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of human–robot cooperation
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Abstract

We consider the problem of navigating a mobile robot through dense human crowds. We begin by exploring a fundamental

impediment to classical motion planning algorithms called the ‘‘freezing robot problem’’: once the environment surpasses

a certain level of dynamic complexity, the planner decides that all forward paths are unsafe, and the robot freezes in place

(or performs unnecessary maneuvers) to avoid collisions. We argue that this problem can be avoided if the robot antici-

pates human cooperation, and accordingly we develop interacting Gaussian processes, a prediction density that captures

cooperative collision avoidance, and a ‘‘multiple goal’’ extension that models the goal-driven nature of human decision

making. We validate this model with an empirical study of robot navigation in dense human crowds (488 runs), specifi-

cally testing how cooperation models effect navigation performance. The multiple goal interacting Gaussian processes

algorithm performs comparably with human teleoperators in crowd densities nearing 0.8 humans/m2, while a state-of-the-

art non-cooperative planner exhibits unsafe behavior more than three times as often as the multiple goal extension, and

twice as often as the basic interacting Gaussian process approach. Furthermore, a reactive planner based on the widely

used dynamic window approach proves insufficient for crowd densities above 0.55 people/m2. We also show that our non-

cooperative planner or our reactive planner capture the salient characteristics of nearly any dynamic navigation algo-

rithm. Based on these experimental results and theoretical observations, we conclude that a cooperation model is critical

for safe and efficient robot navigation in dense human crowds.
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1. Introduction

One of the first major deployments of an autonomous robot

in an unscripted human environment occurred in the late

1990s at the Deutsches Museum in Bonn, Germany

(Burgard et al., 1998). This RHINO experiment was

quickly followed by another robotic tour guide experiment;

the robot in the follow-on study, named MINERVA (Thrun

et al., 2000a), was exhibited at the Smithsonian and at the

National Museum of American History in Washington,

DC. Both the RHINO and MINERVA robots made exten-

sive use of probabilistic methods for localization and map-

ping (Dellaert et al., 1999; Roy and Thrun, 1999). In

addition, these experiments pioneered the nascent field of

human–robot interaction in natural spaces: see Schulte

et al. (1999) and Thrun et al. (2000b). Perhaps most impor-

tantly, the RHINO and MINERVA studies inspired a wide

variety of research in the broad area of robotic navigation

in the presence of humans, ranging from additional work

with robotic tour guides (Shiomi et al., 2006, 2009;

Hayashi et al., 2011), to work on nursing home robots

(Pineau et al., 2003; Montemerlo et al., 2002), to robots

that perform household chores (Kruse et al., 2010), to field

trials for interacting robots as social partners (Kanda et al.,

2004; Saiki et al., 2012), to decorum for robot hosts

(Sidner and Lee, 2003), and even to protocols for social

robot design (Glas et al., 2011).

Despite the many successes of the pioneering RHINO

and MINERVA experiments, and the success of the work
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that followed it, fundamental questions about robotic navi-

gation in dense human crowds remain unresolved. In partic-

ular, prevailing algorithms for navigation in dynamic

environments emphasize deterministic and decoupled pre-

diction algorithms (such as in LaValle, 2006, Latombe,

1991 and Choset et al., 2005), and are thus inappropriate

for applications in highly uncertain environments or for

situations in which the agent and the robot are dependent

on one another. Critically, a large-scale experimental study

of robotic navigation in dense human crowds is unavailable.

In this paper, we focus on these two deficiencies: a

dearth of human–robot cooperative navigation models and

the absence of a systematic study of robot navigation in

dense human crowds. We develop a cooperative navigation

methodology and conduct the first extensive (nruns’ 500)

field trial of robot navigation in natural human crowds.

(Figure 1). These experiments quantify the degree to which

our cooperation model improves navigation performance.

Coupled with the arguments of Section 2, we deduce the

importance of a cooperation model for safe and efficient

crowd navigation.

1.1. Motivation for cooperative navigation

In Figure 2, we illustrate an instance of the freezing robot

problem (FRP). The black star (representing a mobile

robot) predicts the individual trajectories (light red ellipses)

of a crowd of people. In this case, the lack of any predictive

covariance constraints results in a robot that cannot make

an informed navigation decision: the deficiencies of the

predictive models force the robot to come to a complete

stop (or the robot chooses to follow an essentially arbitrary

path through the crowd). As we discuss in Section 5.1.1,

arbitrary and highly evasive paths can often be much worse

than suboptimal: they can be dangerous.

Figure 2 suggests that the culprit behind the FRP could

be the individual uncertainty growth. Indeed, if the amount

of uncertainty was the primary reason for this suboptimal

navigation, then using more precise individual dynamics

models would prevent the FRP. As is illustrated in Figure 3,

this approach works well for certain crowd configurations.

However, even under perfect individual prediction (i.e.

each agent’s trajectory is known to the planning algorithm)

the FRP still occurs if the crowd adopts specific configura-

tions. In Figures 5a and (b) we illustrate a very common

crowd configuration that can cause any independent plan-

ner to fail; when people walk shoulder to shoulder, the

robot is forced to walk around the crowd, even when the

humans are willing to allow passage. In more demanding

scenarios, like the cafeteria illustration in Figure 4, this

behavior can lead to a failure mode; for instance, the robot

in this run collided with the wall in an attempt to make

way for the humans.

Given this observation, how is it possible that people

can safely navigate through crowds? The key insight is that

people typically engage in joint collision avoidance (as

argued in the ‘‘social forces model’’ work of Helbing and

Molnar (1995) and Helbing et al. (2001, 2000)): they adapt

their trajectories to each other to make room for navigation.

Evidence of the usefulness of joint collision avoidance

models occurs in other fields as well: work on multi-robot

coordination in van den Berg et al. (2008), van den Berg

et al. (2009), van den Berg et al. (2011) and Snape et al.

(2011) shows that robots programmed to jointly avoid each

other are guaranteed to be collision free and display vastly

improved efficiency at navigation tasks. In addition, this joint

collision avoidance criteria has been used to improve the data

association and target tracking of individuals in human

crowds (Pellegrini et al., 2009, 2010; Luber et al., 2010).

In the following section, we will show that existing

robot navigation approaches commonly ignore mathemati-

cal models of cooperation between humans and robots.

Unfortunately, under this modeling assumption, the FRP

will always occur, given dense enough crowds.

1.2. Related work

Independent agent constant velocity Kalman filters are a

starting point for modeling the uncertainty in dynamic

environments. Unfortunately, this prediction engine can

lead to unconstrained uncertainty growth that makes safe

and efficient navigation impossible (Figure 2). Some

Fig. 1. Overhead still of the crowded university cafeteria

testbed. The density of the crowd varies throughout the day,

allowing for diverse experiments.

Fig. 2. Freezing robot problem as a result of unconstrained

prediction. The robot is the black star, and the ellipses are the

predictive covariance of the dynamic agents. The question marks

indicate that the robot can find no clear path forward.
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research has thus focused on limiting this predictive uncer-

tainty. For instance, in Thompson et al. (2009), Bennewitz

et al. (2005), Helble and Cameron (2007) and Large et al.

(2004), high-fidelity independent human motion models

were developed, in the hope that controlling the predictive

uncertainty would lead to improved navigation perfor-

mance. The work of Du Toit and Burdick (2012) and Du

Toit (2009) improves navigation performance by directly

limiting individual agent predictive uncertainty.

Specifically, they formalize robot motion planning in

dynamic, uncertain environments as a stochastic dynamic

program; intractability is avoided with receding horizon

control (RHC) techniques. Furthermore, the collision-

checking algorithms developed in earlier work (Du Toit

and Burdick, 2011) keeps the navigation protocol safe. The

insight is that since replanning is used, the predictive covar-

iance can be held constant at measurement noise. Although

robot–agent interaction models are developed for a few

cases, the primary contribution from this line of research

comes in the form of independent agent dynamics models.

Section 2 argues that only limiting the uncertainty growth

is insufficient for robot navigation in dense crowds.

The work of Aoude et al. (2011b), Aoude et al. (2011a)

and Joseph et al. (2011) shares insight with the approach

of Du Toit (2009), although more sophisticated individual

models are developed: motion patterns are modeled as a

Gaussian process mixture (Rasmussen and Williams, 2006)

with a Dirichlet process prior over mixture weights (Teh,

2010). The Dirichlet process prior allows for representation

of an unknown number of motion patterns, while the

Gaussian process allows for variability within a particular

motion pattern. Rapidly exploring random trees are used to

find feasible paths. No work is done on modeling agent

interaction.

The field of proxemics (Hall, 1966) has much to say

about the interaction between a navigating robot and a

human crowd. Specifically, proxemics tries to understand

human proximity relationships, and in so doing, can pro-

vide insight about the design of social robots. Mead et al.

(2011) and Takayama and Pantofaru (2009) developed vari-

ous robots in accordance with proxemic rules, while in

Mead and Matarić (2012) a probabilistic framework for

identifying specific proxemic indicators is developed.

Similarly, Castro-Gonzalez et al. (2010) study pedestrian

crossing behaviors using proxemics. However, this work

only studies sparse crowd interactions in scripted settings.

Svenstrup et al. (2010) combined rapidly exploring ran-

dom trees (RRT) with a potential field based on proxemics.

Pradhan et al. (2011) took a similar proxemic potential

function-based approach. Although these navigation algo-

rithms model human–robot interaction, they do not model

human–robot cooperation. Instead, the emphasis is placed

Fig. 3. If the predictive covariance of individual agents is held to

a small value, navigation can proceed in an optimal manner, if

the crowd is sparse enough.

Fig. 4. Example of FRP in cafeteria. The robot was not

anticipating interaction, and so chose a highly evasive maneuver

(green line). Inspection of human tracks (red lines), in contrast,

show people passing between each other. Imagine a crowd of

agents unaware of joint interaction; that is, imagine a room full

of agents all trying to move along the wall.

Fig. 5. (a) Even if we hold pedestrian predictive covariance to be

extremely small (grey circles), common crowd configurations

(shoulder to shoulder walking, sparse crowd) can lead to evasive

maneuvering by the robot (b) An illustration of what is occurring

in (a). Red dots represent crowd prediction, blue dots represent

robot decision making
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on respecting a proper distance between the robot and the

humans. Further, the algorithm is implemented in simula-

tion only, and the density of humans in the simulated

robotic workspace is kept quite low (approximately 0.1 per-

son/m2).

Rios-Martinez et al. (2011) adopted a ‘‘human-centric’’

approach as well, but instead of using the proxemic rules

of Hall (1966), they use the criteria of Lam et al. (2011)

instead. They incorporate these rules of personal space into

the robot’s behavior by extending the Risk-RRT algorithm

developed by Fulgenzi et al. (2009). The Risk-RRT algo-

rithm extends the traditional RRT algorithm to include risk,

or the probability of collision along any candidate

trajectory.

The mobile robot navigation research of Althoff et al.

(2012) is more agnostic about the specific cultural consid-

erations of the dynamic agents. A ‘‘probabilistic collision

cost’’ is introduced (to assess the fitness of candidate robot

trajectories in human crowds) that is based on the idea of

inevitable collision states, described by Fraichard and

Asama (2003) and expanded by Bautin et al. (2010) (inevi-

table collision states are robot configurations that are guar-

anteed to result in a collision with another agent). In

particular, Fraichard (2007) advocated three quantities as

essential to the proper evaluation of motion safety: the

dynamics of the robot, the dynamics of the environment,

and a long enough time horizon. Furthermore, Fraichard

(2007) argued that full knowledge of these quantities would

enable perfect prediction, which in turn would guarantee

perfect collision avoidance. The cost function of Althoff

et al. (2012) encodes an approximation of these rules.

Importantly, collision avoidance capabilities of neighboring

dynamic agents are modeled. However, experiments are

carried out entirely in simulation.

Importantly, work has been done on learning navigation

strategies by observing many example trajectories. Ziebart

et al. (2009) used a combination of inverse reinforcement

learning (IRL) and the principle of maximum entropy to

learn taxi cab driver decision-making protocols from large

volumes of data. These methods are extended to the case of

a robot navigating through an office environment of Ziebart

et al. (2008): pedestrian decision making is first learned

from a large trajectory example database, and then the robot

navigates in a way that causes the least disruption to the

human’s anticipated paths. Henry et al. (2010) extend IRL

to work in dynamic environments. Their planner is trained

using simulated trajectories, and the method recovers a

planner which duplicates the behavior of the simulator. In

the work of Waugh et al. (2010), agents learn how to act in

multi-agent settings using game theory and the principle of

maximum entropy. Kuderer et al. (2012) leveraged IRL to

learn an interaction model from human trajectory data.

Critically, the IRL feature vector is an extension of the

cooperation model that was developed by Trautman and

Krause (2010); thus, not only does this work model cooper-

ation, it pioneers IRL navigation strategies from real human

interaction data as well. However, the experiments are

limited in scope: one scripted human crosses paths with a

single robot in a laboratory environment.

We mention briefly that (although not developed in the

field of robotic navigation) models capturing crowd interac-

tion are explored by Pellegrini et al. (2009), Pellegrini et al.

(2010) and Luber et al. (2010) for the purposes of crowd

prediction. These papers rely on the social forces model,

developed by Helbing and Molnar (1995). The ideas intro-

duced by Helbing and Molnar (1995) underpin the interac-

tion model of Section 3.

We thus suggest that there is a dearth of human–robot

cooperative navigation models, and no extensive study of

robot navigation in dense human crowds has taken place.

In this paper, we address these two deficiencies.

2. The freezing robot problem

In Section 1.1, the FRP was presented as a conceptual moti-

vation for the development of human–robot cooperative

navigation protocols. In this section, we provide a more

detailed discussion of the FRP, and discuss approaches that

can solve the FRP (Section 2.2).

2.1. Mathematical details of the FRP

Consider agent i, where the index i can take values in the

set {R, 1, 2,., n}, such that {1, 2,., n} are human agents

and i = R is a robot. Suppose we have a distribution

p f
(i)
1:T

� �

over each agent’s trajectory where

f
(i)
1:T = f(i)(1), . . . , f(i)(T )

� �

ð2:1Þ

over T timesteps, where each f(i)(t)= x(t), y(t)ð Þ 2 R2 is the

planar location of agent i at time t. We also have a likeli-

hood function p(z
(i)
t jf(i)(t)) for our observations. Since we

are dealing with the case of multiple agents, we let

z1:t= (z
(1)
1:t , z

(2)
1:t . . . , z

(n)
1:t ) ð2:2Þ

acknowledging that for some times t0, we may not observe

agent i, in which case z
(i)
t0 = �.

In the following, we will assume that data association is

solved. Note that an observation of agent i is not necessa-

rily independent of the robot’s actions. For instance, if the

robot’s movement influences another agent’s movement,

then that observation explicitly depends on the robot’s

actions.

Our goal in dynamic navigation is to pick a policy p

that adaptively chooses a path f
(R)
1:T for the robot based on

the observations z1:t and any ancillary information (such as

agent goal location, boundary locations, etc.). The policy p

is typically specified by stating the next location

f(R)(t + 1) the robot should choose given all observational

and ancillary information.

Thus, for any complete sequence of observations z1:T,

the robot can potentially end up choosing a different path
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f
(R)
1:T =p(z1:T ). The cost J(p, n) of a policy p is the

expected cost

J (p, n)=

Z

p(f1:T , z1:T )c(p(z1:T ), f
(1)
1:T , . . . , f

(n)
1:T )df1:Tdz1:T

ð2:3Þ

where, for a fixed robot trajectory f
(R)
1:T , the cost function

c(f
(R)
1:T , f

(1)
1:T , . . . , f

(n)
1:T ) models the length of the path plus

penalties for colliding with any of the agents. We use the

shorthand notation

f1:T = (f
(1)
1:T , . . . , f

(n)
1:T ) ð2:4Þ

Unfortunately, solving for the optimal policy p requires

solving a continuous-state Markov decision process

(MDP), where the dimensionality grows linearly with the

number of agents, which is intractable. Intuitively, the

intractability is a consequence of attempting exhaustive

enumeration; in the above expected cost J(p, n), we are

attempting to search over the policy space for all possible

measurement sequences.

This insolubility is fairly common. In the path planning

community, a state-of-the-art, tractable approximation to

this MDP is RHC. RHC proceeds in a manner similar to

MDPs, albeit online: as observations become available,

RHC calculates, based on some cost function, the optimal

non-adaptive action (i.e. fixed path) to take at that time. If

we let J (f
(R)
1:T , njz1:t) be the objective function that calculates

the ‘‘cost’’ of each path f
(R)
1:T based on the observations z1:t,

that is

J (f
(R)
1:T , njz1:t)=

Z

c(f
(R)
1:T , f1:T )p(f1:T jz1:t) df1:T

where f
(R)
1:T is the trajectory of the robot, then RHC finds

f
(R*)(t), where

f(R�)(t)= argmin
f
(R)

1:T

J (f
(R)
1:T , njz1:t) ð2:5Þ

As each new observation zt arrives, for t . t, a new

path f(R*)(t) is calculated and executed until another obser-

vation arrives.

Unfortunately, certain assumptions about the distribution

p(f1:Tjz1:t) cause the minimum value of the objective func-

tion J (f
(R�)
1:T , njz1:t) to increase without bound as the number

of agents n increases. This behavior of the objective func-

tion is what we call the FRP.

2.2. Approaches for solving the FRP

In order to fix the FRP, nearly all state-of-the-art

approaches (see Section 1) focus on individual agent pre-

diction. In particular, Du Toit (2009) anticipates the obser-

vations (effectively assuming that a certain measurement

sequence of the entire trajectory sequence has already

taken place at time t \ T); the approach is motivated by

the assumption that the culprit of the FRP is the uncertainty

growth, as illustrated in Figure 2. The claim is that if you

can control the covariance, then you can keep the minimum

value of J (f
(R)
1:T , njz1:t) low for moderately dense crowds,

and thus solve the FRP (other approaches, which incorpo-

rate more accurate agent modeling, are similar in motiva-

tion, since better dynamic models would reduce predictive

covariance as well). However, as discussed above,

approaches that work at improving the independent agent

prediction or reducing the covariance only solve the FRP

for crowd densities below a certain threshold; importantly,

they cannot be expected to solve the FRP in general, no

matter how favorable the circumstances (even for the case

of perfect knowledge of the future).

This analysis suggests that the planning problem, as

described above, is ill-posed. We thus revisit our probabil-

ity density,

p(f1:T j z1:t) ð2:6Þ

and remark that a crucial element is missing: the agent

motion model is agnostic of the navigating robot. One solu-

tion is thus immediately apparent: include an interaction

between the robots and the agents (in particular, a joint col-

lision avoidance) in order to lower the cost. We additionally

remark that in the crowd experiments catalogued in the

research of Helbing and Molnar (1995) and Helbing et al.

(2001, 2000), the multi-robot coordination theorems of van

den Berg et al. (2008, 2009), and the tracking experiments

of Pellegrini et al. (2009), Pellegrini et al. (2010) and Luber

et al. (2010), all corroborate the argument that autonomous

dynamic agents utilize joint collision avoidance behaviors

for successful crowd navigation. We thus consider methods

to incorporate such an interaction.

We discuss two ways that human–robot interaction (or

human–robot cooperation) may be modeled. One approach

to modeling this interaction would be to use a conditional

density p(f1:T jz1:t, f(R)1:T ), that encodes assumptions on how

the agents react to the robot’s actions, i.e. the idea that all

agents will ‘‘give way’’ to the robot’s trajectory. The prob-

lem with this approach is that it assumes that the robot has

the ability to fully control the crowd. Thus, this approach

would not only create an obnoxious robot, but an overag-

gressive and potentially dangerous one as well. This

method is probably unsuitable for crowded situations.

The other alternative, which we advocate in this paper,

is to model the robot as one of the agents, and subsequently

model a joint distribution describing their interaction:

p(f
(R)
1:T , f1:T jz1:t) ð2:7Þ

This distribution encodes the idea of cooperative planning

(e.g. cooperative collision avoidance) by treating robot and

agent behaviors as equivalent (unlike the conditional den-

sity, where the robot was given priority, or the non-

cooperative density p(f1:Tjz1:t), where the agents were given
priority).
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We point out an important characteristic of this formu-

lation. Although the robot anticipates agent cooperation,

the data ultimately takes precedence. Consider the situa-

tion where an agent does not cooperate with the robot

(perhaps the agent does not see the robot, or perhaps the

agent just does not want to cooperate). As the robot

approaches this agent, it will predict that the agent will

eventually act to cooperatively create space. However, as

the robot moves closer to the agent, the evidence (and,

thus, the prediction) that the agent is not going to coop-

erate will outweigh the prior belief that the agent will

cooperate. Thus, the robot will compensate, maneuvering

around the unyielding agent (we observe this behavior in

Sections 5 and 6).

In addition, since the density p(f
(R)
1:T , f1:T jz1:t) models col-

lision avoidance and optimal path lengths (see Section 3),

planning corresponds to computing

argmax
f
(R)

1:T
, f1:T

p(f
(R)
1:T , f1:T jz1:t) ð2:8Þ

i.e. inferring with what the robot should do given obser-

vations of the other agents (this approach is an example

of ‘‘reducing planning to inference’’, that we discuss in

Section 3.4). This is an important alternative to the tradi-

tional strategy of optimizing an objective function, since

we can now interpret navigation as a density estimation

problem. We thereby inherit a powerful suite of approx-

imation methodologies that are unavailable for tradi-

tional cost-based formulations. In particular, we make

use of importance sampling in Section 3.3, and the cor-

responding convergence results of that method. In

Section 7, we briefly discuss how to improve conver-

gence rates using a variant of Gibbs’ sampling. The

work of Kuderer et al. (2012) explores other novel

methods to approximate the navigation density (that

would be unavailable if traditional cost-based optimiza-

tion methods were used).

Finally, we remark that the formulation p(f
(R)
1:T , f1:T jz1:t)

does not require complete datasets; that is, z1:t can range

from being globally complete (deterministic access to each

agent’s state at each time t0) to complete data outage. As

data reliability decreases, navigation performance will

accordingly degrade, but the method does not require per-

fect information.

3. Interacting Gaussian processes

We begin this section with a description of Gaussian pro-

cesses, and then we derive interacting Gaussian processes

(IGP) for crowd prediction. We then describe how approxi-

mate inference is performed on the IGP density, followed

by a discussion of ‘‘the navigation density’’, or how robotic

navigation in dense human crowds can be interpreted as a

statistic of the IGP density. We conclude with the results of

a simulation experiment.

3.1. Gaussian-process-based prediction

A Gaussian process (Rasmussen and Williams, 2006) is a

distribution over (typically smooth) functions, and thus

well-suited to model wheeled mobile robot trajectories.

Formally, a Gaussian process is a collection of Gaussian

random variables indexed by a set (in our case, the conti-

nuum of time steps [1, T]) that is parameterized uniquely

by a mean function

m : ½1, T � ! R ð3:1Þ
(typically taken as zero without loss of generality) and a

covariance (or kernel) function

k : ½1, T �× ½1, T � ! R ð3:2Þ
We will write

f(i) ; GP(m(i), k(i)) ð3:3Þ
to mean that the random function f(i) : ½1, T � ! R is dis-

tributed as a Gaussian process with mean m(i) and covar-

iance k(i); since we will be generalizing to the case of

multiple dynamic agents i = 1,.n, we introduce the super-

script notation i to indicate a particular agent i. For clarifi-

cation, we draw a comparison: with a Gaussian vector

x;N m,Sð Þ, the matrix element Sl,j encodes the covar-

iance between the elements of the state vector xl and xj.

Likewise, with Gaussian processes, the kernel function

parameterizes the smoothness of the function: recalling that

points t 2 [1, T] act as our index set, we see that f(i)(t) and

f
(i)(t0) are related according to the value of k(i)(t, t0).
Notionally, we believe the true trajectory f(i)� exists (or

will exist, since we have only gathered prior data about this

trajectory; see Section 3.1.2). The Gaussian process

GP(m(i), k(i)) encodes all our prior knowledge about the

function f(i)� . In contrast, for sequential Bayesian estimation,

the prior model is typically derived from first principles

(such as the physics of the moving object), and encoded as

the distribution p(xt+ 1jxt). With Gaussian processes, the

prior model GP(m(i), k(i)) is learned from training data. The

dearth of high-fidelity first principles models of human

behavior, combined with the abundance of example human

trajectory data, make Gaussian processes especially appeal-

ing for our application.

3.1.1. Posterior Gaussian process. For simplicity of nota-

tion, we formalize our Gaussian process trajectory model

for one-dimensional locations only. Multiple dimensions

are easily incorporated by modeling each dimension as a

separate Gaussian process.

Suppose that we collect the set of noisy measurements

z
(i)
1:t= (z

(i)
1
, . . . , z

(i)
t ) of the trajectory, where

z
(i)
t0 = f(i)(t0)+ e, e;N (0,s2

noise) ð3:4Þ

Then we can calculate the posterior Gaussian process

p(f(i)jz(i)
1:t)=GP(m

(i)
t , k

(i)
t ), where
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m
(i)
t (t

0)=S
T
1:t, t0(S1:t, 1:t+s2

noiseI)
�1z

(i)
1:t ð3:5Þ

k
(i)
t (t1, t2)= k(i)(t1, t2)

� S
T
1:t, t1

(S1:t, 1:t+s2

noiseI)
�1
S1:t, t2

ð3:6Þ

Hereby, S1:t,t0 = [k(i)(1, t0), k(i)(2, t0),.,k(i)(t, t0)], and

S1:t,1:t is the matrix such that the (l, j) entry is Sl,j = k(i)

(l, j) and the indices (l, j) take values from 1: t. The

quantity s2

noise is the measurement noise (which is assumed

to be Gaussian, and as shown in Section 3.1.3, can be

learned from training data). Since the entire trajectory

f(i) : ½1, T � ! R is being modeled, information about the

goal of the agent (such as an eating station in a cafeteria)

can be treated as a measurement z
(i)
T . The information z

(i)
T

constrains the predictive uncertainty along the entirety of

the trajectory f(i) (not only at time T).

3.1.2. Training the Gaussian process. The kernel function

k(i) is the crucial ingredient in a Gaussian process model,

since it encodes ‘‘how’’ the underlying function behaves: in

our case, how a dynamic agent moves (e.g. how smoothly,

how linearly, length scales of behavior modes, etc.). For a

kernel function to be valid it must first be positive semide-

finite. That is, for all sets A that take values in the indexing

set (for our case, the indexing set is the closed continuum

[1, T]), SA,A must be positive definite. A class of useful

kernel functions are known and are discussed in detail by

Rasmussen and Williams (2006). These individual kernels

can be combined to make new kernels via summation and

multiplication.

However, even with this set of predefined kernel func-

tions and rules for combining them, choices still have to be

made. What combination of discrete kernel functions

should be used for a particular application? And once we

decide on the kernel functions, how should the kernel

hyperparameters be chosen?

To answer these questions, we begin by assuming that

we are presented with a training set of input–output pairs.

For our pedestrian dynamics models, the inputs are the

times t0 = 1, 2,., t and the outputs are the trajectory mea-

surements z
(i)
1:t. Using this training data we can optimize

over both specific kernel functions as well as the hyper-

parameters of those particular kernel functions. In addition,

we describe how a priori information can be leveraged to

inform our choice of kernel function.

3.1.3. Gaussian process kernels as pedestrian dynamics

models. We describe our particular choice of kernel func-

tion in this section (up to the hyperparameters, which are

trained using the methods outlined above). Because of the

nature of our application (humans walking through a cafe-

teria), and the way that we modeled portions of agent tra-

jectories (see Section 3.2.2), we had a priori insight about

which kernel functions were appropriate. In particular, we

chose to model pedestrian dynamics as the summation of a

linear kernel (the nominal movement mode of humans

between waypoints is linear)

klinear(t, t
0)= t � t0+ 1

g2

linear

ð3:7Þ

a Matern kernel (it captures mild curving in the trajectory,

common to pedestrian dynamics)

kMatern(t, t
0)= sMatern � 1+

ffiffiffi

5
p

(t � t0)

‘Matern

+
5(t � t0)2

3‘2Matern

� �

exp �
ffiffiffi

5
p

(t � t0)

‘Matern

� �

ð3:8Þ

and a noise kernel (to account for sensor measurement

noise)

knoise(t, t
0)=s2

noised(t, t
0) ð3:9Þ

where d(t, t0) = 1 if t = t0 and is zero otherwise. Thus, our

final kernel was

k(i)(t, t0)= sMatern � 1+

ffiffiffi

5
p

(t � t0)

‘Matern

+
5(t � t0)2

3‘2Matern

� �

� exp �
ffiffiffi

5
p

(t � t0)

‘Matern

� �

+t � t0+ 1

g2

linear

+s2

noised(t, t
0)

ð3:10Þ

(Figure 6 presents an actual human trajectory exhibiting

each of these behavior modes: we observe linear and curvy

motion, and noise in the measurements). Thus, four hyper-

parameters had to be learned: sMatern, ‘Matern, glinear and

snoise. We used the methods detailed in Section 3.1.2 to

train these parameters from sample trajectories.

We point out that, in the absence of a priori information

about what kernel function should be used, the methods of

Fig. 6. An example trajectory of a cafeteria patron. The

trajectory was hand labeled and segmented; blue dots are part of

the nominal trajectory (modeled with the kernel function

k = klinear + kmatern + knoise, as in Section 3.1.3), green dots

are goals, and red represents interaction between agents (see

Section 3).
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Section 3.1.2 can be used to compare different candidate

kernel functions (e.g. squared exponential versus linear),

since the values of the log marginal likelihoods can be com-

pared across different kernel functions. In addition, compar-

ing marginal likelihood values can be used to guard against

local minima when optimizing a fixed kernel function: for

instance, one might randomly restart the hyperparameter

optimization multiple times, and compare the marginal like-

lihood for the specific hyperparameter values found for

each run, and then choose the most likely hyperparameter

set.

3.2. Crowd prediction modeling with IGP

In this section we introduce IGP. Although we ultimately

interpret this density for robot navigation, IGP is also a

crowd prediction model. We begin by deriving individual

models of goal-driven human motion using mixtures of

Gaussian processes. We then couple these individual mod-

els with the interaction potential.

We begin by assuming that the trajectory prediction

region has a fixed number of goals G (corresponding

roughly to the number of eating stations in the cafeteria):

g= (g
1
, g

2
, . . . , gG)

For the purposes of this analysis, we restrict the distribu-

tions governing each goal random variable to be Gaussian.

We also restrict our goals gk (k = 1,., G) to lie in the plane

R
2.

In order to learn the distribution of the goals g, we

gridded the cafeteria floor, collected frequency data on

pedestrian linger time within each cell, and then used

Gaussian mixture model clustering (Bishop, 2006) to seg-

ment the pedestrian track data into ‘‘hot spots’’. In particu-

lar, we learned p(g)=
PG

k= 1
bkN (mgk

,Sgk
), where bk is

component weight, mgk is the goal location mean, Sgk is

goal uncertainty, and N ( � ) is a normal density. The peri-

meter ovals in Figure 8 illustrate this idea. We note that the

availability of such data before runtime is a restrictive

assumption; nevertheless, such situations are ubiquitous

enough to merit consideration.

Given p(g), we derive, from experimental data, the tran-

sition probability p(ga!gb) for all a, b 2 {1, 2,.,G}. For

transitions between two goals ga!gb, we learn p(Ta!b), the

density governing the duration random variable Ta!b.

Finally, we introduce a waypoint sequence

gm= (gm1
! gm2

! � � � ! gmF
), composed of waypoints

gmk with mk 2 {1, 2., G}, for locations indexed by m1,

m2,., mF where F 2 N, with associated way point

durations �Tm= fTm0!m1
, Tm1!m2

, � � � , TmF�1!mF
g where

Tm0!m1 is the time to the first goal.

3.2.1. Generative process for a sequence of waypoints. We

describe a generative process for a waypoint sequence that

we will use as a prior. Beginning with g, we draw indices

from the set {1, 2,.G}. The first index is drawn uniformly

at random; p(ga!gb) determines the following indices.

Simultaneously, we draw transition times from p(Ta!b). An

infinite series of waypoints and transition times is

generated.

We formulate agent i’s prediction model by marginaliz-

ing over waypoint sequences gm and durations �Tm:

p(f(i)jz(i)
1:t)=

X

gm

Z

�Tm

p(f(i), gm,
�Tmjz1:t)

� �

Using the chain rule, we have

p(f(i)jz(i)
1:t)=

X

gm

Z

�Tm

p(f(i)jz1:t, gm, �Tm)p(gm, �Tmjz1:t)

ð3:11Þ

Note that for each goal sequence gm, we potentially have a

different number of waypoints gmk.

3.2.2. Gaussian process mixtures for modeling multiple

goal trajectories. In practice there may be uncertainty

between multiple, discrete goals that an agent could pursue

(Figure 6); similarly, it is exceedingly rare to know in

advance the time it takes to travel between these waypoints.

For these reasons, we introduce a novel probabilistic model

over waypoints and the transition time between these way-

points. The motion model is then a mixture of Gaussian

processes interpolating between these waypoints.

3.2.3. Interacting Gaussian processes. Our key modeling

idea is to capture the dynamic interactions by introducing

dependencies between the Gaussian processes. We begin

with the independent Gaussian process models p(f(R)jz(R)
1:t ),

p(f(1)jz(1)
1:t ), . . . , p(f

(n)jz(n)
1:t ) and couple them by multiplying

in an interaction potential c(f(R), f). Thus,

p(f(R), fjz1:t)=
1

Z
c(f(R), f)

Y

n

i=R

p(f(i)jz(i)
1:t) ð3:12Þ

The product
Qn

i=R is meant to indicate that the robot is

included in the calculation. In our experiments, we chose

the interaction potential as

c(f(R), f)=
Y

n

i=R

Y

n

j= i+ 1

Y

T

t= t

(1�a exp (� 1

2h2
jf(i)(t)� f (j)(t)j))

ð3:13Þ

where jf(i)(t) 2 f (j)(t)j is the Euclidean distance at time t

between agent i and agent j. The rationale behind our

choice is that any specific instantiation of paths

f
(R)
l , f

(1)
l , f

(2)
l , . . . , f

(n)
l becomes very unlikely if, at any time

t, any two agents i and j are too close. Furthermore, the

parameter h controls the ‘‘safety margin’’ of the repulsion,

and a 2 [0, 1] the strength of the repulsion. The parameter

h was chosen to be the closest approach of two navigating
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pedestrians (in both simulation (Section 3.5) and in the din-

ing hall experiments (Sections 5 and 6)), while a was cho-

sen to be in the range [0.90.99].

3.2.4. Approximations introduced by IGP. We recall the

argument of Section 2.2, in which the model

p(f(R), f(1), . . . , f(n)jz1:t)

was advocated as the solution to the FRP. We note that

p(f(R), f(1), . . . , f(n)jz1:t)=
p(f(R)jf(1), . . . , f(n), z1:t)p(f(1)jf(2), . . . , f(n), z1:t)
× p(f(2)jf(3), . . . , f(n), z1:t) � � � p(f(n�1)jf(n), z1:t)
× p(f(n)jz1:t)

ð3:14Þ

while the IGP distribution models the full joint as

p(f(R), fjz1:t)}c(f(R), f)p(f(R)jz(R)1:t )p(f
(1)jz(1)

1:t )

× p(f(n�1)jz(n�1)
1:t )p(f(n)jz(n)

1:t )

We point out that while each distribution over f(i) in

Equation (3.14) is a conditional distribution, IGP assumes

that we can model each distribution over f(i) independently

of the other agents f j6¼i, and then capture the interaction

via c(f(R), f). This is a strong modeling assumption; how-

ever, we emphasize that our intention with IGP is to cap-

ture the notion of ‘‘cooperative collision avoidance’’

(described in Section 2.2 and illustrated in Figure 7). Given

the extensive experimental results of Sections 5 and 6, and

the simulation results of Section 3.5, we believe that this

modeling assumption is justified.

3.2.5. Multi-goal interacting Gaussian processes. Importantly,

we point out that if we expand the IGP density to take goal and

waypoint duration uncertainty into account by using the motion

mixture model approximation, then we have multi-goal inter-

acting Gaussian processes (mgIGP):

p(f(R), fjz1:t)=
1

Z
c(f(R), f)

Y

n

i= 1

p(f(i)jz(i)
1:t)

=
1

Z
c(f(R), f)

Y

n

i= 1

X

gm

Z

�Tm

p(f(i), gm,
�Tmjz(i)1:t)

0

@

1

A

ð3:15Þ

3.3. Approximate inference for IGP. For Gaussian pro-

cesses, exact and efficient inference is possible. However,

the introduction of the interaction potential makes the pos-

terior p(f(R),fjz1:t) non-Gaussian and thus approximate

inference is required. Standard approaches to approximate

inference in models derived from Gaussian processes

include the Laplace approximation (Bishop, 2006) and

expectation propagation (Minka, 2001). These methods

approximate the non-Gaussian posterior by a Gaussian

which has the same mode, or which minimizes the

Kullback–Leibler divergence, respectively. These methods

are most effective if the posterior is unimodal (and can be

well approximated by a Gaussian). With IGP, however, the

posterior is expected to be multimodal. In particular, for

two agents moving towards each other in a straight line,

evasion in either direction is equally likely. This is akin to

people walking towards each other, flipping from one

‘‘mode’’ to the other while attempting to not collide.

To cope with the multimodality, we use an approximate

inference technique based on importance sampling, a well-

understood approximate inference method for Bayesian sta-

tistics (Arulampalam et al., 2002).

In this section, we first describe importance sampling

for the special case of IGP that have a single known goal

for each agent. We then generalize the importance sam-

pling procedure for individual agent models that follow

Equation (3.11), with multiple goals and unknown times to

goal. That is, we employ two different sampling steps: first

we compute (online) a sample-based approximation of each

agent’s mixture process (Section 3.3.2)

p(f(i)jz(i)
1:t)=

X

gm

Z

�Tm

p(f(i), gm,
�Tmjz(i)1:t)

� �

ð3:16Þ

and then we compute a sample based approximation of the

full mgIGP posterior p(f(R),fjz1:t) in Section 3.3.3.

3.3.1. Sample-based approximation of IGP. We implement

importance sampling for approximate inference of the sin-

gle known goal IGP density as follows.

� For all agents i, sample independent trajectories of

agent i from the prior (f(i))l;p(f(i)jz(i)
1:t). A joint sample

is the collection of n + 1 such agent samples: (f(R), f)l
(see the left-hand side of Figure 7 for an illustration of

this idea). Since we are approximating the density

p(f(R), fjz1:t), the joint sample is our quantity of interest.
� Evaluate the weight of each sample (f(R), f)l using the

rules of importance sampling:

hl=
p((f(R), f)l jz1:t)

Qn

i=R
p((f(i))l jz(i)1:t)

ð3:17Þ

Fig. 7. First samples f
(i)
l are drawn for each agent i. In this

illustration, three agents are under consideration; we represent one

joint sample of the three agents with three green lines, and another

joint sample with three blue lines. The samples are then weighted

and combined to produce an estimate of the IGP density.
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=
c((f(R), f)l)

Qn
j=R p((f

(j))ljz(j)1:t)
Qn

i=R p((f
(i))ljz(i)1:t)

ð3:18Þ

=c((f(R), f)l) ð3:19Þ
� The posterior is then approximated by the empirical

sampling distribution,

p(f(R), fjz1:t)’
1

PN
s= 1

hs

X

N

l= 1

hld(½f(R), f�l � ½f(R), f�)
ð3:20Þ

where d([f(R), f]l 2 [f(R), f]) is the delta function centered

at sample [f(R), f]l. The right-hand side of Figure 7 illus-

trates this reconstruction.

As we let the number N of samples grow, we approximate

p(f(R), fjz1:t) to arbitrary accuracy. Note that all samples are

independent of one another. Thus, the technique can be

parallelized.

3.3.2. Sample-based approximation of Gaussian process

mixtures. Unfortunately, the expansion in Equation (3.11)

is intractable, so we employ a sample-based approximation

for the distribution over goal waypoints and durations

for each agent p(gm,
�Tmjz(i)1:t)’

PNp

k= 1
w
(i)
k d(½gm, �Tm�k

�½gm, �Tm�), where we utilize the empirically derived den-

sity (gm,
�Tm)k(gm,

�Tm). Substituting
PNp

k= 1
w
(i)
k d½(gm, �Tm)k�

(gm,
�Tm)� into Equation (3.11), we generate the

approximation

p(f(i)jz(i)
1:t)=

X

gm

Z

�Tm

p(f(i)jz(i)
1:t, gm,

�Tm)

� (gm, �Tmjz(i)1:t)

=

X

gm

Z

�Tm

p(f(i)jz(i)
1:t, gm,

�Tm)

�
X

Np

k= 1

w
(i)
k d(½gm, �Tm�k � ½gm, �Tm�)

’

X

Np

k= 1

w
(i)
k p(f

(i)jz(i)
1:t, gk ,

�Tk)

The samples collapse the infinite sum of integrals to one

finite sum. This finite component mixture process is illu-

strated in Figure 8.

In order to generate particles (gk ,
�Tk), we first draw a

sequence of waypoints gk and then the corresponding

sequence of waypoint durations Tka!kb. To draw the way-

points, we begin by first sampling gk1 uniformly from the

G goals. We then draw Tk0 !k1 according to a distribution

with mean given by the average time to travel from the cur-

rent point to gk1. Then, gk2 is drawn according to the

transition probabilities p(gk1!gb), and Tk1!k2 is conse-

quently sampled. We continue until the sum of the duration

waypoints reaches or exceeds Tmax, and then drop the most

recently sampled goal. In addition, we evaluate the individ-

ual mixture component weights according to

w
(i)
k =

p((gm,
�Tm)k jz(i)1:t)

p(gm,
�Tm)

}p(z
(i)
1:tj(gm, �Tm)k) ð3:23Þ

that is, we evaluate the likelihood of the observed data z
(i)
1:t

given a specific (gm, �Tm)k .

3.3.3. Sample-based approximation of mgIGP. We expand

the IGP density to take goal and waypoint duration uncer-

tainty into account by using the motion mixture model

approximation:

p(f(R), fjz1:t)}c(f(R), f)
Y

n

i= 1

p(f(i)jz(i)
1:t) ð3:24Þ

’c(f(R), f)
Y

n

i= 1

(
X

Np

k= 1

w
(i)
k p(f(i)jz(i)

1:t, gk ,
�Tk)) ð3:25Þ

We wish to approximate p(f(R),fjz1:t) using samples. To

do this, we extend the method outlined in Section 3.3.1

by adding a step to account for the Gaussian process

mixture components; that is, to draw a joint sample (f(R),

f)l from the mgIGP density we first draw agent i’s

mixture index z from the discrete distribution fw(i)
1
,

w
(i)
2
, . . . ,w

(i)
N g. Given the mixture index z, we draw

(f(i))l ; p(f(i)jz(i)
1:t, gz,

�Tz). We iterate through all N + 1

agents (including the robot), and then arrive at the joint

sample weight hl =c ((f(R), f)l). With this collection of N

weights, we arrive at the approximation

p(f(R), fjz1:t)’
1

PN
s= 1

hs

X

N

l= 1

hld(½f(R), f�l � ½f(R), f�) ð3:26Þ

Fig. 8. A patron moves through the cafeteria (solid green circle).

Trailing yellow dots are history, and tubes are Gaussian process

mixture components. Gaussian process mixture weights are in

the upper left corner.
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3.4. Reducing planning to inference

In this section, we explain how the IGP (and mgIGP) den-

sity p(f(R),fjz1:t) can be interpreted as a ‘‘navigation den-

sity’’; that is, in our model, navigation can be understood

as a statistic of prediction. We also explain how a noncoo-

perative planner can be implemented in this manner.

3.4.1. Interacting Gaussian processes for navigation. Our

model p(f(R), fjz1:t) immediately suggests a natural way to

perform navigation: at time t, find the maximum a-poster-

iori (MAP) assignment for the posterior

(f(R), f)�= argmax
f(R), f

p(f(R), fjz1:t) ð3:27Þ

and then take f(R)*(t + 1) as the next action in the path

(where t + 1 means the next step of the estimation). At

time t + 1, we receive a new observation of the agents

and the robot, update the posterior to p(f(R), fjz1:t+ 1), find

the MAP assignment again and choose f
(R)*(t + 2) as the

next step in the path. We repeat this process until the robot

has arrived at its destination.

We point out that this approach is a special case of the

duality between stochastic optimal control and approximate

inference discovered by Toussaint (2009) and fully forma-

lized by Rawlik et al. (2012).

3.4.2. Non-cooperative planner. We can also leverage the

Gaussian process prediction models to do noncooperative

planning. That is, we can plan through a crowd that we do

not expect to respond to the robot: the robot merely maxi-

mizes the distance between itself and the expected indepen-

dent trajectories of each pedestrian while minimizing the

length of the path to the goal. In Section 5, we test this non-

cooperative planner in dense human crowds.

A slight modification of the importance sampling tech-

nique detailed in Section 3.3.1 allows us to do this: for

agent i, instead of drawing samples such that

(f(i))l;p(f(i)jz(i)
1:t)=GP(m

(i)
t , k

(i)
t ), we only draw one sample,

the most probable sample, according to (f(i))l=m
(i)
t . For

the robot, we continue to draw samples according to

(f(R))l;p(f(R)jz(R)
1:t )=GP(m

(R)
t , k

(R)
t ). Each joint sample (f(R),

f)l is then weighted according to the potential function

c((f(R), f)l), and the sample with the highest weight is cho-

sen as the navigation command for time t. Once we receive

new data zt+ 1, the process is repeated, and the navigation

command for time t + 1 is found. More generally, this

procedure is just the sampling-based approximation of

(f(R))�= argmax
f(R)

c(f(R),m
(1)
t , . . . ,m

(n)
t )p(f(R)jz(R)

1:t ) ð3:28Þ

In addition, if we wish to use the Gaussian process mix-

ture models

p(f(i)jz(i)
1:t) ’

X

Np

k= 1

w
(i)
k p(f

(i)jz(i)
1:t, gk ,

�Tk) ð3:29Þ

then we follow the same procedure: for each agent i, we

choose the most probable agent trajectory and then sample

the robot path with highest potential function value. The

most probable trajectory for agent i is the mean of the most

likely mixture component. Thus, we find the largest mix-

ture weight w
(i)
k , and then choose (f(i))l=w

(i, k)
t , where we

add the additional superscript k in m
(i, k)
t to indicate mixture

component k. By optimizing the robot’s trajectory against the

most probable agent predictions, we produce an algorithm

that is highly similar to the planners described by Du Toit

(2009), Aoude et al. (2011b,a) and Joseph et al. (2011).

We point out that other non-cooperative planners were

available. For instance, we could have minimized the

expected probability of collision using Kalman filter pre-

diction or Gaussian process mixture model prediction.

However, both of these approaches are the RHC implemen-

tation of f�t = argmin f(R)(f(R)jz1:t) . As shown in Section

2, both these approaches have larger objective function

costs than the planner of Equation (3.28), meaning that

average performance in dense crowds is guaranteed to be

inferior. Accordingly, we chose to experiment with the

planner of Equation (3.28).

3.5. Simulation experiments

3.5.1. Experimental setup: Crowded pedestrian

data. Before we instrumented Caltech’s Chandler dining

hall, we first evaluated the IGP approach on a dataset of

over 8 minutes of video recorded from above a doorway of

a university building at ETH Zurich (see Pellegrini et al.

(2009) for more details of the video collection process and

how to access the data). This dataset exhibits high crowd

density, i.e. people frequently pass by one another fairly

closely. As an example, see Figure 9 for one frame of the

data sequence in which the crowds are dense. In this frame,

a number of pedestrians are heading down towards the

doorway (cyan arrows) while a number of other people

(red arrows) head into and through the crowd.

We tested the IGP algorithm on variations of just these

types of scenarios (one crowd or person intersecting

another crowd); our task was to utilize the navigation den-

sity in combination with the particle filtering inference

method to do navigation through these crowds.

Given the type of data that we experimented with, we

now explain our performance metric. For navigation, we

are interested in two quantities: path length (the Euclidean

path distance in R2 taken by the robot from start to finish),

and safety margin (the nearest distance that the robot ever

came to another pedestrian during a run). We hope to mini-

mize the path length while maximizing the safety margin.

We measure both of these quantities in pixel values,

because transforming back to ‘‘real’’ distances (meters, for

instance) would be too inaccurate. Importantly, we have

baselines for the two metrics in pixels. For path length, we

tended to see pedestrians take paths which ranged from

about 350–390 pixels. For the safety margin, we often
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observed pedestrians within 11–12 pixels of one another,

although never any closer. Based on this empirical

observation of human behavior, we chose any separation

distance above 13 pixels to be ‘‘safe’’. Furthermore, we can

roughly estimate 13 pixels to be about the width of a per-

son from shoulder to shoulder. Based on this, we chose the

value of h in our potential function c to be 13 pixels.

As a validation of the methods developed above, we

tested against a dataset of human crowds, rather than

simulated dynamic agents. In order to test joint collision

avoidance, we gave the IGP planner and the non-

cooperative planner the same start and goal states as a

human navigating through a crowd, and ran the algo-

rithms simultaneously with the human. In other words,

the person created space, and we tested the algorithms to

see if the IGP or non-cooperative planner would antici-

pate that space. The fact that the IGP took nearly identi-

cal paths to the humans and the non-cooperative planner

chose highly conservative paths justified, to some extent,

our approach. Furthermore, examinations of planned

paths at early stages in the experiment showed the IGP

expecting the opening in the crowd, while the non-

cooperative planner expected no such event.

3.5.2 Navigation performance. In Figure 10, we present

the results of the various algorithms over 10 experiments.

Each box surrounding the colored dots represents the stan-

dard error bars over the 10 experiments. The IGP (green

dot) had a mean safety of around 22 pixels, with standard

Fig. 9. Crowded still from the ETH data sequence. Near the

center of the group is a subgroup of about 6 people moving

upwards (red arrows) through a crowd of about 10 people

moving down (cyan arrows).

Fig. 10. Path length versus safety over 10 runs. IGP outperforms pedestrians in both safety and path length, while the non-

cooperative planner (GP) is inappropriate for this application.
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error ranging over 2 pixels, and mean path length of around

362, with standard error around 12.

Figure 10 shows the IGP outperforming pedestrians in

both safety and path length by a fairly large margin.

Furthermore, the non-cooperative planner is, as theoreti-

cally demonstrated earlier, inappropriate for very dense

crowds: the non-cooperative planner almost always takes

evasive maneuvers (long path length) in an effort to avoid

the crowds (large safety margin).

True validation of the IGP algorithm demanded ‘‘live’’

interaction, however. That is, in order to test the concept of

joint collision avoidance, a robot must actually interact with

human beings. This is the motivation for the content of

Sections 5 and 6.

4. Experimental setup

Our experiments were conducted in a university cafeteria.

During typical lunch hours, the number of patrons ranged

between 5 and 30 individuals. The robot’s task was to travel

through natural, lunchtime crowds from point A = (0, 0) to

point B = (6, 0) (in meters). This brought the robot through

the center of the scene in Figure 12. Cafeteria patrons were

unscripted, although doorway signs warned of the presence

of filming and a robot.

4.1. Robotic workspace

Figure 12 provides an image of the actual robot workspace

used in our experiments. Due to the available coverage of

our pedestrian tracking system (Figures 13 and 14), robot

motions were limited to a 20 m2 area between the buffet

station, the pizza counter, and the soda fountain.

4.2. Pedestrian tracking system

Our pedestrian tracking system used three Point Grey

Bumblebee2 stereo cameras mounted 3.5 m overhead

(Figure 14b). The Point Grey Censys3DTM software
1

pro-

vided pedestrian tracks at an update rate of approximately

20 Hz. However, only the five most ‘‘salient’’ tracks (those

most likely to collide with the robot; see Trautman (2013)

and Section 4.5) were provided to the navigation algorithm.

Figure 13 is a screenshot of the 3D tracker used in our

experiments. The bottom pane of the screenshot shows

three separate overhead images from each of the stereo

camera pairs (only left camera image is displayed). The top

pane is our GUI displaying all the Censys3DTM tracks in

red with magenta circles used to indicate which tracks are

currently being reasoned about by the robot. The green

path indicates the robot’s current planned path. Underneath

the tracks is an image projection from the stereo cameras

to provide scene context.

Fig. 11. Side diagram of the observation space.

Fig. 12. Same perspective as Figure 11, but for an actual

cafeteria.

Fig. 13. Robot (wearing sun hat, bottom middle pane)

navigating through densities nearing 1 person/m2. Green dots are

robot’s present plan, red dots are cafeteria patrons, and magenta

circles are ‘‘important’’ patrons (Section 4.5). See Section 6 for

movies of the robot in action.
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4.3. Salient human factors engineering

To build a salient, but not conspicuous, robot we began

with a form factor that indicated to human observers that

the robot was both sensing and comprehending its environ-

ment (see Figure 15a): a camera mounted at 3 feet, with a

laptop set atop the robot. Unfortunately, this form factor

was nearly invisible to cafeteria patrons, especially in

crowds of density greater than 0.3 people/m2. We thus

filled out the volume, so that the robot had roughly the

shape of a human torso; this was accomplished by mount-

ing three camera arms, such that from any angle at least

two arms were discernible. In addition, we mounted an alu-

minum fixture ‘‘head’’ with a computer tablet ‘‘face’’ at

around 4 feet, and adorned the robot’s head with a sun hat.

Patrons responded positively.

4.4. Testing conditions and baseline navigation

algorithms

In our cafeteria experiments, a testing operator was

required to stay within a few meters of the robot during

every run for emergency stops and for pedestrian safety.

The close proximity of the operator to the robot likely

influenced the crowd, and probably biased the perfor-

mance of the robot, for any given run. In order to buttress

against any algorithm gaining an unfair advantage, every

effort was made to reproduce identical testing conditions

for each algorithm and for every run. In addition, we col-

lected as many runs per algorithm as was possible:

approximately 3 months of testing, with 488 runs col-

lected, and around 800 attempted.

We emphasize that although an overhead tracker was

used, the data provided to the navigation algorithms was

local (five most salient tracks; see Section 4.5).

4.5. ‘‘Important’’ cafeteria patrons

In our cafeteria experiments, we computed the five most

‘‘important’’ patrons to perform prediction over. This was

done so that the mgIGP planner could operate fast enough

(if, in a crowd of 30 people, the planner were to do predic-

tion over each individual, it would replan far too slowly).

Performing inference over five people allowed the planner

to operate at around 10 Hz, the slowest possible replanning

time for safe operation. The five most important patrons

were taken to be the five patrons with the highest probabil-

ity of collision with the robot; following the derivation of

Du Toit and Burdick (2011) we first define the collision

condition between agent i and the robot R to be k(f(R), f(i))

6¼ � where k measures the overlap (or collision) in R2

between two agents. The probability of collision is thus

P(k)=

Z

f(R)

Z

f(i)
Ik(f

(R), f(i))p(f(R), f(i)) df(R) df(i)

where Ik is the indicator function for whether or not a colli-

sion has occurred between f
(R) and f

(i). However, as derived

by Du Toit and Burdick (2011), we can approximate the

probability of collision between the robot and an agent as

P(k)’Ae × (2p)�D=2jSR+Sij�1=2

� exp � 1

2
mR � mið Þ> SR+Sið Þ�1

mR � mið Þ
� �

ð4:1Þ

Fig. 14. (a) Stereo camera used by our pedestrian tracker and (b)

three stereo cameras, configured to maximize coverage and track

quality.

Fig. 15. (a) Old form factor and (b) new form factor.

348 The International Journal of Robotics Research 34(3)

 at CALIFORNIA INST OF TECHNOLOGY on March 16, 2015ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


We use Equation (4.1) to determine the patrons most

likely to collide with the robot.

4.6. Tested and untested navigation algorithms

We present the implementation details of the navigation

algorithms developed in this article: mgIGP and IGP. We

also present the implementation details of the baseline algo-

rithms that mgIGP and IGP were tested against.

4.6.1. Interacting Gaussian processes. We often refer to

this algorithm as the IGP planner. Implementation details

of this algorithm are presented in Section 3.3.1 and in

Trautman and Krause (2010) and Trautman et al. (2013).

Simulation studies for this algorithm were presented in

Section 3.5. As argued in Section 1, IGP is the first algo-

rithm that explicitly models human cooperative collision

avoidance for navigation in dense human crowds.

4.6.2. Multi-goal interacting Gaussian processes. Using

the goal model p(g), we implement the mgIGP as described

in Sections 3.3.2, 3.3.3 and 3.4. This approach augments

IGP with a Gaussian process mixture model for individual

trajectory prediction.

In dense crowds, new navigation plans must be gener-

ated at around 10 Hz. To accomplish this, the navigation

algorithm only performed prediction over the five most

‘‘important’’ people: to the robot, the people with whom it

was most likely to collide were deemed the most important.

In addition, the mgIGP algorithm only computed the top

three Gaussian process mixture components. As shown in

Section 3.3.2, the mixture weight can be computed without

full knowledge of the mixture component, saving substan-

tial computational resources. The work of Trautman et al.

(2013) explains this in detail.

4.6.3. Non-cooperative Gaussian processes. This planner

proceeds in the following manner. First, given crowd data

from time t0 = 1,., t, the algorithm predicts individual tra-

jectories using the Gaussian process mixture models. This

prediction model is similar to the state-of-the-art crowd pre-

diction models of Pellegrini et al. (2009), Pellegrini et al.

(2010) and Luber et al. (2010). In addition, our mixture

model is nearly identical to the state-of-the-art prediction

models used for navigation by Aoude et al. (2011b), Aoude

et al. (2011a) and Joseph et al. (2011). We also point out

that when pedestrian track data indicates linear movement,

the Gaussian process mixture model predicts linear move-

ment. Linear prediction models are common to many of the

navigation algorithms that we did not test.

Second, our non-cooperative planner uses importance

sampling to produce a navigation command at time t + 1

that (approximately, importance sampling is still vulnerable

to finding local minima) minimizes the time to goal while

maximizing safety. These two steps are iterated in a RHC

manner. This sampling based approximation procedure is

very similar to the rapidly exploring random trees naviga-

tion method implemented by Aoude et al. (2011b) and

Aoude et al. (2011a). The presence of Gaussian process

mixture models in both approaches, and the absence of

cooperation modeling in both approaches, suggests a high

degree of similarity between the two planning methods.

Furthermore, optimizing over the most probable trajectories

(rather than over distributions) is similar to the state of the

art crowd navigation algorithm of Du Toit (2009).

4.6.4. Reactive navigation. This planner moves forward in

a straight line along the x -axis, replanning its velocity pro-

file each time step Dt’ 0.1s (since the overhead tracking

algorithm runs at about 10 Hz, any planner in the cafeteria

is limited by this constraint) so that it continues moving at

the maximal speed while avoiding collision. This is accom-

plished in four steps.

First, the agents in the crowd are predicted forward in

time approximately 0.5 s using the Gaussian process that is

not conditioned on any goals (0.5 s is about how long it

takes the robot to come to a complete stop from maximum

velocity). Second, six potential robot trajectory velocity

profiles are computed (using Gaussian processes that have

been conditioned on the robot’s goal) along the x-axis. The

velocity profiles range from 0 to 0.3 m/s (0.3 m/s was

deemed the maximum safe velocity of the robot in dense

crowds), discretized in increments of 0.05 m/s. Third, each

velocity profile is evaluated for potential collisions using

Equation (4.1); those velocity profiles with a probability of

collision above 0.3 are deemed unsafe, while those velocity

profiles with a collision probability below 0.3 are consid-

ered safe (if no velocity profiles are safe, then the 0 m/s

profile is chosen). Fourth, of the safe profiles, the one with

the highest velocity is chosen (to maximize efficiency and

safety simultaneously). This approach is motivated by the

‘‘dynamic window approach’’ of Fox et al. (1997).

4.6.5. Human teleoperation. Human teleoperation was

conducted at the discretion of the teleoperator, so much as

was possible: we allowed the operator to maintain as much

line of sight as the teleoperator considered necessary (i.e.

safety was the priority). Occasionally, this meant that some

operators followed the robot (some operators were more

confident than others, and some operators were more con-

fident under certain conditions).

In all, 6 operators teleoperated the robot, for a total of

85 runs. The data produced was low variance (as would be

expected), and served as an equitable ‘‘upper bound’’ of

dense crowd navigation performance: at all densities, the

performance of the human teleoperator exceeded that of

the autonomous navigation algorithm.

4.6.6. Untested navigation algorithms. Unfortunately, not

all dynamic navigation algorithms could be tested.
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However, we made every effort to capture the essential

characteristics of existing navigation algorithms with the

algorithms we did test. In Section 5.4 of Trautman (2013),

an overview of untested navigation approaches is provided,

along with an explanation for why our test algorithms cap-

ture the essential characteristics of those algorithms.

We do call attention to the methods of Kuderer et al.

(2012), Kretzschmar et al. (2013) and Kuderer et al. (2013),

which leverage the method of maximum entropy (maxEnt)

IRL. The advantage to this approach is that one can learn

the feature vectors associated with human crowd naviga-

tion; for instance, the authors postulate collision avoidance,

time to goal, velocity, and acceleration feature vectors, and

then train the features using laboratory data on human navi-

gation interactions. While this method is a compelling alter-

native to mgIGP, it is unclear how the approach can be

scaled to the crowd densities and size encountered in the

cafeteria experiments detailed in this paper. In particular, it

remains unclear how one would capture enough data to ade-

quately satisfy the training needs of maxEnt IRL.

Our approach, although arguably less expressive than

approaches based on maxEnt IRL, leveraged prior knowl-

edge to reduce the needed training data (in particular, only

two parameters were needed for the interaction function,

the Gaussian processes only required individual trajectories

for training, and the goals were trained using histograms of

stopping points). This allowed us to deploy our method in

more dynamically complex environments (we point out that

the maxEnt IRL approach has only been applied to crowds

of four individuals, in spaces nearly as large as the

cafeteria).

5. Experimental results: Quantitative studies

Seifer et al. (2007) presented a lengthy catalogue of metrics

for determining the efficacy of a robot interacting with a

human. However, the authors point out that the most

important metric to consider in human–robot interaction

experiments is safety. Accordingly, we first evaluate the

safety of the test algorithms of Section 4.6. We follow this

safety study with an efficiency study. Although efficiency

does not always reflect the nuanced behavior of a probabil-

istic algorithm interacting with humans, we felt that this

study, when considered in combination with the safety

study, accurately reflected the salient behaviors of our test

algorithms.

We point out how to interpret the crowd density values.

The scale of the crowd density can be somewhat mislead-

ing since we have normalized to values between 0 and 1,

bear in mind that the highest density (1 person/m2) is a

shoulder to shoulder crowd; see Figure 1. Also remember

that patrons rarely stand still; this constant motion increases

the complexity, confusion, and chaos of the situation.

Anecdotally, the human drivers found crowd densities

above 0.8 people/m2 to be extremely difficult to teleoperate

the robot through. Densities between 0.4 and 0.8 people/

m2 were challenging, while navigation at densities below

0.4 people/m2 was reasonable.

5.1. Robot navigational safety in dense human

crowds

We define safety to be a binary variable: either the robot

was able to navigate through the crowd without collision or

it was not. For obvious reasons, however, we could not

allow the robot to actually collide with objects (either walls

or people), and so a protocol for the human monitor (Pete

Trautman) was put in place: if the robot came within 1

meter of an object, and the robot did not appear to be mak-

ing progress towards avoiding the collision (or, likewise,

the human did not appear to be making progress towards

avoiding the collision), then the robot was ‘‘emergency

stopped’’.
2

In other words, if the human monitor believed

that a collision was imminent, then an emergency stop was

required.

5.1.1. Non-cooperative planner versus mgIGP planner. We

first compare the safety performance of our state-of-the-art

non-cooperative planner (recall Section 4.6.3) to that of the

mgIGP planner in Figure 16. The data presented in this fig-

ure suggests the following: modeling cooperative collision

avoidance between the crowd and the robot can improve

overall safety by up to a factor of 0.63/0.19 ’ 3.31. Further

inspection of Figure 16 reveals additional interesting struc-

ture: the safety performance of both planners degrades reli-

ably as crowd density increases (while at densities above

0.8 people/m2, both planners essentially cease to be safe).

We point out that the non-cooperative planner is unsafe

more than 50% of the time at densities as low as 0.3 peo-

ple/m2 and above. At densities of 0.55 people/m2 and

above, it is unsafe more than 80% of the time. In contrast,

the interacting planner is unsafe less than 30% of the time

for densities up to 0.65 people/m2. The interacting planner

is still safe more than 50% of the time at densities nearing

0.8 people/m2, while the noncooperative planner is unsafe

over 90% of the time at this high density.

We present the following explanation for the unsafe

behavior of the non-cooperative planner. Because the non-

cooperative robot believes itself invisible, it has trouble

finding safe paths through the crowd, and thus oftentimes

tries to creep along the perimeter of the testing area (the

testing area is bounded by walls). In our specific testing

environment, this resulted in many unsafe runs: the robot’s

movement is simply not precise enough to avoid collisions

when ‘‘wall hugging’’. More generally, this is a manifesta-

tion of the FRP, explained in Sections 2 and 3.5, and illu-

strated in Figure 5. In contrast, the number of unsafe runs

for the interacting planner were comparatively small

because the robot was more likely to engage the crowd (we

point out that, to illustrate fairness of the operator, the

interacting planner occasionally came to close to the wall,

and had to be emergency stopped). By engaging the crowd,
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the robot elicited patron cooperation, which made naviga-

tion through the crowd safer. In addition, by navigating in

the center of the workspace, the robot was able to stay clear

of hard to navigate zones, such as next to walls.

5.1.2. Non-cooperative planner versus IGP planner. In

Figure 17, we compare the non-cooperative planner to a

‘‘compromised’’ interacting planner; that is, we remove the

Gaussian process mixture model individual trajectory pre-

diction from the interacting planner (leaving it with single

goal Gaussian process prediction). The non-cooperative

planner retains the Gaussian process mixture model

prediction.

Although the results are not as stark as in Section 5.1.1,

the IGP is still around 0.63/0.28’ 2.25 times as safe as the

non-cooperative planner. This result suggests that for robot

navigation in dense crowds, modeling cooperation is more

important than high-fidelity individual trajectory predictive

models.

5.2. Robot navigational efficiency in dense

human crowds

The robot’s task for every algorithm and for every run was

to travel through natural, lunchtime crowds from point

A = (0, 0) to point B = (6, 0) (in meters). This brought the

robot through the center of the ‘‘filming area’’. Cafeteria

patrons were almost entirely unscripted: they were not

trained in any way, although they were warned (with signs

at every entrance to the Chandler dining hall) that a robot

would be present during their lunchtime routine.

5.2.1. mgIGP planner, non-cooperative planner, and human

teleoperation. In Figure 18, we present the results of a set

of nearly 200 runs in Chandler dining hall during lunch

hours. We point out a few things. First, the number of

example runs for the noncooperative planner is relatively

low (n = 40). This is due to the typically unsafe behavior of

this planner, as discussed in Section 5.1.1.

Indeed, more runs were attempted for the non-

cooperative planner than for any of the other planners, pre-

cisely because the completion rate was so low. To wit, 126

runs were attempted for the non-cooperative planner, 89 for

the IGP planner, and 108 for the mgIGP planner.

In addition, we point out that when the non-cooperative

planner did complete runs, it did so with respectable effi-

ciency. This is easy to understand in light of the discussion

of ‘‘crowd configurations’’ of Section 1.1. That is, the non-

cooperative planner was able to complete runs primarily

when the crowd adopted configurations amenable to effi-

ciency. For instance, if the patrons were standing along the

perimeter of the testing space, leaving an opening through

the middle, then the correct navigation strategy did not

require interaction, and so the non-cooperative planner

would produce an efficient run.

Fig. 16. Unsafe runs for the non-cooperative planner (called mgGP, in magenta) and mgIGP (in blue). Overall, the non-cooperative

planner fails more than three times as often. We also point out that at extremely high densities (above 0.8 people/m2, when patrons are

standing nearly shoulder to shoulder) all of the planners consistently fail. Anecdotally, it is extremely hard to teleoperate a robot at

these densities.
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5.2.2. mgIGP planner, reactive planner, and human

teleoperation. In Figure 19, we present the efficiency

for the reactive planner, the mgIGP planner, and human

teleoperation. This figure demonstrates that, for

most crowd densities, mgIGP was nearly as efficient as

human teleoperation. We point out that, by

definition, the human teleoperators never had to be

emergency stopped: obviously, the safety of the human

teleoperators was superior to any of the autonomous

algorithms.

Fig. 17. Unsafe runs for the non-cooperative planner (called mgGP, in magenta) and IGP (in black). Even without goal-based

prediction, the interacting planner is more than twice as safe as the non-cooperative planner.

Fig. 18. Efficiency of the non-cooperative planner, mgIGP, and human teleoperation.
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The results for the reactive planner are particularly intri-

guing: whereas for all of the other planners (including

human teleoperation) efficiency roughly increased linearly

with crowd density, the reactive planner appears to grow

nonlinearly with crowd density. In addition, it is important

to note that no runs for the reactive planner were collected

for densities above 0.55 people/m2. This was a result of the

following: when the reactive planner started a run at a high

density, it moved extremely slowly. Indeed, while the crowd

density was above a certain amount, it almost never moved

forward: the algorithm was just too cautious. So, essen-

tially, the reactive algorithm waited until the density was

low enough, and then it proceeded forward. By this time,

however, the average crowd density over the duration of the

run had dropped substantially from the maximum crowd

density. Effectively, the reactive algorithm was unable to

make progress through a crowd with an average density

above 0.55 people/m2.

5.2.3. IGP planner, non-cooperative planner, and human

teleoperation. In Figure 20 we present the efficiency

results for the IGP planner, the non-cooperative planner,

and human teleoperation. This figure provides insight into

how ‘‘bare’’ interaction compares with a more sophisticated

prediction model. Human teleoperation serves as an upper

bound on efficiency.

6. Experimental results: Qualitative studies

In this section, we present qualitative details of the robot’s

performance. We begin the section by recalling an image

frame from a successful run of the mgIGP planner in dense

crowds (Figure 13), and follow with a discussion of three

movies, each of which illustrate various aspects of the

robot’s behavior in human crowds.

6.1. Motion for saliency

A highly useful behavior of the robot was that it was

always in motion. This was achieved safely by doing the

following: if a collision was imminent, the forward velocity

was set to zero. However, the rotational velocity was not

set to zero. The navigation algorithm continued generating

new plans (even though the forward velocity was held at

zero until collision was not imminent), and each new plan

potentially pointed the robot in a new direction. Indeed, the

robot was searching for a way through a challenging crowd

state (see the movie at http://resolver.caltech.edu/Caltech

AUTHORS:20120911-130046401).

6.2. Dancing with a robot

Sometimes, this ‘‘motion for saliency’’ resulted in quite

humorous situations: at the beginning of one run, while the

navigation algorithm was still starting up, a patron

approached and began inspecting the robot. The robot, sen-

sing an imminent collision, set its velocity to zero, and

began searching for a clear path (i.e. rotating in place). The

patron realized what was happening, and moved along with

the robot, constantly staying in front of the robot’s forward

velocity vector. This resulted in what we have since called

the ‘‘robot dance’’ (see the movie at http://resolver.caltech

.edu/CaltechAUTHORS:20120911-125945867).

Fig. 19. Efficiency of the reactive planner, mgIGP, and human teleoperation.
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6.3. Motion ‘‘readability’’

This behavior can be quite useful in dense crowds. For

instance, the reactive robot did not display this behavior:

when a collision was imminent, it stopped completely.

Unfortunately, a completely stopped robot is very hard for a

human to understand. Is this robot turned off? Is this robot

waiting for me? Meanwhile, the mgIGP robot displayed

intentionality (see the movie at http://resolver.caltech.edu/

CaltechAUTHORS:20120911-125828298). Animators call

this behavior ‘‘readability’’, and it can be employed to create

a more human like intelligence (see Takayama et al., 2011).

7. Future work

A practical challenge to robotic navigation in dense crowds

is real-time operation. Indeed, the robot needs to replan at

around 10 Hz; otherwise, trajectory following errors begin

to accumulate. We thus suggest that a profitable direction

for future research could be on the topic of efficient infer-

ence methods for the nonlinearly coupled Gaussian process

model IGP (Kuderer et al. (2013), Kuderer et al. (2012) and

Kretzschmar et al. (2013) explore alternative inference

methods for a similar distribution). In particular, prelimi-

nary experiments that use Gibbs sampling with a modified

Metropolis–Hastings step have shown promise. This

approximate inference method biases the samples towards

high probability regions of the distribution, possibly achiev-

ing a more efficient sampling procedure.

8. Conclusion

In this paper, we considered mobile robot navigation in dense

human crowds. In particular, we explored two questions. Can

we design a navigation algorithm that encourages humans to

cooperate with a robot? And would such cooperation improve

navigation performance? We addressed the first question by

developing a probabilistic predictive model of cooperative

collision avoidance that we called IGP; we then extended

IGP to include multiple goals and stochastic movement dura-

tion, which we called mgIGP. We answered the second ques-

tion by conducting an extensive quantitative study of robot

navigation in dense human crowds (488 runs completed),

specifically testing how cooperation models effect navigation

performance. We found that the mgIGP algorithm performed

comparably with human teleoperators in crowd densities near

0.8 humans/m2, while a state-of-the-art non-cooperative plan-

ner exhibited unsafe behavior more than three times as often

as this multiple goal extension, and more than twice as often

as the basic IGP. Furthermore, a reactive planner based on the

widely used ‘‘dynamic window’’ approach failed for crowd

densities above 0.55 people/m2.
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Notes

1. Censys3DTM uses background subtraction to extract a 3D

point cloud of pedestrians. A clustering algorithm generates

pedestrian blobs that are then tracked using a simple motion

model with nearest neighbor association.

2. By emergency stop, we mean that the navigation algorithm

was terminated. By default, the action command immediately

following termination of the navigation algorithm is the zero

velocity command. Since the robot’s maximum velocity is

0.3 m/s, the robot is thus halted almost instantaneously.

Fig. 20. Efficiency of the non-cooperative planner, IGP, and human teleoperation.
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