

Author
Kelty, Christopher M

Publication Date
2018

DOI
10.1007/s40656-017-0181-y
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2295v3j2
https://escholarship.org
http://www.cdlib.org/


ORI GIN AL PA PER

Robot life: simulation and participation in the study
of evolution and social behavior

Christopher M. Kelty1

Received: 19 December 2016 / Accepted: 20 December 2017 / Published online: 3 January 2018

� Springer International Publishing AG, part of Springer Nature 2017

Abstract This paper explores the case of using robots to simulate evolution, in

particular the case of Hamilton’s Law. The uses of robots raises several questions

that this paper seeks to address. The first concerns the role of the robots in biological

research: do they simulate something (life, evolution, sociality) or do they partici-

pate in something? The second question concerns the physicality of the robots: what

difference does embodiment make to the role of the robot in these experiments.

Thirdly, how do life, embodiment and social behavior relate in contemporary

biology and why is it possible for robots to illuminate this relation? These questions

are provoked by a strange similarity that has not been noted before: between the

problem of simulation in philosophy of science, and Deleuze’s reading of Plato on

the relationship of ideas, copies and simulacra.

Keywords Simulation � Evolution � Robots � Participation � Social behavior �
Deleuze

1 Introduction

A 2011 paper in the journal PLOS Biology described an experimental test of

Hamilton’s rule; the authors report success (Waibel et al. 2011). It is, they claim,

‘‘the first quantitative test of Hamilton’s rule in a system with a complex mapping

between genotype and phenotype’’ and they ‘‘demonstrate the wide applicability of

kin selection theory.’’

This is surprising for many reasons. First, Hamilton’s rule is one of the more

controversial features of evolutionary biology in the last half-century. Hamilton’s
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Law (often written ‘‘rB[C’’) asserts that a behavior that otherwise seems to be

unselfish, perhaps even altruistic, might actually confer a fitness benefit (i.e. more

success in reproduction) because it increases the chance that not only an individual’s

genes, but those of his close kin, will succeed. Hamilton gave precise form to this

intuition by introducing a formalism for what is now called ‘‘kin selection’’: if the

organism benefitting from the altruist is sufficiently genetically related to it, then it

might cancel out the reproductive cost of that act to the altruist (Hamilton 1964).1

Second the authors refer to their experiment as one in ‘‘artificial evolution.’’ This

is obvious enough given that experimenting on evolution is not easy to do with any

but the most short-lived organisms like fruit flies and microbes, except that, third,

this experiment did not use social organisms of any predictable kind, such as wasps

or ants, or even microbes, but robots: tiny mobile robots named ALICE.

These robots raise a set of confusing questions that this article will address. The

first concerns the role of the robots in biological research: do they simulate

something (life, evolution, sociality) or do they participate in something? The

second question concerns the physicality of the robots: what difference does

embodiment make to the role of the robot in these experiments? In these

experiments, there are some subtle distinctions between what is abstract, what is

digital, what is simulated, and what is physical. Thirdly, how are life, embodiment

and social behavior related in contemporary biology, and why is it possible for

robots to illuminate this relation? These questions are provoked by a strange

similarity that has not been noted before: between the problem of simulation in

philosophy of science, and Deleuze’s reading of Plato on the relationship of ideas,

copies and simulacra. Whereas robot scientists, biologists and some philosophers of

science may argue that robots are an ‘‘object’’ on which one can do precise

experiments about a ‘‘target’’ (life, social behavior, evolution), Deleuze might

counsel instead that we do not treat robots enough like robots, nor take our curiosity

about them quite seriously enough—for they themselves might be the object we are

studying, or should be. If Deleuze’s solution to the problem of Plato’s metaphysics

implicates questions of participation and simulation, then it ought also to have

implications for what robots are, and what they can tell us about evolution,

behavior, or life.

The paper tracks back and forth between cases of contemporary biology using

robots, and an exploration of Deleuze’s reading of Plato and some philosophical

issues related to simulation in the sciences. The first part of this paper reviews

attempts to use robots in biology, and explains how the core case studied here—

Floreano and Keller’s experiment—was conducted. I then introduce Deleuze’s

reading of Plato, followed by a discussion of how robots are used as elements in a

simulation of various aspects of biology. I then explain why there might be

skepticism about the use of robots to study life, but that they fit squarely into debates

about simulation in the sciences and that scientists themselves are concerned to

1 The concept of kin selection has been controversial ever since—whether associated with sociobiology,

evolutionary psychology or the biology of social behavior; see (Kurland 1980; Leigh 2010; Okasha 2001).

In 2010 E.O. Wilson and Martin Nowak recently made themselves the object of some quite hostile and

aggressive attacks in the biology community by suggesting that kin selection and Hamilton’s rule are

wrong (Nowak et al. 2010).

16 Page 2 of 23 C. M. Kelty

123



articulate where on a ‘‘scale of situatedness’’ robots should be placed. In the last two

sections, I explore how the physicality of robots (and the relation of physicality and

sociality) is used to study differences between robots and living organisms. In the

conclusion, I return to the question of whether robots simulate or participate in life,

or whether they ‘‘animate’’ theories in a novel way. A coda returns to the

speculative questions raised by Deleuze’s reading of Plato.

2 The robot invasion begins

Using robots to study evolution might seem at first extremely unlikely—but the

practice has steadily grown more common over the last twenty years, owing in large

part to the manifest enthusiasm that computer scientists and engineers have shown

for evolutionary theory as both a theory and as an engineering principle. Many robot

scientists, computer scientists, and artificial life researchers have captured

evolutionary theory in a bottle, as it were, and found ways to explore it, exploit it

and ponder it as such, without ever coming near a living entity other than, arguably,

themselves (see for example Eiben and Smith 2015). Recently, however, biologists

have also started to take such work a bit more seriously. Several reviews have

appeared recently aimed at enlightening biologists about this work (Garnier 2011;

Krause et al. 2011; Mitri et al. 2013). And indeed, one of the authors of the paper

about Hamilton’s rule, Laurent Keller (University of Lausanne), is a widely-lauded

biologist of social evolution (primarily in real ants) who is thus lending a modicum

of legitimacy to a style of experiment that might otherwise be dismissed by his

colleagues.

Since about 2005, Keller and collaborator Dario Floreano, a robot scientist at

École Polytechnique Fédérale de Lausanne (EPFL), have done a number of different

experiments with robots that explore aspects of evolution. In most of them, tiny

robots move around on motorized wheels in an enclosed area and interact with each

other. Often there is ‘‘food’’ or ‘‘poison’’ (objects with blinking LEDs for instance

that can be detected by a sensor), which the robots are programmed to forage for (or

to avoid). In some the robots are predator or prey. All told there is a small taxon of

robots occupying the ecological niche that is Floreano’s Laboratory of Intelligent

Systems (http://lis.epfl.ch/): ‘‘Khepera’’ robots, ‘‘S-bots’’ ‘‘Alice robots’’ and ‘‘E-

pucks.’’ Properly programmed and set to work, the robots have demonstrated the

evolution of communication, the evolution of altruism, the evolution of commu-

nication suppression, the relationship of signal reliability and relatedness; predator

prey co-evolution; and various aspects of the morphology of a robot body (Floreano

et al. 2007; Floreano and Keller 2010; Mitri et al. 2009, 2011).

In order to test Hamilton’s rule, the authors constructed an experimental arena in

which robots with artificial genomes (software) competed to ‘‘forage’’ for food and

then they either ‘‘consumed’’ the food, or shared it with the other robots in the arena

(in groups of 8). After a set amount of time, the success of the robots at achieving

this task was measured, and the outcomes determined which genomes would be

transmitted to the next generation. Over many generations and across several

treatments, the authors determined that Hamilton’s rule held.
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The details matter here: the Alice robots had infrared sensors that allowed them

to differentiate the other robots from the ‘‘food items’’ deposited amongst them, and

they had two vision sensors that allow them to ‘‘see’’ the walls (three black and one

white) of the enclosure. In each case a group of 8 robots were instructed to gather up

the food (i.e. push it towards the white wall) and then decide whether or not to

‘‘share’’ it with the other 7 robots. The robots do not consume the food, nor

metabolize it—they are designed only to be highly simplified phenotypic vehicles

for a limited set of genes that govern their behavior.2 Apparently, the life of an

ALICE robot is nasty and short, but only occasionally brutish. They do not

reproduce, sexually or asexually, but are manually regenerated by a combination of

precise but capricious software (which combines a selection event related to

foraging efficiency, a crossover event, and a source of mutation) and beneficent

human intervention (the robots need to be plugged in or otherwise connected to a

computer in order to download the new genome and become their own offspring).

An important caveat to note here is that the robots do not ever develop—

ontogenically speaking—they enter and leave each generation fully formed and

unchanged; as a result there is also no inter-generational interaction as part of the

robot evolutionary model in these studies.

Since these robots have neither brains nor DNA, they are instead equipped with a

software-based model of the same: a ‘‘neural network’’ consisting of 13 ‘‘neurons’’

(2 input neurons, 3 output neurons and 3 hidden neurons) and the 33 connections

among them. These connections were governed (in software) by 33 ‘‘genes’’ that

gave a specific weight to the connection, thus determining the complex behavior of

the robot based on the inputs received, and the translation of these inputs into the

simple possible outputs: turn the right motor, turn the left motor, or ‘‘share’’ the food

that had been pushed to the white wall with other robots.

This simple set-up allows the experimenters to precisely vary the measure of

relatedness in Hamilton’s rule (r), and watch as the robot’s fitness changes over a

series of generations. Relatedness was created within groups of robots by cloning

individuals—so a group with a relatedness (r) of 0.5 could be achieved by taking

three different individuals and cloning one of them 6 times. Fitness was defined in

terms of the reward for successfully transporting food to the wall—two different

kinds of rewards were given for shared and non-shared food. When a robot did not

share food, it received a benefit (c) to itself. When it shared food, a benefit (b) was

distributed equally to the seven other robots in the group. Experimentally, therefore,

all three components of Hamilton’s rule (r, b and c) could be controlled and

measured.

In each generation, the robots’ ‘‘foraging efficiency’’ was measured (how quickly

they identified and pushed food to the wall), and the inclusive fitness of each

individual was determined by how many times a robot shared the food, and how

many times food was shared by another robot in the group. The robots were then

‘‘selected’’ based on inclusive fitness, subjected to crossover with a random partner,

2 Another set of unrelated researchers has explored metabolism using robots, though seemingly only to

prove that a robot thus designed can keep itself running by consuming an ‘‘anaerobic or pasteurized

sludge’’: (Ieropoulos 2003; Ieropoulos et al. 2010; Lowe et al. 2010). They do not share the sludge with

each other as far as I can determine.
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subjected to mutations, and then the next generation (8 robots reloaded with the

updated software) was put back into the arena with new food items and new

genomes representing their changed fitness.3 After hundreds of generations, the

gene frequencies of the resulting robots confirmed just what Hamilton’s rule would

predict: some of the robots ‘‘laid down their lives to save 2 brothers or 8 cousins.’’

As the experimenters put it:

Because the 33 genes were initially set to random values, the robots’ behaviors

were completely arbitrary in the first generation. However, the robots’

performance rapidly increased over the 500 generations of selection. The level

of altruism also rapidly changed over generations with the final stable level of

altruism varying greatly depending on within group relatedness and c/b ratio.

(Waibel et al. 2011: p. 2)

A careful reading of the article reveals that the experiment was conducted with

200 groups of 8 robots over 500 generations and 25 different treatments (5 different

c/b ratios and 5 relatedness (r) ratios). That is a lot of robots. It would be 20 million

robots if they were not re-usable bodies for new genomes (which they are)—but

even 1600 is a lot of robots. But as the authors explain: ‘‘because of the

impossibility to conduct hundreds of generations of selection with real robots, we

used physics-based simulations that precisely model the dynamical and physical

properties of the robots.’’ So to be clear: there are at least two kinds of robots in

these experiments: ‘‘real’’ (physical) robots and simulated robots.4 But both kinds

do ‘‘exactly’’ the same thing, which raises the interesting question: why use physical

robots at all? What exactly is the difference between a physical robot and a

simulated robot? Do robots simulate nature or participate in it?

3 I’m not a robot, but I play one on TV…

In Plato’s world variation is accidental, while essences record a higher

reality; in Darwin’s reversal, we value variation as a defining (and concrete

earthly) reality, while averages (our closest operational approach to essences)

become mental abstractions.—Stephen Jay Gould, Full House (2011, p. 41)

A key moment in the work of philosopher Gilles Deleuze is his confrontation

with Nietzsche’s claim to be ‘‘overturning’’ Plato’s philosophy (Deleuze

1983, 1990, 1994). For most interpreters, and arguably for Nietzsche, such an

3 The definition of ‘‘fitness’’ and ‘‘inclusive fitness’’ is hard to grasp here, but is related to the concept of

foraging efficiency: essentially, over a given period of time foraging efficiency is determined by how

many times the robots are successful at pushing food to the wall. An individual’s inclusive fitness (their

own success at transporting food ? the food shared with them) determined the probability of their

genome being transmitted to the next generation.
4 There is some slippage between the terms ‘‘real’’ and ‘‘physical’’—often the scientific publications in

question use the two terms interchangeably. I follow their usage where possible, otherwise default to

‘‘physical’’ to refer to robots that are extended in space, use electricity and are built out of plastic, metal

and other materials.
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inversion concerns the opposition between the transcendent realm of the Ideas, and

the fallen or immanent realm of copies. To invert such a Platonism would be to give

the immanent pride of place rather than the transcendental—to make of (material)

substances the basis of our ideas instead of those ideas as the source of substance

and the world. Indeed, the standard reading (expressed in the quotation above by

Stephen Jay Gould) is that Plato’s ideas were mystical essences that existed in a

plane of reality separate from that of humans and animals and other ‘‘concrete

earthly’’ reality. The ‘‘inversion’’ of Platonism in which the material or the concrete

is elevated over the realm of ideas begins at the latest with Aristotle’s critique of

Plato, and is revived in various ways throughout the ages, but meets with its greatest

success in Marx (for whose materialism Aristotle is central) and Darwin (whose

reversal substitutes statistical averages for essences, and crowns this-worldly

variation as sovereign). Contemporary obsession with ‘‘emergence’’ might be said

to express something of this immanentism.

However, Deleuze harbored some skepticism about this reading of Plato (I rely

here primarily on Daniel Smith’sreading of Deleuze). Deleuze’s interpretation is

refreshingly non-dualistic—it is not the case for him that Plato is distinguishing

between a transcendent realm of ideas and a fallen realm of copies or images, but

offers instead a tripartite relation amongst idea, true copy and false copy, or among

idea, copy and simulacrum. Copies in Plato are not all equally subordinate to the

ideas they mimic—indeed they do not mimic at all, but instead participate in the

Idea, some much better and more authentically than others. The sculptor captures

the image of a man when she understands the internal and external resemblance of

the copy she creates to the model she observes; but the ‘‘simulacrum’’ or false copy

bears only a semblance, it looks like the real thing, but isn’t the same ‘‘on the

inside’’ as it were. According to Deleuze, Plato observes the problem of the rivalry

amongst copies, and the problem of deciding amongst them. The truest copy, the

copy that truly resembles the Idea (truly participates in it) is opposed to the copy

that is posing or dissembling: the false claimant. Thus for Deleuze the proper

inversion of Plato would not be to elevate the fallen world of copies over that of the

Idea, but an even more difficult task: to give the simulacrum—the false claimant—a

positivity all its own. Thus, the question of whether robots simulate evolution, or

actually participate in it (i.e. actually evolve), might be put to the test of Deleuze’s

reading, by asking how the scientists themselves conceive of and practice the

exploration of evolution using robots. It seems clear that most scientists would

count themselves alongside Darwin, as opposed to a Platonic metaphysics of

ideas—but would this imply a commitment to robots as simulations, or as

participants in that which they model?

4 Robot trouble

Skepticism about the use of robots to study life comes naturally; certain aspects of

the distinction between the natural and the artificial are reassuringly intransigent.

And yet, as with anyone who studies animals, robot scientists love to chip away at

those divisions. In the 1990s the field of Artificial Life famously staked out an
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extreme position, with folks like Christopher Langton earnestly insisting that,

because the pixelated creatures on their screens obeyed evolutionary laws, they

were therefore alive. But slowly other researchers, like Rodney Brooks, were not so

much convinced that robots or their simulations were alive—but that they could not

be (or no longer be) controlled. In this respect they were not alive, but nor were they

completely under the control of their creators—much like living things bred by

humans. For most participants in the fields of robotics and artificial life, the

processes of biology, evolution or the meaning of ‘‘life’’ were useful primarily in

order to build better robots. John Holland and David Goldberg applied the ideas of

evolutionary theory to the design of algorithms; researchers in robotics initiated

projects in evolutionary, cognitive, developmental, affective and epigenetic

computing; the ‘‘inspiration’’ of nature was oft cited amongst engineers as

‘‘biomimesis’’ or ‘‘bioinspired’’ technology (Asada et al. 2009; Bar-Cohen 2005;

Berthouze and Metta 2005; Berthouze and Ziemke 2003; Garnier 2011; Goldberg

and Holland 1988; Holland 2001, 2006; Krause et al. 2011; Lungarella et al. 2003;

Mehmet Sarikaya 1995). Robots provide obvious power for understanding issues of

locomotion, perception and communication, as well as more recently, emotion and

human health. Within a couple of decades the successes of these allied fields were

so substantial that it is now routine to talk about the inclusion of ‘‘genetic

algorithms’’ or GAs in everything from a financial trading software to music

production to (reflexively) the analysis of human or animal gene network data

(Dasgupta and Michalewicz 2013).

Many historical and critical readings of this topic have grappled with aspects of

the problem I address here, especially concerning the way life and information have

been disentangled and re-entangled across history (Bensaude-Vincent 2009;

Emmeche 1996; Helmreich 1998; Riskin 2007). Central to these discussions have

been the historical and theoretical re-evaluations of cybernetics and its role as a

seductive language for scientists across the spectrum of disciplines, but especially

within biology and evolutionary theory (Hayles 1999; Kline 2015; Pickering 2010).

A case like Grey Walter’s tortoises (discussed in detail in Pickering as a kind of

‘‘ontological theatre’’) gives us a very clear glimpse of the prehistory of the kind of

robots engaged by the scientists in the Hamilton’s rule experiment. Walter’s tortoise

was, as he clearly labeled it, an ‘‘imitation of life’’ (specifically the brain), a model

of the brain. It would be eminently cybernetic (as I think Pickering shows) to

consider the turtle not a simulation of a brain but in fact a tool for participating in

thought.

At roughly the same time as the computational embrace of evolution tightened,

and often with very little interaction, evolutionary theory itself has seen a series of

changes, debates, borrowings and reconfigurations—so much so that there is now a

marked split between those who study evolutionary theory, and those who study

living organisms (now or in the past). The link between evolutionary theory and the

study of life has steadily become less obvious with generations of thinkers applying

the concepts of evolution to everything from economic growth (Nelson and Winter

1982) to epistemology (Toulmin 1972) to universes (Smolin 1997). As ‘‘evolu-

tionary theory’’ has grown, speciated, and recombined, it has come to be regarded

less as a theory of life and its organization and more as an incredibly powerful
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theory of change and diversity in any system. Daniel Dennett among others claims

that evolutionary theory is ‘‘substrate neutral’’ (Dennett 1995). Even mainstream

evolutionary theory in the hands of people like Richard Dawkins, E. O. Wilson, or

Martin Nowak struggles with the abstraction of the theory from the empirical work

of those who have long studied particular species and ecologies. Add to this the

problematic insertion of the term ‘‘behavior’’ and the subject becomes even more

diffuse: evolutionary psychology, sociobiology or cooperation and sociality in

humans and animals have all come into their own by using tools and ideas of

evolutionary theory not just to understand the origins of individual morphology or

behavior, but those of interaction and ‘‘social’’ behavior as well. It is clear that

evolutionary theory has taken on not just a life but an ecology of its own.

Classical biologists might be justifiably skeptical: driven to extremes, evolution-

ary theory of this kind loses touch with the empirical—as well as with other

domains of theory like those of ecology, development and physiology. Not all

biologists would give evolutionary theory such pride of place in a theory of life, and

the range of novel problems and approaches that have emerged in recent decades

clearly indicate that the gene-centric theory of life has run its course. Among other

recent changes pointed to as evidence of a challenge to the dominance of the neo-

Darwinian synthesis are metagenomics and the reorganization of the tree of life,

epigenetics, lateral gene transfer, new understandings of metabolism, co-evolution,

symbiosis, mutualism and parasitism. All these things may well challenge many of

the established aspects of evolutionary theory—and they demand exploration,

experimentation and the observation of living things (Dupré and Malley 2009;

Gilbert et al. 2012; Gilbert and Epel 2009; Helmreich 2003; Landecker 2011; Sapp

2009; Wimsatt and Griesemer 2007).

But at the same time, computer simulation has risen in respectability: not only

has there been a marked shift away from ‘‘law-governed’’ theories to ‘‘model-

based’’ theories over the course of the twentieth century, but also a recognition that

computer simulation might be scientifically and philosophically novel (Creager

et al. 2007; Morgan and Morrison 1999; Grune-Yanoff and Weirich 2010;

Humphreys 2004; Lenhard 2006a; Schweber and Wächter 2000). Debates have

emerged about the difference between simulation and experiment, about the rise of

‘‘exploratory’’ experiments, about the role of surprise generated by simulations, and

about the epistemological and ontological consequences of understanding based on

the radically advancing computational power available to scientists (Franklin 2005;

Humphreys 2008; Keller 2003; Lenhard 2006b; Parker 2009; Rohrlich 1990; Steinle

1997; Winsberg 2008). Robots, therefore, seem to fall into this niche of

respectability as they too become more powerful, diverse and tractable as tools of

exploration and experiment.

To be sure, robots are by no means restricted to the study of evolution—there are

also robust uses of them to study human psychology, cognition and emotion, as well

as more traditional issues of locomotion, vision, hearing, communication etc.

Furthermore, robots can be used in place of animals/humans or they can be studied

in interaction with animals/humans. Robots can be treated a bit like model

organisms responding to an experimental set-up, or they can be used as traps, lures

or decoys that provoke behavior or reaction from an animal or human. The
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distinction between a robot that simulates something else (stands in for) and one that

participates in something is not at all clear, whether to the biologists using robots or

for those observing the scientists (Keller 2007; Suchman 2011; Wilson 2010).

Using robots (or computer simulations) to study evolution is apposite though

because experiments on evolution are difficult to design in the first place. The time-

scales involved require experimental set-ups that accelerate time relative to that of

humans and other animals, as well as a significant degree of inference and

assumption. As such, experiments on evolution have typically been restricted to

fast-reproducing organisms like microbes or Drosophila and some kinds of plants.

The mathematical theory of evolution we have today thus allows considerable

analytic and predictive power, but often requires an unsettling degree of

simplification and only a tentative generalizability. Computer-based simulations

offer a way to add ‘‘complexity’’ back in, and robots, therefore, seem to be the next

obvious step in such an exploration.

The mathematical descriptions employed in mainstream evolutionary theory,

especially those drawing on the tools of game theory, now allow an impressive level

of complexity in modeling and observing simulated evolutionary dynamics within a

population—but they remain computer simulations. For many scientists, the

question remains: how do these simulations relate to the nature they describe?

Philosophers of simulation pose this question routinely as well (Dutreuil 2014;

Huneman 2014). Winsberg (among others) offers a helpful distinction by pointing

out that both in simulations and in experiments, there is a difference between the

object of explanation, and the target of explanation—a mouse model can be an

object while the target is humans or human cancer, just as a simulation of fluid

dynamics in a computer can be an object while the target is the center of a black

hole—something that manifestly cannot be accessed by humans (Winsberg 2008).

Target and object can be distinguished without depending on other spurious

distinctions like digital/analog or real/virtual and can be distinguished equally in

bench experiments in a lab, field experiments, or experiments using software models

of phenomena.

Such a distinction would seem to appeal to the experimental biologists who are

using robots, as it implies the possibility of a continuum of relations between object

and target. Indeed, in a recent review by Mitri et al. (2013), the uses of robots in

biological experiments concerning social behavior are surveyed; they lay out just

such a continuum that they call the ‘‘scale of situatedness’’ (see Fig. 1).

On the right-hand end of the scale are versions of ‘‘situatedness’’ such as ‘‘field

work’’ and ‘‘laboratory work’’ which ‘‘include the whole complexity of the

organisms and their environment… but rarely permit the unambiguous demonstra-

tion of causations (1)’’ especially concerning social behavior—pure ‘target’, to be

sure, but seemingly as complex and inaccessible as a black hole.

On the other end, they put ‘‘abstract mathematical models’’ that ‘‘boil down

collective systems to their minimal components.’’ They are abstractions and

formulas that model populations as a whole, rather than individuals in populations.

Mathematical abstractions are not necessarily dependent on a computer for their

existence (which is not to say, of course, that some humans might not increasingly

depend on them to calculate or keep track of the abstraction)—their power comes
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from representing the target with relatively simple formulas. Not all such formulas

bear the relation of object and target, however. Hamilton’s rule, for instance, is less

descriptive than predictive: it does not model the actual evolutionary system so

much as predict an outcome based on measurements and observations.

Next on the scale are so-called individual or agent-based models that can take

into account the varying behavior of a potentially large population of individuals.

These models necessarily inhabit a computer simulation (rather than a formula on a

page or screen in the case of ‘abstract mathematical models’), usually represented

not graphically but as something like a database or spreadsheet of changing

parameters over time. Such models depend on the ability to both compute the

complexity of interacting individuals (each of which might have its own more or

less complex genotype and phenotype) in a population and in most cases to display

that computation in some form (though not always as a graphical visualization).

Further down the scale are robots (both physical and simulated), which are

essentially agent-based models in physical, programmed robots that interact in real

(or simulated) space. Physical robots are better than agent-based model simulations

because they do not need to make simplifying assumptions about the physical

environment or the physical characteristics of the agent/individual (i.e. physical

organization of the robot). As the authors put it, realism in an agent-based model is

costly and complex whereas ‘‘the laws of physics are included ‘for free’ in robotic

models (2).’’

There are several things to say about the ‘‘scale of situatedness’’ and the claims

made for it here. Most importantly, there is both an explicit and an implicit

association of ‘‘situatedness’’ with ‘‘embodiment’’—abstract models and computer

simulations are experiments in an abstract or digital space—whereas organisms are

embodied and situated in real physical space. The scale is implicitly one of the

complexity of bodies and their environments. Robots straddle a boundary: they

share some of this bodily complexity with organisms at the same time that they

share putatively simpler (or just more controllable) computational and digital modes

of existence with simulated organisms. That robots have bodies is not interpreted as

Fig. 1 The scale of situateness from Mitri et al. (2013)
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a metaphor or a supplement, but instead as a crucial determinant of what robots are

and can be. Embodiment is central to cognition not just in the sense that the robot

needs to perceive and sense the world, but also implies that the kind of body it has

will transform the kind of cognition of which it is capable.5 When the authors say

that the ‘‘laws of physics are included for free’’ they mean that all of the complexity

of the robot body—its weight, orientation, speed, the distance between its eyes and

its wheels, etc.—do not need to be simulated by a digital computer; they are just

there, as part of what a robot is.

Deleuze’s reading of Plato bears a striking similarity to the problem of simulated

and physical robots discussed here. Rather than a simple opposition between real

(living things) and fake (robots), the ‘‘scale of situatedness’’ seems to set up a scale

of rivalry along which some kinds of copies are better than others: a model organism

is a true claimant to the robots’ false one, but the robot is a true claimant to the

agent-based model’s false one. But as in the case of Plato’s philosophy, the question

remains: on what basis does one choose one rival over others? Aristotle’s criticisms

of Plato turned on this issue as well: for Aristotle, Plato’s theory of Ideas failed to

adequately distinguish species and genera, leading to a fundamentally capricious

system. Aristotle, rather, would insist on a clear taxonomic principle distinguishing

the organism from the model organism, the robot from the organisms and robots

from each other. An implicit reliance on such an Aristotelian taxonomy is precisely

what troubles some biologists about using robots: they simply are not alive.

It would seem therefore that the question is not ‘what’s the difference between an

animal and a robot?’ (model and copy), but ‘what is the difference between a

physical robot and a simulated robot?’ (copy and simulacrum)? For Plato, the

danger of the simulacrum is that it resembles the original on the outside, but lacks

internal similarity (it is not a true copy). This would seem to describe any robot or

especially classical automata that have the appearance of being what they copy but

possess a radically different internal organization (the story of the mechanical Turk

notwithstanding). Robots with fleshy plastic masks that simulate emotionally

specific expressions are troubling and uncanny because they copy (increasingly

well) the outside without being the same on the inside. Whatever we think it is that

‘‘makes us human’’—it is present only in the behavior of the robot, not in its

substance. So just what might biologists be observing when they decide to use a

physical, embodied robot instead of a simulated one? That is to say, on what

grounds do they distinguish these claimants to participation, and in turn, place them

in order on the scale of situadedness?

5 See e.g. (Chrisley and Ziemke 2006) Mitri et al. cite two influential books in cognitive science: Varela,

Thompson and Rosch, The Embodied Mind: Cognitive Science and Human Experience and Andy Clark,

Being There: Putting Brain, Body and World together again (Clark 1998; Varela et al. 1991). More

recently, and directly relevant is the work of Josh Bongard, whose book (with Rolf Pfeifer) How the Body

Shapes the way we Think: A new view of intelligence lays out the specifics of the ‘‘embodied turn’’ in both

cognitive science and robotics (Pfeifer and Bongard 2007). The similarity to debates about the role of

language and cognition within anthropology (Sapir and Whorf) and philosophy (Wittgenstein, Quine) is

sometimes also noted, though more often this tradition is linked to phenomenology and a certain

interpretation of Heidegger advanced by Hubert Dreyfus and taken up by some computer scientists and

psychologists (Dreyfus 1999; Winograd 1995).
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5 One robot may hide another

In their review, Mitri et al. present a couple of nice examples to illustrate the

difference that physical embodiment makes to experimental science, and how it

might serve as a basis for distinguishing along a scale of situatedness. In one

study, of cockroach behavior, an agent-based model reached one outcome, while a

robot model reached a different one—because in the agent-based model there was

no way for one cockroach to ‘‘hide’’ another one—all cockroaches were visible to

all other cockroaches at all times—the God’s eye view as experienced from the

perspective of a cockroach. The embodied robots, however, included this feature

of physics ‘‘for free’’ (the authors’ words) and as such the result of the physical

experiment was different from that of the agent-based model inside a computer.

Similarly, a study of ant-like robots’ ability to collect objects revealed that the

physical ants were much less efficient than the ants in an agent-based model

because they had bodies that bump into each other and slow them down. May and

Schank have also demonstrated that the shape and size of a robot body are

important—and in their case, their robot rats actually demonstrated something that

proved to be a testable hypothesis about living rat behavior and the shape of their

bodies (Schank 2004). And in other examples, the authors refer to the use of

robots in ‘‘mixed-models’’—that is experiments where robots are used in

association with living animals in order to elicit or respond to specific

behaviors—not unlike the long-standing practice in ethology of using lures or

decoys, as several papers in the field like to point out.6

But what these examples do not reveal is whether there is a difference between

physical robots and simulated robots. In all of the above examples, the salient

difference is between an experiment using lots of robots, and one using ‘‘agents’’—

abstract representations of the parameters under study. But in between these two

kinds of situadeness are ‘‘physics-based’’ robot simulations—simulations of the

robots in question which include more of the physical parameters of the robot than

an agent-based simulation would, but presumably less than that of the physical

robot. In these physics-based simulations, the price of the laws of physics starts to

fluctuate: how detailed must a physics-based simulated robot be to be the same as a

physical robot? What delta is permissible between the two? At what point does it

become plausible to assert that they are the same (in essence, to assert that the

simulated robot ‘‘has a body’’)?

There is obviously a lot of complexity to a robot simulation, and not much

information is offered by the experimenters when it comes to understanding what a

simulated robot is or does. The materials and methods sections in the work of

Floreano and Keller, for instance, often describe in detail the robot’s configuration,

precise dimensions and speed, programming, etc. as if all the robots in the study

were physically real, and they rarely refer readers to the simulation tools used. Some

online digging reveals that in the case of the work of Floreano and Keller, the

simulation environments they use are in-house programming environments called

‘‘TEEM’’ (The Open Evolutionary Robotics Framework) and ‘‘Enki’’ (a fast 2D

6 Frequently this claim relies on reference to Tinbergen (1951).

16 Page 12 of 23 C. M. Kelty

123



robot simulator) created by co-author Markus Waibel.7 They are modular,

extensible software environments of a standard sort that can be used to cobble

together simulated robots and run experiments using these robots. The fact that

these researchers can refer to both the physical and the simulated robots without

clearly distinguishing them has at least one good reason behind it: both the

simulations and the physical robots by definition use the same operating systems,

programming environments and software tools and libraries—a robot might have an

embedded controller with a version of Linux running on it that allows the robot to

be controlled and to perform its various tasks—and that program will have been

initially developed on a computer running Linux and an emulation of the same

software and its robotic hardware environment. The relationship between the

prototype and physical robot is capable of being more or less exactly replicated in

the physics-based simulation because many of the software parts are interchange-

able (even if it requires some admirable wizardry to make this whole system

function). It is a feature of all robots that they are first simulated in software and

then, essentially, ‘‘printed out’’ in physical form and set to work—and it is always

the differences, breakdowns, or hardware-dependent surprises that form the core of

an iterative process of inquiry in the robot sciences. Indeed, it shares this feature

with all software programming where systems can be ‘‘bootstrapped’’—the design

of new software (such as an operating system) or new hardware (such as a

processor) can be implemented virtually inside another by programming a simulated

environment for it to exist in before it is ‘‘real’’ in the intended final sense. The

assumption that there is no difference between a simulated and a physical robot is

therefore both deeply ingrained in the practice of creating robots, and warranted by

an understanding of what gives the robot its being: its software.

But to return to Deleuze, the problem of distinguishing between false claimants is

that they resemble the copy on the outside but not the inside—which is to say, they

appear the same in some respects, but are not motivated or actuated by the same

internal workings, whatever that might be—they do not really participate in the idea

they copy. The simulated robots, however, offer a twist on this: they may have a

visual representation (such as a 3D rendering on a screen) that resembles a physical

robot, but what is indistinguishable is actually the internal aspect—the program or

software governing the robot. Simulated robots have simulated bodies but their

‘‘brains’’ and ‘‘genes’’ are identical to those of physical robots: they are identical on

the inside, but share little or no resemblance on the outside. It is this fact, if we

follow Deleuze, which serves as warrant for the scientists to treat them as

interchangeable—indeed, it is not clear whether from this perspective simulated

robots should appear to the left or the right of physical robots on the ‘‘scale of

situatedness’’—clearly, they are different, but it is not their internal resemblance

which allows one to distinguish true from false claimants.8

7 See for example, the projects available at ‘‘Teem The next generation open evolutionary framework,’’

available at http://lis2.epfl.ch/resources/teem/ (Last visited Jul 23, 2017).
8 To push this logic even further, it may well be possible to imagine creating, for instance, a 3D

cinematic representation of a robot having a far better outward resemblance (and identical internal

resemblance) of an animal or human than can be achieved with a physical, sculpted and manufactured
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But if this is so, if the simulated robots can be said to be no more or less false a

claimant on what they model than the real robots, then why not just run simulated

robots through the motions and report on that? Implicit in the design of these

experiments is that physical robots are necessary to produce that minimum of

difference—that surprise—which can only come by running a ‘‘real’’ experiment

(Rheinberger 1997). The expectation of the researchers seems to be, perhaps, that

physical robots will confirm what the simulation demonstrates, but that they must be

included, observed, and the hypotheses thereby tested in order to assure them that

the simulation acts as the physical robots would. A good researcher would no doubt

be attuned to understanding why the physical robots fail for interesting as opposed

to routine reasons. However, in every case reported by Floreano and Keller so far,

they use physical robots in the experiment—but only a few—and they do not seem

to do anything other than confirm the results of the simulation. They produce no

surprises, but are nonetheless essential to confirming that they are, as yet,

unnecessary to the experimental result.

6 These aren’t the droids you are looking for

There are some obvious reasons why scientists might prefer robots (whether

physical or simulated) to animals—they can do all kinds of ethically suspect things

with robots that they cannot do with animals. The price/complexity ratio is very

good and always getting better. The robots do just what they are programmed to do

(except when they do not), which is useful for establishing precision in an

experiment. But there are also obvious reasons why an experimenter would prefer

simulated robots over physical ones: they can reproduce and mutate dramatically

faster than the embodied robots, they do not break down as often, and they can be

reprogrammed and reconfigured much more quickly.

The trade-off of course is that robots are not animals, and simulated robots are

not robots. On the ‘‘scale’’ of situatedness, there appears to be a clear order or

hierarchy. But the source of this new scala artificio is not entirely clear, and perhaps

not entirely untheological. It relies to a large extent on our intuitions about what is

real and what is not; but it is also dependent upon a certain definition of that which

is authentically alive. Perhaps in the background there is an unquestioned return to a

kind of vitalism; or perhaps there is a sense that it is simply ‘‘obvious’’ what is alive

and what is not. If it were possible, given this metaphysics of situatedness, scientists

would prefer to manipulate (and understand) real organisms, and barring that, real

robots, and barring that simulated robots and so on. Simulated robots must exist in

simulated environments and there are necessarily some kinds of physical parameters

that it is either too difficult, too costly, or impossible to include—so the simulations

are necessarily not identical with physical robots, even if experimenters choose to

act as if they are.

Footnote 8 continued

robot. In this case, the simulated robot should by all rights appear to the right of the physical robot on the

scale of situatedness, and not the reverse.
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On the one hand, the troubling implication of such a spectrum is that

mathematical abstractions are figured as the least appropriate object for under-

standing a target—as opposed to the traditional assumption that they bear a kind of

representational accuracy, if not identity with the target (mathematics as the

‘‘language of nature’’). But on the other, it seems to put mathematical abstractions,

models, robots, model organisms and living organisms all on the same ontological

plane—formulas are simpler versions of agent based models, which are simpler

forms of robots, which are simpler forms of organisms, all of which participate in

something not quite specified: life, evolution or social behavior. Which is to say, it

collapses the object/target distinction.

Thus, there appears to be an epistemological tension here: on the one hand robots

(as well as mathematical formulae!) are merely physical entities which can be

simulated as other physical entities can (assuming we get the physical theories

‘‘right’’) and what they do is ontologically indistinguishable from what mathemat-

ical formulae do or from what organisms do. But on the other hand is the assertion

that robots are different: robots are embodied and so they will exhibit forms of

behavior and/or cognition that can only come from being embodied—i.e. something

that cannot be or does not reduce to their program, something that comes of having a

‘‘body’’ not just a ‘‘mind’’ (or program). This extends to the environment as well: on

the scale of situatedness, fieldwork is preferred to laboratory work, and a

commitment to a certain mode of realism or direct access to the real of nature is

evident. Thus the choice to work with robots appears strictly pragmatic: robots give

some kind of partial access to (more complex) nature in return for being more

tractable (simpler). It sets up a rivalry between different kinds of objects which are

also targets. The ordering reveals two things: an implicit order according to which

the object is an authentic expression of some unstated essence: life, evolution,

behavior, etc. And secondly, an order according to which the object can be

controlled or manipulated in the service of modeling, understanding or confirming

theories of life, evolution, behavior, etc.

The implicit definition of embodiment here, however, is a physical one. ‘‘Having

a body’’ means ‘‘including the laws of physics for free’’. By doing so we gain

purchase on the physics of bodies and environments that we would otherwise have

to painstakingly model in a software system. But in the case at hand what is being

simulated is something else: social behavior, and in particular motivated social

behavior that can be labeled as either selfish or altruistic. The scientists involved are

no doubt committed to the epistemological claim that all such behaviors are

fundamentally physical—either in a reductionist or an emergentist sense. There are

genes which are biochemical entities that interact with the physical features of an

environment which are then translated into proteins and on up the chain into

organisms whose metabolically self-sustaining whole is liable to behave in

predictable ways—such as by choosing to share food with another organism

(QED, Hamilton’s rule).

The question the scientists do not pose, however, is whether these robots have a

‘‘social’’ body (real or simulated) as well as a ‘‘physical’’ one, and whether there is

any difference. Mitri et al. suggest that ‘‘Robots are useful when properties of the

physical environment (e.g. visual and spatial effects, friction and collision) are
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likely to influence the outcome of the social behavior (8).’’ This would seem to

imply both that social behavior is a feature of the environment and that there is a

kind of social behavior that is not influenced by physical environments. Much of

what these robots do, in Floreano and Keller’s experiments, is physical—concerning

the physics of moving themselves with motors, perceiving ‘food’ by IR cameras and

‘seeing’ colors. But the behavior is governed by software that essentially collapses

neurons and genes into one kind of thing (the genes weight the neurons which

determine what the robot does or does not do). So the interaction between a robot

and a physical environment or between two robots is highly deterministic, and it all

comes down to the software. This in turn is another source of the warrant for

treating physical and simulated robots as identical.

But is ‘‘social behavior’’ simply ‘‘physical behavior’’ governed by brains and

genes? Could it be something more, and could the robots reveal it? Do the scientists

expect—or perhaps hope—that the robots will surprise them? Perhaps instead of

simply deciding to share or not share a food item they might stockpile it? Or decide

instead to divide it and extort the other robots for it, or maybe cook it? Or conduct a

ritual before consuming it? How fanciful might one’s hypotheses about sociality

become when one is waiting for surprise with robots?

Unfortunately, to make things even worse, the very concept of ‘‘social behavior’’

(to say nothing of ‘‘altruism’’ or ‘‘self-interest’’) is so elastic and vague that it is hard

to know what most scientists mean even when humans and animals are both object

and target, much less robots (Bergner 2011; Levitis et al. 2009; Piliavin and Charng

1990). One cynical answer to the question ‘‘Why use physical robots?’’ is simply

that it is cool, or that it brings in funding, or that interdisciplinarity is (over)valued.

However, the larger question concerning simulation and the ‘‘style of reasoning’’

that is being developed does not thereby disappear—robots and simulations have

entered the practice of science to such an extent that it is no longer possible to

continue to treat them as gimmicks or illustrations. They are, in increasingly many

cases, the work on the basis of which scientific knowledge moves forward, develops

and is argued about today—and they drive the development of technologies and

infrastructures that facilitate their use for just this purpose.

But neither is it possible to treat these robots as less complex versions of living

organisms. To do so is to misrecognize what they are, to mistake the false for the

true claimant, and even more importantly, to follow Deleuze, to fail to give the false

claimant a positivity of its own. To investigate, forthrightly, the internal difference

that these robots harbor vis-à-vis animals and humans, and even, ultimately to argue

against the existence of any model or original.

7 Do robots have a life of their own?

When we learn something from an experiment using robots, are we learning about

robots or are we learning about something else (or both—one thing for the robot

scientist and another for the biologist)? Floreano and Keller tell us that we are

learning something about (‘‘confirming’’) Hamilton’s rule when we watch these

robots do what they have been programmed to do. The algorithms of the robots
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instantiated in their physical and simulated bodies unfold in accordance with our

expectations about how ants or bees or humans would do the same. We are then

comparing expectations to expectations and confirming their identity—this tells us

that theory is correct for robots, although does not necessarily tell us that it is true

for animals. It also does not necessarily tell us anything we do not already know

about robots.

Given these robots and their algorithms, we can assert that simulations (including

robots simulating animals) animate theory: they bring theories to life in time. In the

case at hand the robots are animating Hamilton’s rule. Eric Winsberg’s term for this

is that simulations are ‘‘downward’’—they draw on theory and perform it in a

computer rather than being the kind of thing from which one makes observations

and builds theories (upwards) (Winsberg 2008). But the spatial metaphor is

misleading (or relies too much on a hierarchical relationship and separation between

theory and observation) because what simulations do is less about higher and lower,

and more about static and dynamic. A simulation is preferable to an equation

because it gives the equation life—it allows one to observe an animated version of

an equation—or a whole bunch of interacting equations that transcend the capacity

of humans to cogitate upon. Confirmation becomes something the simulation does

for us by enacting the theories we devise. It takes a great deal of work (and an

exquisite expertise in the use of such tools) for a program or simulation to fail to

confirm the theories it is designed to animate. In most cases, failure to confirm is

written off to a failure—or artifact—in the software or simulation system itself.

Only in rare cases does a simulation produce something that might authentically be

called a surprise, an insight, or an advance in the theory. In the case of the test of

Hamilton’s rule described here, it is safe to say the authors do not report any such

insight; though the possibility is not thereby ruled out.

If equations can be observed and experienced, then they have the capacity to

generate insight, surprise and difference in an experimental system. They do in fact

possess the potential to be ‘‘upward’’ in Winsberg’s sense, but only if one

approaches them differently—as that which must be observed in its own right: not a

true copy but a false one, a simulacrum with its own positivity, its own internal

difference as a motor of change and exploration. There are many examples of such

simulations generating both surprise and new difference and understanding. In

microcinematography, for instance, early theories of development and duration

(such as that of Bergson’s) were singularly suited to the medium of cinematography

and allowed scientists to see something: but were they seeing life or were they

seeing a simulation of life—a theory animated before their eyes? Microcinematog-

raphy animated theories of life using the film camera as a way to bring cellular

growth and division back to life (from the dead discrete stills and images of

photographs, histographs and illustrations); and it was by watching such animations

that surprise was generated and new phenomena (e.g. apoptosis, motility) explored.

Similarly, L-systems, those rudimentary attempts to simulate algae growth using

formal languages (primitive programming languages) animated particular theories

of cell division and growth. L-systems animated a theory of life that allowed

biologists to watch not a living organism but a theory of a living organism. But

when observed the surprise they produced swerved away from biology and into
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mathematics and computer science, where a veritable bestiary of formal languages

was observed, catalogued and compared. Today almost no biologists use formal

languages for the study of life—but most computer scientists and many

mathematicians are steeped in their dynamics and behaviors before they even

finish an undergraduate degree (Kelty and Landecker 2004; Landecker

2005, 2009).9

Simulations therefore are obviously ‘‘downward’’ when they animate a theory,

but they can also be upward, with a swerve, when observed. They generate surprises

and insights, and they may shift attention out of one domain (the biology of algae)

into another entirely (the creation of formal languages). When this happens, there is

no obvious commitment to realism, but there is a commitment to curiosity—the

simulation does not represent something, it literally becomes something else. When

this happens, a simulation is neither an attenuated nor a false copy of the real, but an

object and process with its own complexity, an assemblage.10 Simulations therefore

(and one must agree with Winsberg here, even if the metaphor is wrong) take on a

life of their own; some of them even escape and find new niches in neighboring

disciplines.

To say that the robots participate in the experiment, however, implies that the

robot (physical or simulated) is an image of something else—an instance of some

other ideal form in which it participates. A mouse, as a model organism, clearly

participates in ‘life’ insofar as it is a ‘copy’ of human life (or of any other animal life

figured as the model or target)—but it is a true copy because (we believe) the

resemblance of life to life (or cell to cell, or gene to gene) is what matters, and not

the fact that one is small, cute, and fuzzy and the other tall, smelly, and violent.

To view robots as participating directly in life or evolution is exactly what

generates the skepticism among biologists—they are so obviously false claimants to

the idea of life that it is exceedingly hard to treat any experimental result as having

even the faintest relevance to understanding life. These robots have ‘‘genes’’ and

‘‘brains’’ that can only be used in scare quotes: they lack that resemblance (merely

homologous though it be) that we comfortably attribute to mice and men. Robots, in

this sense, are mere phantasms that delude or divert us from the true forms of life.

Robots might better be understood—in cases like the test of Hamilton’s rule

explored here—to participate in something other than life: they participate in theory.

The most commonsense way to make sense of what such experiments are using

robots and simulated robots to do, is that they are part of an experimental system

that can, in the best of cases, reveal something about a clearly delineated

phenomenon like evolution. Whether robots and simulated robots are different then

takes on a more subtle and pragmatic character—akin to asking for instance, about

the difference between using glass and plastic containers in an experiment

9 A similar example can be found in Lenhard, ‘‘Surprised by a Nanowire,’’ in which he discusses the

‘‘surprise’’ that comes from simulating physics at the nanoscale; Lenhard tames this surprise however, by

calling it ‘‘pragmatic understanding’’ and reducing the simulation to a kind of tool by which theories

become experiments, and subsequent experiments become confirmations or falsifications (Lenhard

2006a, b).
10 Smith argues that Deleuze dropped the concept of simulacrum and replaced it with that of assemblage,

(Smith 2006).
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(Landecker 2013) or the difference between one satellite’s weather data and that of

many others (Edwards 2010). Robots could therefore be understood better as part of

a complex experimental system whose purpose is not to test a theory of life, but to

perform that theory. As Edwards says of climate models ‘‘the main goal of analysis

is not explain weather but to reproduce it.’’ (Edwards 2010: p. 280). Robots are

tools; they participate in our models of life, and our models simulate and reproduce

our best understanding of life and evolution. Robots raise tricky questions about the

role of physicality and embodiment in our theories of life and evolution, but they

may well help solve them.

8 Pseudo-coda

Is that it then, have we overturned Platonism in science? We act Platonically when

we presume that our models and theories, embodied and animated in physical and

simulated robots, participate in what are essentially modern ideal forms: life,

evolution, behavior, sociality. But it is from Deleuze we get the idea that to overturn

Plato, to truly overturn this strange mysticism, would be to deny that robots, or

theories, participate in these ideal forms and to instead focus on them as

assemblages with their own positivity. This is not so alien an idea really, but it

conflicts with some bedrock philosophy of science assumptions about the relation of

theory and what it describes, or models and what they model; that discovery and

justification are separable; and that ultimately the evolution of scientific knowledge

is not a natural phenomenon independent of humans, but in a strict Kantian sense, a

problem of squaring the circle of mind and world.

But the fact is that robots are out of our control in a way that is not identical to the

way that living, changing, reproducing things are out of our control. Robots are

simulacra with a power all their own: assemblages of software, hardware, theories

of computation and embodiment, theories of evolution and neural processing, vision

sensors and motors, human operators and software environments for testing, all

cobbled together for a range of reasons like understanding, human companionship,

capitalist efficiency, as well as insane longings and fever-fantasies of other kinds of

creation, of control and of being controlled. Robots we create are not copies of a

‘‘wild type’’ of robots against which we might compare our laboratory results; there

are no field studies of robots, no robot pesticides or robot tracking collars; there are

no sweeping IMAX films of swarming robots on the plains of Africa. Not yet at

least.

But they are part of the world now, they have been unleashed. This, at least, does

not yet mean they are in control, but they are also quite obviously not strictly under

our control. The increasing awareness that our algorithm-rich, data-intensive

infrastructures interact daily—not only with humans, but also with all sorts of living

creatures inside laboratories and out—means that we are challenged to develop an

understanding of robots—not just of evolution, behavior, sociality—in order to get

beyond Plato. Against Plato (or against ‘‘evolutionary theory’’ as such), perhaps we

might turn instead to Hannah Arendt, and hear her call to ‘‘think what we are doing’’

(Arendt 1958, p. 5) as a call to think beyond robots as useful tools for animating our
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theories about ourselves, and instead see them as beings that extend, or even upend,

those theories.
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