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Abstract Obstacle detection plays an important role for robot collision avoidance and

motion planning. This paper focuses on the study of the collision prediction of a dual-arm

robot based on a 3D point cloud. Firstly, a self-identification method is presented based on

the over-segmentation approach and the forward kinematic model of the robot. Secondly, a

simplified 3D model of the robot is generated using the segmented point cloud. Finally, a

collision prediction algorithm is proposed to estimate the collision parameters in real-time.

Experimental studies using the Kinect� sensor and the Baxter� robot have been performed

to demonstrate the performance of the proposed algorithms.

Keywords Manipulator self-identification · Superpixel · Collision prediction · Point cloud

This work was partially supported by EPSRC grants EP/L026856/1 and EP/J004561/1 (BABEL) as

well as NSFC grant 61473038.

� Chenguang Yang

cyang@theiet.org

1 School of Automation, Beijing Institute of Technology, Beijing, 100081, People’s Republic

of China

2 College of Engineering, Swansea University, Swansea, SA1 8EN, UK

3 State Key Lab of Intelligent Control and Decision of Complex System, Beijing Institute

of Technology, Beijing, 100081, People’s Republic of China

4 School of Computing, University of Portsmouth, Portsmouth, UK



Multimed Tools Appl

1 Introduction

In recent years, the fields of robotic application have increased rapidly. Different from

traditional working environment, such as the assembly line, robots are operating in more

complex and dynamic environments for new tasks, such as collaborating with humans. As

a prerequisite of collision avoidance and motion planning, obstacle detection is playing an

important role to guarantee the safety of human co-workers, the surrounding facilities and

the robot itself, and also to complete the tasks more intelligently.

Various types of sensors have been used in previous studies to achieve environmen-

tal perception. Most of the sensors provide a 3D point cloud of the manipulator and the

surrounding environment. To understand the surrounding environment, the point cloud

processing method can be quite different with different sensor arrangements, i.e., eye-

in-hand arrangement and eye-to-hand arrangement. For the eye-in-hand arrangement, the

sensors are mounted on the end-effector of the robot. In [12], Natarajan uses a 3D

Time-Of-Flight (TOF) camera as a proximity sensor to identify the position of the obsta-

cle near the elbow of the manipulator. In [11], Danial introduces a manipulator robot

surface following algorithm using a 3D model of the vehicle body panels acquired by

a network of rapid but low resolution RGB-D sensors. The advantages of eye-in-hand

arrangement are providing higher resolution point cloud of the obstacle, and that the

algorithm is relatively simple because the coordinate transformation is not needed to mea-

sure the distance between the robot and the obstacle. However, the limited viewing angle

and inevitable occlusion of the vision will bring a lot of blind spots [2, 13, 14, 24].

For the eye-to-hand arrangement, the sensor is arranged outside the working space and

senses the whole working space in all the time [15, 19]. In [14], Pan presents a new

collision- and distance- query algorithm, which can efficiently handle large amounts of

point cloud sensor data received at real-time rates. Sukmanee presents a method to dis-

tinguish between a manipulator and its surroundings using a depth sensor in [20], where

the iterative least square (ILS) and iterative closest point (ICP) algorithms are used for

coordinate calibration and the matching between the manipulators model and point cloud.

The eye-to-hand arrangement can provide a large enough viewing angle, but an unavoid-

able problem is to segment the robot itself from the environment during the point cloud

processing.

Self-identification is defined as a process to identify the robot itself in the 3D point cloud.

In previous works, the general solutions of self-identification are based on the pre-built

3D models of the robots or simple neighbourhoods of the robot skeletons with predefined

radiuses. The manipulators are simply detected and deleted from the point clouds based

on 3D models or the neighbourhood regions [7, 10, 15, 20]. However, an accurate 3D

model is not always available for a given robot, and the installation of accessories, such

as additional grippers, may greatly reduce the accuracy and reusability of the 3D model.

In addition, the inevitable calibration error and the simplified 3D model of the manipula-

tor may also result in incomplete deletion. Some of the points on the robot may not be

identified as the robot, but as surrounding environment. These remaining points near the

manipulator will cause great trouble to the subsequent motion planning or obstacle avoid-

ance control. On the other hand, when using the simple neighbourhood of the robot skeleton

with a predefined radius [19], the radius has to be large enough to guarantee that every

single part of the robot, including the convex portions, are covered by the neighbourhood.



Multimed Tools Appl

Because of the inappropriately large radius, some obstacles near the robot may also be

covered by the neighbourhood and be detected as part of the robot itself. In this case, the

robot has to avoid the obstacle even if the obstacle is far away from the robot to prevent

the obstacle from dropping into the blind area, which may reduce the flexibility of the

robot.

A better way to segment the robot from the environment is to generate a 3D model

automatically based on the point cloud. Several model generation approaches can be found

in previous studies. In [3], a Curvature-based approach is presented to achieve multi-scale

feature extraction from 3D meshes and unstructured point clouds. In [22], a novel shape-

sensitive point sampling approach is presented to reconstruct a low-resolution point-cloud

model, which can modify sampling regions adaptively. These methods can generate 3D

models for a wide variety of objects, but are designed only for off-line applications. And the

processing time of these methods is up to tens of seconds, which makes them unable to work

in real time. To speed up the processing time, priori information and assumptions of the

object or environment to be modelled are always helpful. In [23], a fast, automated, scalable

generation method is proposed to generate the textured 3D models of indoor environments,

where the regular shape of the wall and the ceiling have been taken into consideration.

Similarly, the Manhattan world assumption is widely considered for the generation of the

building structures [5, 18, 27].

In this paper, the kinematic model of the robot is used as the priori information. A

self-identification method is proposed to automatically generate a simplified 3D model

for the robot based on the point cloud in real time. The robot skeleton is firstly created

by the forward kinematic model of the robot and matched with the point cloud by cal-

ibration. Thereafter, the point cloud is over-segmented into superpixels using continuous

k-means clustering method and then segmented into several meaningful categories. Next,

a simplified robot 3D model is generated based on the skeleton of the robot, and updated

using the segmented points. Finally, the collision prediction method is designed based

on the robot model and the obstacle points to achieve the real time collision avoidance

feature.

Our proposed method distinguishes with most existing methods and the novelties are

summarized as below:

(i) An over-segmentation method in 3D space is designed based on continuous k-means

clustering method to over-segment the 3D point cloud into superpixels.

(ii) A segmentation method is proposed based on the forward kinematics of the robot to

segment the superpixels into several meaningful categories.

(iii) A simplified 3D robot model is generated automatically and updated on-line based

on the robot skeleton and the segmented superpixels.

(iv) A collision prediction method is proposed based on the simplified 3D robot model

and the obstacle points.

The remainder of this paper is organized as follows: Section 2 gives some prelim-

inaries used in this paper. Section 3 shows the collision predication method, including

self-identification and obstacle detection. Section 4 briefly introduces the control strategy

of the robot to achieve the obstacle avoidance; Section 5 presents several experiments com-

pared with the previous method to evaluate the proposed obstacle detection method; finally,

we conclude this paper in Section 6.
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2 Preliminaries

2.1 3D point cloud

As a low-cost typical RGB-D sensor, the Microsoft Kinect� sensor can generate a detailed

point cloud with around 300,000 points at 30 Hz, and is widely used for the point cloud

capture [1, 6, 11, 14–16, 20, 21, 25]. The raw data obtained from the Kinect� sensor

includes an RGB image and a depth image, as shown in Fig. 1. A 3D point cloud in

Cartesian coordinate is generated from these two images. Each pixel in the depth image

corresponds to a point in the 3D point cloud. Denote the set of points in the 3D point cloud

as P = {pi (xi, yi, zi) |i = 0, 1, . . . , n}, where n is the total number of pixels in the depth

image. The coordinate of the ith point pi is calculated by (1) [21].

xi = di(x
c
i − cx)/fx

yi = di(y
c
i − cy)/fy

zi = di,

(1)

Baxter® Robot

Microso�® Kinect

Fig. 1 The raw data obtained from the Kinect� sensor
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Fig. 2 The 3D point cloud

where di is the depth value of the ith pixel in the depth image; (xc
i , y

c
i ) is the coordinate of

the ith pixel in the image coordinate system; cx , cy , fx and fy are the elements of intrinsic

parameters of the depth camera.

The colors of the points are obtained from the corresponding pixels in the RGB image,

which have the same coordinates as in the depth image. The generated point cloud is shown

in Fig. 2.

2.2 Manipulator kinematic model

The forward kinematics solution is used to acquire the skeleton of the manipulator. The self-

identification method that will be developed in Section 3.3 is designed based on the forward

kinematics and the skeleton. In the skeleton, each link of the robot can be seen as a segment

in 3-D space. The coordinates of the endpoints of the segments, i.e., the coordinates of the

joints, in Cartesian space can be obtained based on the kinematic model of the robot, which

can be found in our previous work in [4] for the Baxter� robot, as:

X′
i = i−1Ai · · ·

1A2
0A1X

′
0, i = 1, 2, . . . , n, (2)

where X′
i

= [x′
i, y

′
i, z

′
i, 1]T is an augmented vector of the relative Cartesian coordinate of

the ith joint in the robot coordinate system; X′
0

is the augmented coordinate of the base

of the manipulator in the robot coordinate system; and i−1Ai is the link homogeneous

transformation matrix, which can also be found in [4].

2.3 Calibration

The robot skeleton and the point cloud need to be placed into a unified coordinate system,

in order to achieve self-identification of the manipulator. The coordinate transformation of

the robot skeleton from the robot coordinates to the Kinect� coordinates can be obtained

using homogeneous transformation as shown in (3).

Xi = T X′
i, (3)
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where T is the transformation matrix, which will be defined below, Xi = [xi yi zi 1]T is

the coordinate in the robot coordinate system, and X′
i

= [x′
i y′

i z′
i 1]T is the coordinate in

the Kinect� coordinate system.

The transformation matrix T can be obtained by measuring the coordinates of four non-

collinear points under the robot coordinates and the Kinect� coordinates. Assuming that

we have four non-collinear points s1, s2, s3 and s4, the coordinates of the points in both the

robot and the Kinect� coordinate system, X − Y − Z and X′ − Y ′ − Z′, are (x1, y1, z1),

(x2, y2, z2), (x3, y3, z3), (x4, y4, z4), and (x′
1, y

′
1, z

′
1), (x′

2, y
′
2, z

′
2), (x′

3, y
′
3, z

′
3), (x′

4, y
′
4, z

′
4)

respectively. The transfer matrix T from the Kinect� coordinates to the robot coordinates

can be calculated by (4). The point cloud in the Kinect� coordinates and the transformed

robot skeleton are shown in Fig. 3.

T =

⎡

⎢

⎢

⎣

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x′
1 x′

2 x′
3 x′

4

y′
1 y′

2 y′
3 y′

4

z′
1 z′

2 z′
3 z′

4

1 1 1 1

⎤

⎥

⎥

⎦

−1

(4)

Remark 1 The coordinates of the four points in the robot coordinate system can be measured

by moving the end-effector of the robot to the specified point and then using robot forward

kinematics to calculate its position with respect to robot coordinate frame. The coordinates

in the Kinect� coordinate system can be measured by manually selecting the points on the

end-effector of the robot in the 3D point cloud.

Remark 2 Each pair of the coordinates satisfies (3). By measuring the coordinates of the

four points, we can get four equations about T . By solving these four equations together,

the transformation matrix T can be obtained, as shown in (4).

3 Collision prediction

3.1 Region of interest

As the Kinect� sensor provides up to 300,000 points per frame, the point cloud process-

ing algorithms can be highly time consuming. To improve the processing speed, a region

Fig. 3 The calibration results
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of interest (ROI) is determined based on the skeleton of the robot. Only the points with

distances to the skeleton smaller than a pre-defined threshold rROI are considered in the fol-

lowing collision prediction algorithms. To obtain the minimum distance between a point and

the robot skeleton, several interpolation points on each link of the skeleton are calculated as

equal division points between two adjacent joints Xi and Xi+1, as shown in (5).

xk = Xi +
j

m
(Xi+1 − Xi) , i = 0, 1, . . . , n, j = 0, 1, . . . , m, (5)

where k = im + j , xk is the j th interpolation points on the ith link, m is the amount of the

points that is interpolated on each link, and n is the total number of the links on the robot.

Then, the distance between the point pi and the robot skeleton is defined as the minimum

distance between pi and all the interpolated points xk on the robot skeleton, and can be

calculated by:

d (pi) = min
k=0,1,...,m×n

‖pi − xk‖ . (6)

Denote the set of points inside the ROI as PROI ⊆ P , then the points inside the ROI can

be obtained by calculating the distances d (pi) for all the points in the point cloud, and

compare them with the predefined threshold rROI , as (7).

PROI = {pi |d (pi) < rROI , pi ∈ P } . (7)

The ROI is shown in Fig. 4, with rROI = 0.4m, where only 13.7 % points are included in

the ROI.

3.2 Over-segmentation

The set of points PROI is firstly over-segmented into superpixels based on the k-

means clustering method [9], which aims to partition the points in PROI into ks sets

ROI

Fig. 4 The region of interest. rROI = 0.4m
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Fig. 5 Superpixels with different ks

PROI =
{

S1,S2, . . . , Sks

}

in order to minimize the within-cluster sum of squares (WCSS),

or say

arg min
PROI

ks
∑

i=1

∑

p∈Si

‖p − µi‖
2 , (8)

where µi is the mean of the points in Si .

Fig. 6 Over-segmentation result of the PROI with ks = 30
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Definition 1 [17] The superpixels are sets of pixels that are roughly homogeneous in size

and shape, and are local, coherent, and which preserve most of the structure necessary for

segmentation at the scale of interest.

The amount of superpixels needs to be large enough to ensure that none of the superpixels

contains more than one kinds of the following points, the robot, the obstacle and the object

to be operated. The over-segmentation algorithm is shown in Algorithm 1 and the results

are shown in Fig. 5 with different number of superpixels, and Fig. 6 with the amount of

superpixels ks = 30.

Remark 3 The amount of superpixels ks can be determined based on pilot experiments.

Extra superpixels will increase the computational load. While small number of superpixels

may lead to the problem that some superpixel may contain the robot and the obstacle at the

same time. In this work, different ks are tried to find the minimum value of ks , which can

split the obstacle and the robot into different superpixels, as shown in Fig. 5. Based on these

experiments, ks is eventually set as ks = 30.

Remark 4 In classic k-means clustering algorithms, the initial means µi are selected ran-

domly for each set of the observations, which will cause unstable clustering results between

different frames of point cloud. As the over-segmentation needs to be implemented on

each frame, and a smooth clustering result is important for the control strategy, a continu-
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ous k-means clustering method is proposed. In this clustering method, the initial means µi

are selected randomly only on the first frame, and for the following frames the means are

inherited from the last clustering result,

3.3 Self-identification

3.3.1 Simplified model

Unlike the previous methods [15, 20], our proposed method does not depend on the accurate

3D model of the robot. Instead of using the priori 3D model, we have designed a self-

identification method based on the 3D point cloud to automatically generate a simplified 3D

model of the robot, which is suitable for the obstacle detection. In this model, the robot is

presented by several spheres along the skeleton of the robot. The centres of the spheres are

the interpolation points xk , which is obtained from (5). The initial radiuses of the spheres

are set to 0, as shown in Fig. 7, where the red thick lines are the skeleton of the robot,

and the green spheres are the initial simplified model of the robot. The self-identification

process is to estimate the radius of each sphere to approximate the real situation based on

the segmentation of the point cloud.

3.3.2 Segmentation of the robot

The set of points on the robot Pr ⊆ PROI is segmented from PROI to estimate the sim-

plified robot model. As PROI is already over-segmented, the segmentation is based on the

superpixels {S1, S2, . . . , Sk}. The superpixels on the robot are the superpixels that have at

least one point near the robot skeleton. In other words,

Pr = {Si |∃ p ∈ Si : d(p) < dT H ,Si ∈ PROI } (9)

where dT H is a predefined distance threshold. Thus, the robot segmentation algorithm is

designed as shown in Algorithm 2. The segmented points on the robot Pr are shown in Fig. 8

Fig. 7 The simplified model
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Remark 5 The threshold dT H is determined based on the ground truth of the segmentation,

by searching the minimum distances d(p) of the points in each super pixel on the robot. The

threshold should be just larger than all the minimum distances. The segmentation results

with different dT H are shown in Fig. 9. As can be seen, there is a large acceptable range for

dT H , from 50mm to 100mm. A too small dT H will result in an incomplete segmentation

of the robot, as shown in Figs. 9a–e. And a too large dT H may make the obstacle been

identified as a part of the robot body. Thus, dT H = 50mm is chosen in this work particularly

for the Baxter� robot.

3.3.3 Model update law

The model update law is used to update the radius of each sphere on the simplified

robot model, so as to let the robot model exactly contain all the points in Pr . To achieve

this, the set of points Pr is re-segmented for the spheres based on distances, as Pr =

{X1, X2, . . . , Xm×n}. The centres of the spheres xk can be seen as the center of the corre-

sponding sub-set Xk and the points with minimum distances to xk are added into Xk . The

Fig. 8 Segmentation result with

dT H = 50mm
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Fig. 9 Segmentation results with different dT H

containing problem is now reformed as to let each sphere with a center of xk exactly con-

tains the points in the corresponding sub-set Xk , which can be easily achieved by set the

radius rk as the maximum distance between the points in Xk and the sphere center xk .

In practice, the update law may also encounter two problems, i.e., the noise in the point

cloud and the missing points caused by occlusion. For the first problem, as the noise in the

Fig. 10 Self-identification
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point cloud will affect the stability of the model, a filter is designed for each of the sphere

as (10).

r∗
k (t) = kf rr

∗
k (t − 1) + (1 − kf r )rk(t), k = 1, 2, . . . , m × n, (10)

where rk(t) is the raw radius at time t , r∗
k (t) is the filtered radius at time t , and kf r ∈ (0, 1)

is the factor of the filter. For the second problem, if most of the points in one sub-set Xk

is not visible, the corresponding radius rk will shrink rapidly, which is incorrect. To solve

this problem, a threshold of the amount of the points in Xk , Tk , is set as a prerequisite of

the update law. If Xk contains less than Tk points, the update of rk will be cancelled for this

frame of data. The model update law is designed as shown in Algorithm 2. The identified

robot model is shown in Fig. 10.

Remark 6 The threshold Tk is used to guarantee that the radius rk will be updated only if

Xk contains enough points to indicate the general size of the robot. It also relates to the

density of the point cloud. The higher the density is, the larger Tk should be. In this work,

the threshold is set as Tk = 20.
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3.4 Obstacle detection

The surrounding points PSUR = PROI − Pr can be further divided into four categories

based on the superpixels, namely, the points on the obstacle for the left arm and the right arm

Pol and Por , the points on the object to be operated Pd , and the other points. The operating

object set of points Pd ⊆ PSUR is defined as the points in the superpixels with means µ

near the end-effector of the robot, which can be obtained by

Pd =
{

Si

∣

∣‖µi − Xn‖ < dpd ,Si ∈ PSUR

}

, (11)

where Xn is the end-effector of the robot, µi is the mean of the superpixel Si , dpd is the

distance threshold for calculating Pd and is set to dpd = 300mm in this work.

The obstacle sets Pol ⊆ PSUR − Pd and Por ⊆ PSUR − Pd are defined as the points

in the superpixels with means µ near the movable links of the manipulators. Take Pol as an

example, it can be obtained by

Pol = {Si |dl(µi) < dobs, Si ∈ PSUR − Pd } , (12)

where dl(·) is the distance to the movable links of the left arm, which is defined similar as

(6) using the interpolated points on the movable links of the left arm, dobs is the predefined

detection range of the obstacles, and is set to dobs = 300mm in this work.

The four categories are shown in Fig. 11, where the green points indicates the obstacle

points Pol and Por , and the blue points indicates the points Pd on the object to be operated.

Remark 7 The points Pd on the object to be operated are found near the end-effector posi-

tions of the manipulators and is excluded from the obstacle points Pol and Por . This is

because that there will definitely be a collision between the operating object and the end-

effector when the robot is manipulating the object. For instance, when the manipulator is

grabbing the object with a gripper, the object will intrude into the gripper. However, these

kinds of “collision” are intentional and should not be avoided.

3.5 Collision points estimation

The collision points, pcr ∈ {xk|k = 1, 2, . . . , nm} and pco ∈ Pol or Por , are the two points

either on the robot or on the obstacle, which covers the nearest distance between the robot

and the obstacle, as shown in Fig. 11. The noise on the depth image from the Kinect�

Fig. 11 Obstacle detection
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Fig. 12 The artificial parallel

system built using Baxter�

kinematic model [4]. The solid

black line indicates the real

manipulator. The dashed black

line indicates the manipulator in

the artificial parallel system

sensor will transfer into the point cloud, and will lead to frequent changes in pco. A first-

order filter is designed to obtain a stable and smooth changing collision point p∗
co, which is

given by (13).

p∗
co(t) = kf op

∗
co(t − 1) + (1 − kf o)pco(t), (13)

where pco(t) is the raw collision point on the obstacle at time t ; p∗
co(t) is the filtered colli-

sion point; and kf o ∈ (0, 1) is the filtering strength parameter. With a larger kf , the filtered

collision point p∗
co(t) will change more smoothly yet with larger time delay. Thus, kf is

selected to guarantee both the control smoothness of the robot and a satisfactory reaction

rate.

4 Robot control strategy

4.1 Inverse kinematics

In order to control the end-effector of the manipulator following the reference trajectory in

Cartesian space, the numerical inverse kinematic method is used to calculate the reference

joint velocities. Consider one manipulator arm of the robot. Denote the joint velocities as θ̇ ,

then the end-effector velocity can be given by (14).

ẋ = J θ̇ , (14)

where ẋ is the end-effector velocity and J is the Jacobian matrix of the manipulator.

If the dimension of θ̇ is larger than the dimension of ẋ, i.e., the degree of freedom (DOF)

of the manipulator arm is more than the number of the desired end-effector velocity compo-

nents, the manipulator will become kinematically redundant, which can be used to achieve

some secondary goals, e.g., obstacle avoidance, in addition to the end-effector trajectory

following task.

For the inverse kinematic problem of the kinematically redundant manipulator, infinite

number of solutions can be find. The general solution is given by (15).

θ̇ = J †ẋ + (I − J †J )z, (15)
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where J † = J T (JJ T )−1 is the pseudo-inverse of J and z is an arbitrary vector, which can

be used to achieve the obstacle avoidance [8].

4.2 Collision avoidance strategy

When the collision points pcr and pco are found, the manipulator needs to move away from

the obstacle. The desired velocity ẋo moving away from the obstacle is chosen as below in

(16) according to our previous work [26].

ẋo =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

0 , d ≥ do

do − d

do − dc

vmax

pcr − pco

d
, dc < d < do

vmax

pcr − pco

d
, d ≤ dc

, (16)

where d = ‖pcr − pco‖ is the distance between the obstacle and the manipulator; vmax is

the maximum obstacle avoidance velocity; do is the distance threshold that the manipulator

starts to avoid the obstacle; dc is the minimum acceptable distance and the manipulator will

avoid at the maximum speed.
On the other hand, in order to eliminate the influence of the obstructing when the obstacle

has been removed, the manipulator is expected to restore its original state. To achieve that,

an artificial parallel system of the manipulator is designed in the controller in real time to

simulate its pose without the influence of the obstacle, as shown in Fig. 12, where the dashed

Fig. 13 Self-Identification results with and without clothes on the left arm
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Fig. 14 Collision prediction results. Scene 1

black line indicates the parallel system. The restoring velocity ẋr is then designed as below

[26]

ẋr = Krer , (17)

where Kr is a symmetric positive definite matrix and er = [er1 er2 er3]T is the position

errors of the joints between the parallel system and the real system.

Fig. 15 Collision prediction results. Scene 2
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The control strategy can be obtained by (18), based on our previous work [26].

θ̇d = Je
† (ẋd + Keex) +

(

I − J †
e Je

)

[αzo + (1 − α)zr ] (18)

where

zo =

[

ẋT
o Jo

(

I − J †
e Je

)]† (

ẋT
o ẋo − ẋT

o JoJ
†
e ẋe

)

(19)

zr =

[

ẋT
r Jr

(

I − J †
e Je

)]† (

ẋT
r ẋr − ẋT

r JrJ
†
e ẋe

)

(20)

5 Experiments

In order to verify the performance of the proposed collision prediction method, three groups

of experiments are designed, i.e., self-identification, collision prediction and collision avoid-

ance. The setup of the system is shown in Fig. 1c. The obstacle detection program is

designed based on Java and run under Microsoft Windows 8.1 and Processing 2. The com-

puter used for the obstacle detection program is equipped with an Intel� Core i5-3470 CPU

at the clock speed of 3.2 GHz.

A typical previous obstacle detection method proposed in [15] is implemented as the

contrast of the proposed method, which is described as follow. The previous method uses the

neighbourhood of the robot skeleton with a fixed predefined radius to detect the obstacle.

Specifically, all the points inside the neighbourhood is considered as the points on the robot;

the points outside the neighbourhood and inside the ROI is considered as the obstacle. The

radius of the neighbourhood is selected as small as possible under the premise of that no

points on the robot will be considered as the obstacle with such a radius. In practice, several

convex portions on the robot, e.g., the elbow, makes it impossible to set the radius small

enough to fit most part of the robot. Otherwise, the convex portions will be considered as

obstacles close to the robot and influence the obstacle avoidance control.

Fig. 16 Collision avoidance results and video frames based on the previous method with the ROI same as

the proposed method
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Fig. 17 Collision avoidance results and video frames based on the proposed method

5.1 Self-identification

In the first group of experiments, the proposed self-identification method is tested. In order

to test the 3D model update law, the left arm of the Baxter� robot is wrapped with a piece

of clothing to change the shape of the manipulator arm. The identification result with and

without the wrapped clothes is shown in Fig. 13. As can be seen, when part of the arm has

become thicker, the model changes automatically to fit the actual situation.

5.2 Collision prediction

In the second group of comparative experiments, the robot is set to a stationary pose to test

the collision prediction quality of the two methods. The results are shown in Figs. 14 and

Fig. 18 Collision avoidance results and video frames based on the previous method with large ROI
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Table 1 Evaluation of the proposed and the previous method

Proposed method Previous method with same ROI Previous method with large ROI

Detection accuracy 97.6 % 71.5 % 94.9 %

Frame rate 11.7 fps 14.1 fps 12.6 fps

15 for two different scenes. Each of the figures contains the RGB image from the Kinect�,

the result of the previous method and the proposed method.

As can be seen in Fig. 14b and e, based on the previous method, part of the human hand

is identified as the robot, and the collision points is not quite accurate. When the obstacle

is even closer to the robot, as in Fig. 15b and e, the whole hand is identified as the robot

based on the previous method, and the collision points have a large deviation compared to

the real situation. In contrast, based on the proposed method, the human hand is completely

segmented from the robot, and the collision points are accurate enough for the collision

avoidance task.

5.3 Collision avoidance

In the third group of comparative experiments, the collision prediction results are sent to the

collision avoidance controller proposed in Section 4.

The ROI of the previous method is firstly set the same as the proposed method, the

collision avoidance result is shown in Figs. 16 and 17. As can be seen in Fig. 16, based on

the previous method, when the obstacle is moving close to the robot quickly, part of the

obstacle is identified as the robot and the collision point is incorrectly far from the robot.

Thus, the robot cannot move away from the obstacle. In contrast, based on the proposed

method, the obstacle is always segmented from the robot, and the collision point is accurate.

So the robot is able to avoid the collision.

Fig. 19 Collision avoidance results and video frames based on the proposed method
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Fig. 20 Example of failed detection frames. The blue circles pointed out the faulty parts

Then, the ROI of the previous method is set twice larger than the proposed method to

enable the robot avoid the obstacle in advance so that the obstacle is less likely to run into

the neighbourhood of the skeleton and to be identified as the robot. However, the larger ROI

brings a lot more unnecessary avoidance action. As can be seen in Fig. 18, the obstacle is

passing by the robot with a quite large distance. While the robot changes its pose to avoid

the obstacle. In contrast, based on the proposed method, the same passing by obstacle does

not bring any unnecessary movements, as shown in Fig. 19.

The detection accuracy and the processing frame rate are shown in Table 1. As can be

seen, the proposed method has a much higher detection accuracy than the previous method

when they use a same ROI. When the previous method is implemented with a large ROI

to reach an acceptable detection accuracy, it also brings a lot more unnecessary avoidance

action. In addition, the proposed method is able to run in a satisfactory frame rate, which is

only slightly slower than the previous method.

Figure 20 shows some examples of the failed detection frames, where blue circles pointed

out the faulty parts. In Fig. 20a, the protruding portion on the elbow of the robot is detected

as an obstacle. This is because the threshold dT H is too small and the superpixel on the

elbow is too far away from the robot skeleton. In Fig. 20b, the simplified 3D model has not

been fully updated because the running time of the program is too short. The excessively

small 3D model causes the wrong detection. In Fig. 20c, the missing in the original point

cloud makes partial of the 3D model unable to be updated correctly.

Currently, these failed cases do not affect the obstacle avoidance control because these

problems occur only occasionally and the filter specified in (13) is able to deal with them

and to obtain a stable and smooth changing collision point.

In the future works, we will try to work out suitable solutions for these problems. A

variable threshold dT H and a threshold automatic turning strategy based on the generated

3D model may solve the problem in Fig. 20a. An improved model update law with faster

convergence can deal with the problem in Fig. 20b. A global optimization method taking

the radius of the neighbouring spheres into consideration for the 3D model update law may

solve the problem in Fig. 20c.

6 Conclusions

In this paper, a self-identification method has been developed based on the 3D point cloud

and the robot skeleton. The point cloud is firstly over-segmented into superpixels based on

the continuous k-means clustering method. The superpixels on the robot are then identified
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using the robot skeleton obtained from the forward kinematics. According to the segmented

point cloud, a simplified 3D model of the robot is generated automatically in real-time.

Based on the real-time 3D model, an accurate collision prediction method is proposed.

Comparative experiments demonstrate that the robot system equipped with the proposed

self-identification and collision prediction methods can avoid the collision, even if the obsta-

cle is close to the robot, and at the same time, prevent unnecessary robot movements when

the obstacle is far enough from the robot.

Nomenclature

X′
i

An augmented vector of relative Cartesian coordinate of the ith joint in the

robot coordinate system

X′
0

The augmented coordinate of the base of the manipulator in the robot

coordinate system
i−1Ai The link homogeneous transformation matrix

di The depth value of the ith pixel in the depth image

xc
i , yc

i The coordinate of the ith pixel in the image coordinate system

cx , cy The principal point in the intrinsic parameter of the depth camera

fx , fy The focal length in terms of pixels in the intrinsic parameter of the depth

camera

xs, ys, zs The Cartesian coordinates of the end effectors of the manipulator

xm, ym, zm The Cartesian coordinates of the end effectors of Omni

Xi The coordinate of the ith point in the Kinect� coordinate system

xk The j th interpolation points on the ith link, k = im + j

PROI The set of points inside the ROI

rROI The radius of the ROI

ks The amount of the superpixels

Si The set of points in the ith superpixel

µi The mean of points in Si

Pr The set of points on the robot

rk(t) The raw radius of the kth sphere on the robot model at time t

kf r The factor of the filter in the robot model update law

PSUR The surrounding points of the robot

Pol The points on the obstacle for the left arm

Por The points on the obstacle for the right arm

Pd The set of points on the operating object

pcr The collision point on the robot

pco The collision point on the obstacle

ẋ The end-effector velocity

J The Jacobian matrix of the manipulator

J † The pseudo-inverse of J

d The distance between the obstacle and the manipulator

vmax The maximum obstacle avoidance velocity

do The distance threshold that the manipulator starts to avoid the obstacle

dc The minimum acceptable distance and the manipulator will avoid at the

maximum speed

er The position errors of the joints between the parallel system and the real

system
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