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ABSTRACT 

The problem of navigating an autonomous mobile robot 
through an unexplored terrain of obstacles is the focus of this 
paper. The case when the obstacles are ‘known’ has been 
extensively studied in literature. The process of robot naviga- 
tion in completely unexplored terrains involves both learning 
the information about the obstacle terrain and path planning. 
We present an algorithm to navigate a point robot in an unex- 
plored terrain that is arbitrarily populated with disjoint con- 
vex polygonal obstacles in the plane. The navigation process 
is constituted by a number of traversals; each traversal is from 
an arbitrary source point to an arbitrary destination point. Ini- 
tially, the terrain is explored using a sensor and the paths of 
traversal made may be sub-optimal. The visibility graph that 
models the obstacle terrain is incrementally constructed by 
integrating the information about the paths traversed so far. 
At any stage of learning, the partially learnt terrain model is 
represented as a learned visibility graph, and it is updated 
after each traversal. The proposed algorithm is proven to 
yield a convergent solution to each path of traversal. It is also 
shown that the learned visibility graph converges to the visi- 
bility graph with probability one, when the source and desti- 
nation points are chosen randomly. Ultimately, the availabil- 
ity of the complete visibility graph enables the robot to plan 
globally optimal paths, and also obviates the further usage of 
sensors. 

1, INTRODUCTION 
Path planning and navigation is one of the most important 

aspects of autonomous roving vehicles. The jind-path problem 
deals with navigating a robot through a completely known ter- 
rain of obstacles. This problem is extensively studied by many 
researchers - Brooks [2], Lozano-perez and Wesley [6], and 
Oommen and Reichstein [7] are some of the most important 
contributors. Another interesting problem in robot navigation 
deals with navigating a robot through an unknown or a par- 
tially explored obstacle terrain. Unlike the find-path problem, 
this problem has not been subjected to a rigorous mathematical 
treatment, and this could be attributed, at least partially, to the 
inherent nature of this problem. However, this problem is also 
researched by many scientists - Chatila [3], Crowley [4], Iyen- 
gar et al [S], Rao et al [9], and Turchen and Wong [lo], present 
many important results. 

In this paper we discuss a technique for the navigation of 
a point robot in an unexplored terrain that is arbitrarily popu- 
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lated with disjoint convex polygonal obstacles of unknown 
dimensions and locations. The robot is required to undertake a 
number of traversals; each traversal is from a source point to a 
destination point. Initially no information about the obstacle 
terrain is available. We note that for the obstacle terrain of our 
problem, the availability of the visibility graph enables the 
planning of optimal paths from any point to any point [6]. Our 
approach is based on incrementally acquiring the visibility 
graph of the obstacle terrain. The outline of our solution is as 
follows: The initial traversals are based an a local navigation 
strategy that uses the sensor information obtained by scanning 
the terrain. At any stage in the navigation the terrain is charac- 
terized by a partially built visibility graph called the Learned 
Visibility Graph (LVG). The LVG is updated time-to-time by 
integrating the information from the sensor readings. Then we 
use a global navigation strategy that uses the LVG in the 
regions it is available, and resorts to local navigation in the 
regions the LVG is not available. The two key issues here are 
the path planning and learning. We show that the proposed 
technique always obtains a path, if exists, to the destination 

point. We also show that the LVG will converge to the VG 
with probability one, if the source and destination points are 
randomly chosen. In this paper, we present our basic results, 
and the details such as the correctness proof of algorithms, etc. 
can be found in our report [ 81. 

Our treatment is more formal than many earlier 
approaches to this problem. This formal framework enables us 
to discuss issues such as the convergence of path planning, 
learning, etc., which are not very explicit in earlier approaches. 
Again, our problem is to be contrasted from the terrain acquisi- 
tion problem [lo], wherein the robot navigates with the only 
purpose of acquiring the terrain model. As stated earlier in our 
problem, the robot is required to execute a number of traversals 
in an unexplored terrain, and the learning phase of acquiring 
the LVG is a part of our solution (to make the later traversals 
more efficient). 

The organization of this paper is as follows: Section 2 
introduces the definitions and notations. The local navigation 
technique that incorporates learning and path planning is 
presented in section 3. In section 4, the power of local naviga- 
tion algorithm is enhanced by incorporating backtracking. As 
a result the interior restriction on the obstacle terrain is relaxed. 
In section 5, a global navigation strategy that makes use of the 
existing terrain model. The important result that the learning 
eventually becomes complete is presented in section 6. The 
execution of the navigation algorithms on a sample obstacle 
terrain is presented in section 7. 
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2. NOTATIONS AND DEFINITIONS 
The robot is assumed to be a point in a plane that is arbi- 

trarily populated with stationary convex polygonal obstacles. 
Initially the terrain is completely unexplored, and the robot is 
required to undertake a number of traversals; each traversal is 
from a source point to a destination point. Furthermore, the 
obstacles polygons are mutually non-intersecting and non- 
touching. 

Of paramount importance to this entire problem is a graph 
termed as the Visibility Graph (VG). The VG is a pair (V,E), 
where 

(9 
(ii) 

V is the set of vertices of the obstacles, and. 

E is the set of edges of the graph. A line joining the ver- 
tices vi to Vj forms an edge (Vi ,Vj) E E if and only if it is 
an edge of an obstacle or it is not intercepted by any other 
obstacle. 

Initially the VG is totally unknown to the robot, and the 
robot graduates through various intermediate stages of learning 
during which the VG is incremental!y constructed. These 
intermediate stages of learning are captured in terms of the 
Learned Visibility Graph (LVG), which is defined as follows: 
LVG = (V*,E*), where, V* 5 V and E* c E. The LVG is 
initially empty, and is incrementally built. Ultimately, the 
LVG converges to the exact VG . 

We assume, throughout this paper, that the robot is 
equipped with a sensor capable of measuring the distance to an 
obstacle in any specified direction. Also, we assume that the 
robot is equipped with sensors which enable the navigation 
along the edges of an obstacle. Thus, the robot can navigate 
arbitrarily close to the obstacle edges. We denote the interior 
of any polygon 5 by INT(&. The straight line from the point 

P to the point Q is denoted by <Q. Further, ?& denotes the 

unit vector along the straight line p”e. 

3. LOCAL NAVIGATION AND LEARNING 
When the robot navigates in a completely unexplored ter- 

rain, its path of navigation is completely decided by the sensor 
readings. The obstacles in the proximity of the source point 
are scanned and a suitable path of navigation is chosen. This 
localized nature of the local navigation makes a globally 
optimal path unattainable in a terrain with an arbitrary distribu- 
tion of obstacles. However, local navigation is essential during 
the initial stages of the navigation. 

In this section, we propose a local navigation technique 
that enables the robot to detect and avoid obstacles along the 
path from an arbitrary source point, S to an arbitrary destina- 
tion point, D . The robot is equipped with a primitive motion 
command MOVE@ ,A ,h), where (a) S is the source point, 
namely, the place where the robot is currently located. (b) A is 
the destination point which may or may not be specified. (c) h 
is the direction of motion, which is always specified. If A is 
specified, then the robot moves from S to A in a straight line 
path. In this case, the direction of motion h is the vector q=, 

the unit vector in the direction of & If A is not specified, 
then the robot moves along the direction h as follows: If the 
motion is alongside an edge of an obstacle, then the robot 

Fig. 1. Value returned by MOVF(S A ,A), 
when A is not specifiti. 

moves to the end point of the edge along the direction h. This 
end point is returned to the calling procedure as point A as in 
Fig. l(a). If motion is not alongside an edge of an obstacle, 
then the robot traverses along the direction h till it reaches a 
point on the edge of an obstacle as shown in Fig. l(b). This 
point is returned as the point A to the calling procedure. 

For the treatment in this section we assume that the obsta- 
cles do not touch or intersect the boundaries of the terrain R . 
In other words, the obstacles are properly contained in the ter- 
rain R . This is formally represented as 

bJA’T(wi) c INT(R ) (1) 
i=l 

As a consequence of this assumption there is always a path 
from a source point S to a destination point D . However, this 
restriction is removed in the next section. 

We present the procedure NAVIGATE-LOCAL that uses 
a hill-climbing technique to plan and execute a path from an 
arbitrary source point S to an arbitrary destination point D . 
The outline of this procedure is as follows: The robot moves 

along SD till it gets to the nearest obstacle. It then circum- 
navigates this obstacle using a local navigation strategy. The 
technique is then recursively applied to reach D from the inter- 
mediate point. Further, apart from path planning the procedure 
also incorporates the learning phase of acquiring the VG . 

The robot moves along the direction rlSD till it encounters 
an obstacle at a point A which is on the obstacle edge joining 
the two vertices, say, A 1 and A 2. At this point the robot has 

+ 
two possible directions of motion: along AA t or s2 as shown 
in Fig. 2. We define a local optimization criterion function J 
as follows: 

J = VSD .h (2) 
where h is a unit vector along the direction of motion. Let ht 

and h, be the unit vectors along Ai 1 and i2 respectively. Let 
h’ E {h&} maximize the function J given in equation (2). 
The robot then undertakes an exploratory traversal along the 
direction -h* till it reaches the corresponding vertex called the 
exploratory vertex. At this exploratory point the terrain is 
explored using the procedure UPDATE-VGRAPH. Then the 
robot retraces along the locally optimal direction h’ till it 
reaches the other vertex S’ , whence it again calls UPDATE- 
VGRAPH. The procedure NAVIGATE-LOCAL is recursively 
applied to navigate from S * to D . 

The procedure UPDATE-VGRAPH implements the 
learning component of the robot navigation. Whenever the 
robot reaches a new vertex vi this vertex is added to the LVG . 
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From this vertex, the robot beams its sensor in the direction of 
all the existing vertices of the LVG. The edge (Vi ,v) is added 
to the edge set E* , corresponding to each vertex v E V* visi- 
ble from Vi. The algorithm is formally presented as follows: 

procedure UPDATE-VGRAPH(v); 
input: The vertex v which is newly encountered. 
output: The updated LVG = (V’ ,E * ). 

Initially the LVG is set to ($,$). 
comment: DZST ( v l,v *) indicates the euclidian distance 

between vertices v 1 and v2, if they are visible 
to each other. This is the auxiliary information 
stored along the LVG , 

begin 
1. v* = v*“{v}; 
3 I. forallvlE V*-(v}do 
3. if (v 1 is visible from v ) then 

4. DIST(vl,v) = \v;v\; 
5. E* =E*yWl,v)l; 
6. else 
7. DIST(v l,v) = -; 

endif 
endfor; 

end; 

The procedure NAVIGATE-LOCAL uses the motion 
command MOVE and the procedure UPDATE-VGRAPH dur- 
ing execution. This procedure is formally described follows: 

procedure NAVIGATE-LOCAL@ ,D ); 
Input: The source point S and the destination point D 
Output: A sequence of elementary MOVE commands 
begin 

1. if (D is visible from S ) then 
2. MOWS P ,rlso ) 
3. else 
4. if (S is on an obstacle that obstructs its view) then 
5. compute {h&}, two possible directions of motion; 
6. h* = direction maximizing hi .QD ; 
7. if (S is a vertex) then 
8. if ( S $ V* ) then UPDATE-VGRAPH(S ); 
9. MOVE@ ,S * ,h* ); 
10. else 
11. MOVE@ ,S 1,-h* ); { exploratory trip to S 1 } 
12. if ( S 1 $ V* ) then UPDATE-VGRAPH(S 1); 
13. MOVE@ 1,S * ,h* ); { retrace steps to S * > 
14. if (S * $ V* ) then UPDATE-VGRAPHQ * ); 

endif; 
15. NAVIGATE-LOCAL@ l p ); 
16. else { move to next obstacle } 
17. MOVE@ ,S* ,qso ); { move to next obstacle } 
18. NAVIGATE-LOCAL@ * ,D ); 

endif; 
endif; 

end; 

We shall now present a Theorem from [8] that shows that 
the procedure NAVIGATE-LOCAL converges. 

A,= 5’ 

The robot reached a point on the obstacle. 

TIIEOREM 1: The procedure NAVIGATE-LOCAL always 
finds a path from S to D in finite time. •I 

Note that we have chosen to minimize the projected dis- 
tance along SD by maximizing the function J in equation (2). 
This method may not give rise to a globally optimal path as 
shown in Fig. 3. Such counter examples exist for any localized 
navigation scheme for the want of global information about the 
obstacles. 

Fig. 3. Solution given by local navigation may 

not be globally optimal. 

4. LIMITATIONS OF LOCAL NAVIGATION 
The procedure NAVIGATE-LOCAL introduced in the 

previous section always yields a path if one exists and if the 
obstacles do not touch the terrain boundaries as a consequence 
of condition (1). The relaxation of the assumption in (1) 
results in two cases, in which the procedure NAVIGATE- 
LOCAL is not guaranteed to halt: 
(a) There is no path existing between the source point S to the 
destination point D . Fig. 4 shows one such case. It is to be 
noted that in this case when the robot starts moving around the 
obstacle, its way is blocked in both possible directions. 
(b) The angle between the obstacle edge and the terrain boun- 
dary is less than n/2. In such a case the robot may be forced to 
move to the dead comer formed by the obstacle and terrain 
boundary (see Fig. 5). 

s’ 

?L’ 
/ --AD 

~~ 

so.--- - 

Fig. 4. No path from S to D . 

In this section, we relax the condition in (l), and enhance 
the capability of NAVIGATE-LOCAL by imparting to it the 
ability to backtrack. The robot backtracks ( by invoking pro- 
cedure BACKTRACK ) whenever it reaches a point from 
which no further moves are possible. This procedure intelli- 
gently guides the robot in the process of retracing. That is, the 
robot backtracks along the edges of the obstructing obstacle till 
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I 

tiis. 5. Dead-comer S* , formed by the obstacle and boundary. 

an edge (S ,S 1), that makes an angle less than l-I/2 with QD is 
encountered. The fact that such an edge exists is guaranteed 
because of the convexity of the obstacles. The search for this 
t’dge is performed by the while loop of lines 3-6 of procedure 
13ACKTRACK. As a result the robot moves to a point from 
which the NAVIGATE-LOCAL can take over. If for the same 
obstacle. the robot has to backtrack twice, then there is no path 
between S and D . In other words, if a path from S to D 
exists, then the robot needs to backtrack at most once along the 
edges of any obstacle. 

procedure BACKTRACK(S ,L) ,S * ); 
Input: The point D is the destination point. 

S is a dead comer, i.e., a vertex of an obstacle and is 
also on the boundary of the terrain. 

Output: A sequence of MOVES from S in such a way that if 
a path exis, then it can be determined using 
NAVIGATE-LOCAL. The location S * is returned 
to the calling procedure. 

begin 
1. 
2. 

% =s; 
h = only permitted direction of motion on the obstacle; 

3. while (&.h* ~0) do 
4. 
5. 

MO~GlS* ,I*); 

6. 
si=s ; 
h = only permitted direction of motion on the obstacle; 

endwhile; 
end; 

The convergence of the procedure BACKTRACK is 
proved in the following theorem (see [8] for proof). 
THEOREM 2: The procedure BACKTRACK leads to a solu- 
tion to the navigation problem, if one exists. Cl 

We note that if a path exists between S and D , then the 
robot backtracks at most once for each obstacle that lies on its 
way from S to D . That is because, if the procedure BACK- 
TRACK leads the robot to another “dead-end” on the same 
obstacle, clearly, the robot can not navigate across the obstacle. 
Hence, no path exists between S and D . 

Let the procedure NAVIGATE-LOCAL with the 
enhanced capability to backtrack be called procedure 
NAVIGATE--BACKTRACK. This procedure utilizes 
NAVIGATE-LOCAL to navigate till the robot encounters a 
dead-end. At this point, the procedure BACKTRACK is 
invoked, after which the NAVIGATE-LOCAL is resorted to. 

The navigation is stopped if no path exists between S and D . 
The formal statement and correctness proof of procedure 
NAVIGATE-BACKTRACK easily follow from those of 
NAVIGATE-LOCAL and BACKTRACK. 

5. GLOBAL NAVIGATION 

The procedures described in the preceding sections enable 
a robot to navigate in an unexplored terrain. But, the naviga- 
tion paths are not necessarily globally optimal from the path 
planning point of view. However, the extra work carried out in 
the form of learning is inevitable because of the lack of infor- 
mation about the obstacles. Furthermore, the LVG is gradually 
built as a result of learning. In the regions where the visibility 
graph is available, the optimal path can be found by computing 
the shortest path from the source point to the destination point 
on the graph. The computation can be carried out in quadratic 
time in the number of nodes of the graph by using the 
Dijkstra’s algorithm [l]. Such a trip can be obtained by using 
only computations on the LVG and not involving any sensor 
operations. 

We shall now propose a technique that utilizes the avail- 
able LVG in planning the navigation paths. In the regions 
where no LVG is available, the procedure NAVIGATE- 
LOCAL is used for navigation. In these regions the LVG is 
updated for future navigation. The outline of the global navi- 
gation strategy as follows: 

procedure NAVIGATE-GLOBAL(S ,D ); 
begin 

1. Compute-Best-Vertices(S * ,D * ); 
2. NAVIGATE-BACKTRACK@ ,S * ); 
3. Move-On-LVG(S * ,D l ); 
4. NAVIGATE-BACKTRACK(D * ,L) ); 

end 

Given S and D , two nodes S* and D * on the existing 
LVG are computed. The robot navigates from S to S* using 
local navigation. Then the navigation from S * to D * is along 
the optimal path computed using the LVG . Again, from D * to 
D the local navigation is resorted to. Computation of S* and 
D * , corresponding to line 1 of NAVIGATE-GLOBAL, can be 
carried out using various criteria. We suggest three such possi- 
ble criteria below: 

Criterion A: S * and D l are the nodes of the LVG closest to S 
and D . The computation of these nodes involves 0 ( 1 V* I) 
distance computations. 

Criterion B: S* is a vertex such that it is the closest to the line 

S%. D * is similarly computed. Again the complexity of this 
computation is 0 ( ) V* I). 
Criterion C: S’ is a vertex which minimizes the angle S * SD. 
Again the complexity of this computation is 0 ( 1 V’ I). 

The closeness of the paths planned by NAVIGATE- 
GLOBAL to the globally optimal path depends on the degree 
to which the LVG is built. The paths tend to be globally 
optimal as the LVG converges to the VG . 
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6. COhlPLETE LEARNING 

Learning is an integral part of NAVIGATE-LOCAL, pri- 
marily because the robot is initially placed in a completely 
unexplored obstacle terrain, and the LVG is incrementally con- 
structed as the robot navigates. The central goal of the leam- 
ing is to eventually construct the VG of the entire obstacle ter- 
rain. Once the VG is completely constructed, the globally 
optimal path from S to D can be computed before the robot 
sets into motion as in [ 151. Furthermore, the availability of the 
complete 1/G obviates the further usage of sensors. Now, we 
present two basic results about the learning process incor- 
porated in our algorithm (see [8] for proof). 

TIIEOREhl 3: If no point in the free space has a zero proba- 
bility measure of being a source or a destination point or a 
point on a path of traversal, then the LVG converges to the VG 

with a probability one. 0 

TIIEOREM 4: The number of sensor operations performed 
within the procedure UPDATE-VGRAPH to learn the com- 
plete VG is 0 (I V 1 2). Cl 

In the next section we present some experimental results 
to illustrate the working of our technique. 

Fig. 6. Unexplored terrain. 

7. SIMULATED RESULTS 
In this section, we describe experimental results obtained 

using a rectangular obstacle terrain shown in Fig. 6. Initially 
the terrain is unexplored and the LVG is empty. A sequence of 
five paths is undertaken in succession by the robot. In other 
words, the robot first moves to 2 from 1, then to 3 from 2, etc. 
till it reaches 6. Fig. 7(a)-(g) illustrate the various paths 
traversed and the corresponding LVG s. Initially, during the 
motion from 1 to 2, the robot learnt four edges of the VG 
shown in Fig. 7(b). In the next traversal, seven more edges of 
the VG are learnt. A curve showing the number of edges learnt 
as a function of the number of traversals is given in Fig. 9. It is 
to be noted that as many as 31 out of total 39 edges of VG are 
learnt in five traversals. Suppose that at this point the global 
navigation strategy is invoked to navigate to 7 from 6. The S* 
and D* obtained by using criterion (A) of section 5 are shown 
in Fig. 8. The robot navigates locally from S to S* the*n along 
the LVG from S* to D*, and finally locally from D to D. 

Note that the path from S * to D* does not involve any sensor 

operations, but, only quadratic time computation on the LVG 
to find the shortest path. 

8. CONCLUSIONS 

In this paper, we propose a technique that enables an 
autonomous robot to navigate in a totally unexplored terrain. 
The robot builds the terrain model as it navigates, and stores 
the processed sensor information in terms of a learned visibil- 
ity graph. The proposed technique is proven to obtain a path if 
one exists. Furthermore, the terrain is guaranteed to become 
conzpfetcly learnt, when the complete visibility graph of the 
entire obstacle terrain is built. After this stage the robot 
traverses along the optimal paths, and no longer needs the sen- 
sor equipment. The significance of this technique is the char- 
acterization of both the path planning and learning in a precise 
mathematical framework. The convergence of the path plan- 
ning and the learning processes is proven. 
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Fig, 8. NAVIGATE-GLOBAL from 6 to 7. 
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Fig. 9. Graph showing the construction of 

the VG 

Fig. 7. Illustration of the navigation process. 
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