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Abstract— We consider mobile robot navigation in dense
human crowds. In particular, we explore two questions. Can we
design a navigation algorithm that encourages humans to coop-
erate with a robot? Would such cooperation improve navigation
performance? We address the first question by developing a
probabilistic predictive model of cooperative collision avoid-
ance and goal-oriented behavior by extending the interacting
Gaussian processes approach to include multiple goals and
stochastic movement duration. We answer the second question
with an extensive quantitative study of robot navigation in dense
human crowds (488 runs completed), specifically testing how
cooperation models effect navigation performance. We find that
the “multiple goal” interacting Gaussian processes algorithm
performs comparably with human teleoperators in crowd den-
sities near 1 person/m2, while a state of the art noncooperative
planner exhibits unsafe behavior more than 3 times as often as
this multiple goal extension, and more than twice as often as the
basic interacting Gaussian processes. Furthermore, a reactive
planner based on the widely used “dynamic window” approach
fails for crowd densities above 0.55 people/m2. Based on these
experimental results, and previous theoretical observations, we
conclude that a cooperation model is important for safe and
efficient robot navigation in dense human crowds.

I. INTRODUCTION

One of the first major deployments of an autonomous robot

in an unscripted human environment occurred in the late

1990s at the Deutsches Museum in Bonn, Germany [1]. This

RHINO experiment was quickly followed by another robotic

tour guide experiment; the robot in the follow-on study,

named MINERVA [2], was exhibited at the Smithsonian and

at the National Museum of American History in Washington

D.C. These studies inspired a wide variety of research in the

broad area of robotic navigation in the presence of humans,

ranging from additional work with robotic tour guides ([3],

[4]), to field trials for interactive robots as social partners

([5], [6]). Despite the many successes of the RHINO and

MINERVA work and the studies they inspired, fundamental

questions about navigation in dense crowds remain. In par-

ticular, prevailing algorithms ([7], [8]) and opinion ([9]) on

navigation in dynamic environments emphasize deterministic

and decoupled approaches. Critically, an experimental study

of robotic navigation in dense human crowds is unavailable.

In this paper, we focus on these two deficiencies: a

dearth of human-robot cooperative navigation models and the

absence of a systematic study of robot navigation in dense

human crowds. We thus develop a cooperative navigation

methodology and conduct the first extensive (nruns ≈ 500)

field trial of robot navigation in natural human crowds.

1These authors are with the California Institute of Technology.
2This author is with NASA/JPL.
3This author is with ETH Zurich.

Fig. 1. Overhead still of the crowded university cafeteria testbed. The den-
sity of the crowd varies through the day, allowing for diverse experiments.

(Figure 1). These experiments quantify the degree to which

our cooperation model improves navigation performance;

with the theoretical arguments of ([10]), we deduce the

importance of a cooperation model for safe and efficient

crowd navigation.

A. Related Work

Naively modeling the uncertainty in dynamic environments

(e.g., with independent agent constant velocity Kalman fil-

ters) leads to an uncertainty explosion that makes safe and

efficient navigation impossible ([10]). Some research has

thus focused on controlling predictive uncertainty: in [11]

and [12], high fidelity independent human motion models

were developed, in the hope that reducing the uncertainty

would lead to improved navigation performance. Similarly,

[13] holds the individual agent predictive covariance constant

at a low value as a surrogate for near perfect prediction

(in the hope that as the robot gets close to the dynamic

agents, prediction and replanning will be good enough for

safe navigation to occur).

The work of [14] and [15] shares insight with the approach

of [13], although more sophisticated individual dynamic

models are developed: motion patterns are modeled as a

mixture of Gaussian processes with a Dirichlet process prior

over mixture weights. The Dirichlet process prior allows for

representation of an unknown number of motion patterns,

while the Gaussian process allows for variability within a

particular motion pattern. Rapidly exploring random trees

(RRTs) are used to find feasible paths. However, all the above

approaches ignore human-robot interaction. As was argued

in [10], unless the dependencies between agents is modeled,



navigation will fail in dense crowds.

Interaction between agents has been addressed, notably

in [16]. With regards to robotic navigation, [17] combines

RRTs with a potential field whose value is based on theories

of human proximity relationships (called “proxemics”—see

[18]). The authors of [19] take a similar proxemic potential

function based approach. In [20], the interaction principles of

[21] guide algorithm development. Although these navigation

algorithms model a type of human-robot interaction—in

particular, how robots should avoid engaging humans—

none model human-robot cooperation. As we will validate

in Section VI, models of cooperation (a special type of

human-robot interaction) are required for safe and efficient

navigation in dense crowds.

In [22], pedestrian decision making is first learned from

a large trajectory example database using inverse reinforce-

ment learning (IRL), and then the robot navigates such that

the human’s predicted path is minimally disrupted. In [23],

the authors extend IRL to work in dynamic environments,

and the planner is trained using simulated trajectories and

tested in simulation. The method successfully recovers the

behavior of the simulator.

In [24], a theory of learning interactions is developed

using game theory and the principle of maximum entropy;

only 2 agent simulations are tested. Similarly, the work of

[25] leverages IRL to learn an interaction model from human

trajectory data. This research pioneers IRL from human data

(and explicitly models cooperation), but the experiments are

limited in scale—one scripted human crosses paths with a

single robot in a laboratory environment.

II. BACKGROUND

We begin with a high level description of the interacting

Gaussian processes (IGP) approach to cooperative navigation

of [10] and provide details of the method in the subsections.

Sections III and IV explain how to extend IGP to include

multiple probabilistic goals with uncertain goal arrival times.

The IGP approach is motivated by the following: dy-

namic navigation algorithms typically assume agent mo-

tion to be independent of robot motion. As is shown in

[10], this independence assumption leads to highly sub-

optimal behavior in dense crowds; coupling agent action

and robot action via a joint trajectory probability density

p(f (R), f (1), f (2), . . . , f (nt) | z1:t) can dramatically improve

navigation performance. In this density, t is the present time,

f (i) is a random function representing agent i’s trajectory

in R
2 from time 1 to T where T > t, i ranges over

(R, 1, . . . , nt), R is the robot superscript in f (R), nt is the

number of agents at time t, and z1:t are the measurements

of all the agents from time 1 to T . The coupling in IGP is

achieved with a multiplicative potential function that models

cooperative collision avoidance. On the one hand, IGP is a

forecast of the crowd’s evolution in time. On the other, the

density is interpretable as a navigation protocol: choose robot

actions according to the maximum a-posteriori (MAP) value.

This navigation interpretation is an instance of planning

reducing to inference, a concept formalized in [26].

However, for each agent, IGP assumes a single, deter-

ministic goal. Furthermore, the goal arrival time is assumed

known in advance. Although these assumptions are suitable

in simulation, real world agents (such as cafeteria patrons)

have multiple probabilistic goals as well as stochastic goal

arrival times. In Section III, we address the “single, determin-

istic goal with known arrival time” assumption with multiple

goal interacting Gaussian processes (mgIGP). Section IV

extends the planning and inference methods used for IGP in

[10] to the case of mgIGP.

A. Gaussian Processes for Single Goal Trajectory Modeling

IGP models each agent’s trajectory as a random function dis-

tributed as a Gaussian Process ([27]), f (i) ∼ GP (f (i); 0, k).

New measurements z
(i)
t update the GP to p(f (i) | z

(i)
1:t) =

GP (f (i);m
(i)
t , k

(i)
t ), where

m
(i)
t (t′) = ΣT

1:t,t′(Σ1:t,1:t + σ2I)−1z
(i)
1:t,

k
(i)
t (t1, t2) = k(t1, t2)− ΣT

1:t,t1(Σ1:t,1:t + σ2I)−1Σ1:t,t2 .

Hereby, Σ1:t,t′ = [k(1, t′), k(2, t′), . . . , k(t, t′)], and Σ1:t,1:t

is the matrix such that the (i, j) entry is Σi,j = k(i, j) and

the indices (i, j) take values from 1 to t. Lastly, σ2 is the

measurement noise (which is assumed to be Gaussian). Since

GPs model entire trajectories, goal data is incorporated as a

measurement on the final step of the trajectory.

B. Gaussian Process Kernels as Kinematic Models

The kernel function k is the crucial ingredient in GP trajec-

tory models, since it captures “how” dynamic agents move

(how smoothly, how linearly, etc.). A class of useful kernel

functions are explained in [27]. These individual kernels

can be combined to make new kernels via summation and

product; we chose a sum of a Matern kernel, a linear kernel,

and a noise kernel for the human and the robot. This kernel

allowed us to capture nonlinear and linear motion, and sensor

noise. We trained the four parameters of the human kernel

(the “hyperparameters”) with track data (Section V-A.3). We

trained the robot kernel with robot odometric data.

Although the hyperparameters are fixed once they are

learned, the mean and kernel functions change at each time

step. Thus, the models for the humans and the robot are

adaptive—i.e., online learning of agent dynamics occurs.

C. Modeling Robot Human Cooperation

IGP couples each agent model with an interaction potential

ψ(f (R), f) = ψ(f (R), f (1), f (2) . . . , f (nt)), resulting in a joint

model over the nt + 1 agent function space:

p(f (R), f | z1:t) =
1

Z
ψ(f (R), f)

nt
∏

i=R

p(f (i) | z
(i)
1:t), (II.1)

using the notation f = (f (1), . . . , f (nt)). We choose ψ to be

ψ(f (R), f) =

nt
∏

i=R

nt
∏

j=i+1

T
∏

τ=t

(

1−
α

exp( 1
2h2 |f (i)(τ)− f (j)(τ)|)

)

where |f (i)(τ) − f (j)(τ)| is the Euclidean distance at time

τ between agent i and agent j; thus any set of paths



f (R), . . . , f (nt) is unlikely if at time τ agents i and j are

too close. The parameter h controls the “safety margin”, and

α ∈ [0, 1] its strength. We emphasize that ψ models human

robot cooperation, rather than just avoidance.

D. Reducing Planning to Inference

Our model p(f (R), f | z1:t) immediately suggests a natural

way to perform navigation: at time t, find the MAP value

(f (R)∗, f∗) = argmax
f (R),f

p(f (R), f | z1:t),

and take f (R)∗(t+1) as the next action in the path (where t+1
means the next step of the estimation). At t+ 1, we receive

observations, update the distribution to p(f (R), f | z1:t+1),
find the MAP, and choose f (R)∗(t+2) as the next step. This

process repeats until the robot arrives at its destination. This

approach assumes the prediction correctly describes agent

behavior—presumably, this is untrue.

III. MULTIPLE GOAL INTERACTING GAUSSIAN

PROCESSES

In practice there may be uncertainty between multiple,

discrete goals that an agent could pursue; similarly, it is

exceedingly rare to know in advance the time it takes to

travel between these waypoints. For this reason, we develop

a probabilistic model over waypoints and the transition time

between these waypoints by generalizing the GPs of Section

II-B to a mixture of GPs interpolating between waypoints.

Figure 2 illustrates our motivation.

We begin by assuming that the trajectory prediction region

has a fixed number of goals G (corresponding roughly to the

number of eating stations in the cafeteria):

g = (g1,g2, . . . ,gG).

For the purposes of this analysis, we restrict the distributions

governing each goal random variable to be Gaussian. We also

restrict our goals gk (k = 1, . . . , G) to lie in the plane R
2.

In order to learn the distribution of the goals g, we gridded

the cafeteria floor, collected frequency data on pedestrian

linger time within each cell, and then used Gaussian Mixture

Model clustering ([28]) to segment the pedestrian track data

into “hot spots”. In particular, we learned

p(g) =
G
∑

k=1

βkN
(

µgk
,Σgk

)

,

where βk is component weight, µgk
is the goal location

mean, Σgk
is goal uncertainty, and N (·) is a normal density.

The perimeter ovals in Figure 2 illustrate this idea. We

note that the availability of such data before runtime is

a restrictive assumption; nevertheless, such situations are

ubiquitous enough to merit consideration.

Given p(g), we derive, from experimental data, the transi-

tion probability p(ga → gb) for all a, b ∈ {1, 2, . . . , G}. For

transitions between two goals ga → gb, we learn p(Ta→b),
the density governing the duration random variable Ta→b.

Finally, we introduce a waypoint sequence ḡm =
(gm1 → gm2 → · · · → gmF

), composed of waypoints

gmk
with mk ∈ {1, 2 . . . , G}, for locations indexed by

m1,m2, . . . ,mF where F ∈ N, with associated way point

durations T̄m = {Tm0→m1 , Tm1→m2 , · · · , TmF−1→mF
}

where Tm0→m1
is the time to the first goal.

A. Generative process for a sequence of waypoints

We describe a generative process for a waypoint sequence

that we will use as a prior. Beginning with g, we draw indices

from the set {1, 2, . . . G}. The first index is drawn uniformly

at random; p(ga → gb) determines the following indices.

Simultaneously, we draw transition times from p(Ta→b). An

infinite series of waypoints and transition times is generated.

We formulate agent i’s prediction model by marginalizing

over waypoint sequences ḡm and durations T̄m:

p(f (i) | z
(i)
1:t) =

∑

ḡm

(∫

T̄m

p(f (i), ḡm, T̄m | z1:t)

)

.

Fig. 2. A patron moves through the cafeteria (solid green circle). Trailing
yellow dots are history, and tubes are GP mixture components. GP mixture
weights are in the upper left corner. Colored ovals are hot spots.

Using the chain rule, we have

p(f (i) | z
(i)
1:t) =

∑

ḡm

∫

T̄m

p(f (i) | z1:t, ḡm, T̄m)p(ḡm, T̄m | z1:t). (III.1)

Notice that for each goal sequence ḡm, we potentially have

a different number of waypoints gmk
.

The mgIGP density is Equation (II.1) with the mixture

models (Equation (III.1)) substituted for p(f (i) | z
(i)
1:t).

IV. COOPERATIVE PLANNING AND INFERENCE

We introduce a sampling based inference algorithm for the

mgIGP density. We interpret mgIGP as a navigation density,

and derive action commands according to Section II-D. Two

different sampling steps are used to approximate the mgIGP

density: we sample the mixture process Equation (III.1), and

we sample the mgIGP posterior.

A. Sample based approximation of mixture models

Since Equation (III.1) is intractable (infinite sum), we employ

a sample based approximation:

p(ḡm, T̄m | z1:t) ≈

Np
∑

k=1

w
(i)
k δ
[

(ḡm, T̄m)k − (ḡm, T̄m)
]

,



(a) (b) (c) (d)

Fig. 3. (a) The robot workspace consists of a 20m2 area surrounded by a buffet (left), a pizza station (right), and a soda fountain (background). Distance
between start and goal was 6m. (b) Old form factor (c) New form factor (d) 3 overhead stereo cameras comprising the tracker.

where we utilize the empirically derived density
(

ḡm, T̄m
)

k
∼ p(ḡm, T̄m) and Np samples. Substituting

∑Np

k=1 w
(i)
k δ
[

(ḡm, T̄m)k − (ḡm, T̄m)
]

into Equation (III.1),

we generate

p(f (i) | z
(i)
1:t) ≈

Np
∑

k=1

w
(i)
k p(f (i) | z1:t, ḡk, T̄k). (IV.1)

The samples collapse the infinite sum of integrals to one

finite sum. This is illustrated in Figure 2.

In order to generate samples (ḡk, T̄k), we draw a sequence

of waypoints ḡk and then the corresponding sequence of

waypoint durations Tka→kb
. To draw the waypoints, we

sample gk1
uniformly from the G goals. We then draw

Tk0→k1
according to a distribution with mean given by the

average time to travel from the current point to gk1 . Then,

gk2 is drawn according to p(gk1 → gk2), and Tk1→k2 is

consequently sampled. We continue until the sum of the

duration waypoints reaches or exceeds Tmax. Additionally,

we evaluate the mixture component weights according to

w
(i)
k =

p(
(

ḡm, T̄m
)

k
| z1:t)

p(ḡm, T̄m)
∝ p(z1:t |

(

ḡm, T̄m
)

k
).

That is, we evaluate the likelihood of z1:t conditioned on the

pair (ḡm, T̄m)k; p(z1:t |
(

ḡm, T̄m
)

k
) is a GP conditioned on

(ḡm, T̄m)k and z1, and evaluated over z2:t.

B. Sample based approximation of mgIGP

We expand the mgIGP density to take goal and waypoint

duration uncertainty into account by using Equation (IV.1):

p(f (R), f | z1:t) =
1

Z
ψ(f)

N
∏

i=1

p(f (i) | z1:t, ĝi)

=
1

Z
ψ(f)

N
∏

i=1

(

∑

ḡm

∫

T̄m

p(f (i), ḡm, T̄m | z1:t)

)

≈
1

Z
ψ(f)

N
∏

i=1





Np
∑

k=1

w
(i)
k p(f (i) | z1:t, ḡk, T̄k)



 .

We wish to approximate p(f (R), f | z1:t) using samples. To

do this, we extend the method outlined in [10] by adding a

step to account for the multiple GP components—that is, to

draw the l’th joint sample (f (R), f)l from the mgIGP density

we first draw agent i’s mixture index from the discrete

distribution {w
(i)
1 , w

(i)
2 , . . . , w

(i)
Np

}. Given the mixture index

γ, we draw (f (i))l ∼ p(f (i)|z1:t, ḡγ , T̄γ). We iterate through

all nt+1 agents (including the robot), and then arrive at the

joint sample weight ηl = ψ((f (R), f)l), arriving at

p(f (R), f | z1:t) ≈

NmgIGP
∑

l=1

ηlδ[(f
(R), f)l − (f (R), f)].

V. EXPERIMENTS

In this section, we perform the first comprehensive quantita-

tive study of robot navigation in a crowded environment.

In particular, we study the navigation of a Pioneer 3-

DX R©differential drive mobile robot through dense crowds

in a public cafeteria. The purpose of these experiments

is to understand how cooperative navigation models affect

robot safety and efficiency in human environments. To that

end, we tested the following five navigation protocols: a

noncooperative planner detailed in Section V-B.1, the single

goal IGP algorithm, the mgIGP algorithm, and a reactive

planner, based on the Dynamic Window approach of [29],

and detailed in Section V-B.4. As an “upper bound” on nav-

igation safety and efficiency, we benchmarked line of sight

teleoperation. Sections V-B and V-C, explains how these

choices represent nearly all existing navigation algorithms.

A. Experimental setup

Our experiments were conducted in a university cafeteria

(see Figure 3(a)). During typical lunch hours, the number

of patrons ranged between five and thirty individuals. The

robot’s task was to travel through natural, lunchtime crowds

from point A = (0, 0) to point B = (6, 0) (in meters). This

brought the robot through the center of the scene in Figure

3(a). Cafeteria patrons were unscripted, although doorway

signs warned of the presence of filming and a robot.



1) Salient human factors engineering: To build a salient,

but not conspicuous, robot we began with a form factor

that indicated to human observers that the robot was both

sensing and comprehending its environment (see Figure

3(b))—a camera mounted at 3 feet, with a laptop set atop

the robot. Unfortunately, this form factor was nearly invisible

to cafeteria patrons, especially in crowds of density greater

than 0.3 people/m2. We thus filled out the volume, so that

the robot had roughly the shape of a human torso; this was

accomplished by mounting 3 camera arms, such that from

any angle at least 2 arms were discernible. Additionally, we

mounted an 80/20 “head” with a computer tablet “face” at

around 4 feet, and adorned the robot’s head with a sun hat.

Patrons responded positively to this costume (Figure 3(c)).

2) Robotic workspace: Figure 3(a) provides an image of

the actual robot workspace used in our experiments. Due to

the available coverage of our pedestrian tracker (Figure 4),

robot motions were limited to a 20m2 area between the buffet

station, the pizza counter, and the soda fountain.

3) Pedestrian Tracking System: Our pedestrian tracker

uses three Point Grey Bumblebee2 stereo cameras mounted

3.5m overhead (Figure 3(d)). The Point Grey Censys3DTM

software1 provides pedestrian tracks at an update rate of

approximately 20Hz. However, only the 5 most “salient”

tracks (those most likely to collide with the robot; see

appendix of [30]) were provided to the navigation algorithm.

Thus, what the robot “sees” is similar to the data an onboard

person tracker would provide (magenta circles, Figure 4).

Figure 4 is a screenshot of the 3D tracker used in our

experiments. The bottom pane of the screenshot shows three

separate overhead images from each of the stereo camera

pairs (only left camera image is displayed). The top pane is

our GUI displaying all the Censys3DTM tracks in red with

magenta circles used to indicate which tracks are currently

being reasoned about by the robot. The green path indicates

the robot’s current planned path. Underneath the tracks is an

image projection from the stereo cameras to provide scene

context.

B. Testing Conditions and Baseline Navigation Algorithms

In our cafeteria experiments, a testing operator was required

to stay within a few meters of the robot during every run

for emergency stops and for pedestrian safety. The close

proximity of the operator to the robot likely influenced

the crowd, and probably biased the performance of the

robot, for any given run. In order to buttress against any

algorithm gaining an unfair advantage, every effort was made

to reproduce identical testing conditions for each algorithm

and for every run. Additionally, we collected as many runs

per algorithm as was possible—approximately 3 months of

testing, with 488 runs collected, and around 800 attempted.

We emphasize that although an overhead tracker is used,

the data provided to the navigation algorithms is local (5

most salient tracks; see appendix in [30]), and highly similar

1Censys3DTM uses background subtraction to extract a 3D point cloud
of pedestrians. A clustering algorithm generates pedestrian blobs that are
then tracked using a simple motion model with nearest neighbor association.

Fig. 4. Robot (wearing sun hat, bottom middle pane) navigating through
densities nearing 1 person/m2. Green dots are robot’s present plan, red dots
are cafeteria patrons, and magenta circles are “salient” patrons (see appendix
of [30]). See Section VII for movies of the robot in action.

to onboard person tracker data. We thus argue that these

results would likely generalize to the situation of a robot

with a reliable onboard person tracker.

1) Noncooperative Gaussian Processes: Given crowd

data from time t′ = 1, . . . , t, this algorithm predicts individ-

ual trajectories using the Gaussian process mixture models.

This prediction model is similar to the state of the art

crowd prediction models of [31] and [32]. Additionally, our

mixture model is nearly identical to the state of the art

models used for navigation in [14], [33] and [15]. We also

point out that when pedestrian track data indicates linear

movement, the Gaussian process mixture model predicts

linear movement. Linear prediction models are common to

many of the navigation algorithms that we did not test. Our

noncooperative planner then uses importance sampling to

produce a navigation command at time t + 1 that approx-

imately minimizes the time to goal while maximizing safety.

These two steps are iterated in a receding horizon control

manner. We remark that optimizing over the most probable

trajectories is similar to the state of the art crowd navigation

algorithm of [34].

2) Interacting Gaussian Processes: This algorithm is the

IGP planner. Implementation details are presented in [10].

3) Multiple Goal Interacting Gaussian Processes: We

implement mgIGP as described in Sections IV-A and IV-B.

4) Reactive Navigation: This planner moves forward in a

straight line towards the goal, replanning its velocity profile

each time step ∆t ≈ 0.1s (since the overhead tracking

algorithm runs at about 10Hz, any planner in the cafeteria

is limited by this constraint) so that it continues moving

at the maximal speed while avoiding collision. This is

accomplished in four steps. First, crowd agents are predicted

forward in time 0.5s using a Gaussian process (0.5s is

how long it takes the robot to come to a complete stop

from maximum velocity). Next, six potential robot trajectory

velocity profiles are computed in the direction of the goal.

The velocity profiles range from 0 m/s to 0.3 m/s, discretized

in increments of 0.05 m/s. Then, each velocity profile is eval-

uated for potential collisions using the formula for “salient”
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Fig. 5. (a) Unsafe runs for the noncooperative planner (called mgGP, in magenta) and mgIGP (in blue). Overall, the noncooperative planner fails more
than 3 times as often as the cooperative planner. At extremely high densities (above 0.8 people/m2, when patrons are standing nearly shoulder to shoulder)
all planners consistently fail. Anecdotally, it is extremely hard to teleoperate a robot at these densities. (b) Unsafe runs for the noncooperative planner and
IGP (in black). Even without goal based prediction, the cooperative planner is more than twice as safe as the noncooperative planner.

tracks detailed in the appendix to [30]; those velocity profiles

with an unsafe probability of collision are discarded (we

tuned this threshold to be maximally aggressive yet always

safe). The safest profile with the highest velocity is chosen.

This approach is similar to [29], and is always safe.

The motion profile of this planner was purposefully chosen

to be as straightforward as possible (only forward motion)

in order to study what could be achieved with the simplest

of implementations. Importantly, the planner of V-B.1 is a

generalization of this planner—i.e., all motions are allowed.

5) Human Teleoperation: Human teleoperation was con-

ducted at the discretion of the teleoperator: we allowed the

operator to maintain as much line of sight as desired. In

all, six teleoperators controlled the robot, for a total of 85

runs. The data produced served as an “upper bound” of

dense crowd navigation performance: at all densities, the

performance of the human teleoperator exceeded that of the

autonomous navigation algorithm.

C. Description of Untested Navigation Algorithms

We survey existing navigation approaches and explain why

our test algorithms are sufficiently representative. Inevitable

collision states (ICS) are limited to deterministic settings, and

so are inapplicable. Probabilistic ICS ([35]) is designed to

handle predictive uncertainty. However, Probabilistic ICS is a

special case of [14], and so V-B.1 (our noncooperative plan-

ner) is representative. Velocity obstacles (VOs) are limited

to deterministic scenarios, and thus inappropriate. In [36],

VOs are generalized for noise. However, Probabilistic VOs

use linear extrapolation, and so V-B.1 is representative. We

tested reciprocal velocity obstacles (RVOs, [37]). However,

noisy pedestrian tracks caused RVO to behave erratically

(unresponsive to a single person walking directly at the

robot), and RVO assumes all agents choose velocities in

a pre-specified manner, which is untrue for humans. Fur-

thermore, we adjusted the value of the collision cone to

be less aggressive; nevertheless, RVO still struggled with

natural human environments. Although other modifications

may indeed make this algorithm successful, for the purposes

of this experiment, RVO was deemed unsuitable. Potential

fields are combined with RRTs to find the minimal cost

robot trajectory in [17]. The primary difference between this

algorithm and V-B.1 is that our cost field is spherical (rather

than ellipsoidal), so V-B.1 is representative.

We point out that the work of [25] and [23] are likely

the most compelling alternatives to mgIGP. In particular,

[25] uses a joint collision avoidance feature in their inverse

reinforcement learning representation, and they learn the

weight of that feature from captured human data. However,

their experiments involve only a single person and a single

robot, and, in their own words, “in more densely populated

environments . . . it is not feasible to compute all topological

variants”. In other words, their current implementation is

unsuitable for real time implementation in dense crowds.

VI. EXPERIMENTAL RESULTS: QUANTITATIVE STUDIES

In [38] numerous metrics for evaluating human-robot in-

teraction are presented. Importantly, safety is pinpointed as

the most important. Accordingly, we evaluate the safety and

efficiency of the algorithms of Section V-B.

A. Robot Safety in Dense Human Crowds

We discuss the human density metric. First, we have normal-

ized to values between 0 and 1—thus, the highest density

(1 person/m2) is a shoulder to shoulder crowd. Further,

patrons rarely stand still; this constant motion increases

crowd complexity. Anecdotally, humans found crowd densi-

ties above 0.8 people/m2 to be extremely difficult to teleoper-

ate through, and densities above 0.4 people/m2 challenging.

We define safety as a binary variable: either the robot

was able to navigate through the crowd without collision

or it was not. Obviously, we could not allow the robot to

collide with either walls or people, and so a protocol for
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Fig. 6. a Efficiency of reactive planner, mgIGP, and human teleoperation; mgIGP performs similarly to teleoperation, while reactive planning degrades
super linearly. (b) Performance of mgIGP, IGP, and human teleoperation. Performance improvement due to goal inclusion is modest.

the test operator was put in place: if the robot came within

1 meter of a human, and neither the robot nor the human

was making progress towards avoiding collision, then the

robot was “emergency stopped” (the velocity command was

set to zero). Note that both our reactive planner and human

teleoperation were always safe, by design.

1) Noncooperative Planner and mgIGP Planner: In Fig-

ure 5(a), we compare the safety of our state of the art nonco-

operative planner to the mgIGP planner. This data suggests

the following: cooperative collision avoidance models can

improve overall safety by up to a factor of 0.63/0.19 ≈ 3.31.

Additionally, the noncooperative planner is unsafe more than

50% of the time at densities as low as 0.3 people/m2 and

above. At densities of 0.55 people/m2 and above, it is unsafe

more than 80% of the time. In contrast, mgIGP is unsafe less

than 30% of the time for densities up to 0.65 people/m2. At

densities near 0.8 people/m2, mgIGP is still safe more than

50% of the time. The noncooperative planner is unsafe over

90% of the time at this high density. Finally, the safety of

both planners degrades reliably as crowd density increases

(both planners cease to be safe above 0.8 people/m2).

We present the following explanation: the noncooperative

planner believes itself invisible, and so has trouble finding

safe paths through the crowd, and thus tries to creep along

the walls of the testing area. This resulted in many failed

runs: the robot’s movement is not precise enough to avoid

collisions when “wall hugging”. More generally, this is

a manifestation of the freezing robot problem of [10]. In

contrast, failures for mgIGP were rare because the robot was

more likely to engage the crowd. By engaging the crowd, the

robot elicited cooperation, which made navigation safer.

2) Noncooperative Planner and IGP planner: In Figure

5(b), the noncooperative planner is compared to a “com-

promised” cooperative planner, IGP. The noncooperative

planner retains the Gaussian process mixture model.

Although the results are not as stark as in Section VI-A.1,

IGP is still 0.63/0.28 ≈ 2.25 times as safe as the nonco-

operative planner. This result suggests that for navigation

in dense crowds, cooperation models are more important

than individual predictive models. Additionally, this result

demonstrates that while modeling goal distributions improves

performance, modeling cooperation is critical, and suggests

that IGP can be deployed under quite general circumstances.

B. Navigation Efficiency in Dense Human Crowds
Navigation efficiency is defined as the time elapsed from the

start of the algorithm until arrival at the goal.

1) mgIGP Planner, Reactive Planner, and Human Tele-

Operation: In Figure 6(a), we present the efficiency for

the reactive planner, the mgIGP planner, and human tele-

operation. This figure demonstrates that, for most crowd

densities, mgIGP was nearly as efficient as human tele-

operation. We point out that (by definition) the human tele-

operators never had to be emergency stopped.

Whereas the efficiency of all the other planners (including

human tele-operation) increased roughly linearly with crowd

density, the reactive planner grows super linearly with crowd

density. Additionally, no runs for the reactive planner were

collected for densities above 0.55 people/m2. This was a

result of the following: when the reactive planner started at

a density above 0.55 people/m2, it moved extremely slowly.

If the crowd density was any higher than 0.55 people/m2,

it stopped moving forward entirely. Essentially, the reactive

algorithm was waiting until the density was low enough

to ensure safety. By this time, however, the average crowd

density over the duration of the run had dropped substantially

from the maximum crowd density during the run. Thus, the

reactive algorithm was unable to make progress through a

crowd with an average density above 0.55 people/m2.

2) mgIGP Planner, IGP Planner, and Human Tele-

Operation: In Figure 6(b) we present the efficiency results

for the mgIGP planner, the IGP planner, and human tele-

operation. This figure provides insight into how efficiency

is affected when the Gaussian process mixture model of

independent trajectories is removed from the interactive for-

mulation. We note that although the mixture model improves



safety (Figure 5), it does not appear to improve efficiency.

This data again suggests that modeling cooperation between

agents is more important than modeling individual agent

behavior. Human teleoperation serves as an upper bound on

efficiency.

VII. EXPERIMENTAL RESULTS: QUALITATIVE STUDIES

A highly useful behavior of the robot was that it was

always in motion. This was achieved by doing the fol-

lowing: if collision was imminent, forward velocity was

set to zero while rotational velocity was non-zero. The

navigation algorithm continued generating new plans, and

each new plan pointed the robot in a new direction. The

robot was searching for a way through a challenging

crowd state—see http://resolver.caltech.edu/

CaltechAUTHORS:20120911-130046401 ).

This resulted in humorous situations: during one run, while

the navigation algorithm was starting up, a patron began in-

specting the robot. The robot, sensing imminent collision, set

velocity to zero, and began searching for a clear path (i.e., ro-

tating in place). The patron realized what was happening, and

moved along with the robot, constantly staying in front of the

robot’s forward velocity vector. This resulted in what we call

the “robot dance”—see http://resolver.caltech.

edu/CaltechAUTHORS:20120911-125945867).

This behavior can be useful in dense crowds. The reactive

robot did not display this behavior; when a collision was

imminent, it stopped completely. A completely stopped

robot is hard for a human to understand. Is this robot

turned off? Is this robot waiting for me? Meanwhile, mgIGP

displayed intentionality (http://resolver.caltech.

edu/CaltechAUTHORS:20120911-125828298).

Animators call this “readability” ([39]).

VIII. CONCLUSIONS

We posed two questions: how should human-robot coop-

eration be modeled? And would such cooperation improve

navigation in dense crowds? We answered the first question

by introducing mgIGP, and treating that density as a predic-

tion of how the robot should act in order to be cooperative.

We answered the second question empirically: the mgIGP

algorithm was shown to perform comparably with human

teleoperators in crowd densities nearing 1 person/m2, while

a state of the art noncooperative planner exhibited unsafe

behavior more than 3 times as often as our planner and

twice as often as the basic IGP planner. Also, a state of

the art reactive planner was insufficient for crowd densities

above 0.55 people/m2. These experimental results, along

with previous theoretical results in [10], provide strong

evidence that a human-robot cooperation model is important

for safe and efficient dense crowd navigation.
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