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Robot Navigation Faces 
Dynamic and Uncertain Environments 

• Tight rectilinear spaces require high precision motion control 

• Pedestrians and inaccurate robot model introduce dynamics 
and uncertainty 

• Need to accommodate user preferences,    
e.g. aggressiveness and comfort 
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Hierarchical Motion Planning 
Is Needed in Dynamic and Uncertain Environments 
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Global Planner 
Approximate, longer term navigation plan in the environment 

Local Planner 
High fidelity local paths/trajectories in small scale space 

Generate-and-test search for trajectories 

Control 
Low level controller for trajectory execution 



The Space of Trajectories 
is Continuous and Infinite 

• How to construct a good evaluation function is also an 
important question. 
– Determination of weights in multi-objective function, etc. 
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[Ogren and Leonard 05]       [Hundelshausen et al. 08]        [Knepper and Mason 12] 

• Many current leading algorithms rely on a finite set of 
pre-determined candidate  trajectories/paths. 



Our MPEPC Approach: Objectives 

• Efficient search for candidate trajectories 

• Efficient evaluation of candidate trajectories, 
considering robot and pedestrian motion 
uncertainties 

• Easy and straightforward implementation 

• Accommodation of user preferences 
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Our MPEPC approach to 
Hierarchical Motion Planning and Control 
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Global Planner 
Approximate navigation plan in the static environment 

Navigation Function (NF) 

Local Trajectory Planner 
High fidelity local trajectories in small scale space 

Dynamic replanning with receding-horizon MPC  

Control 
Low level controller for trajectory execution 

Pose-stabilizing feedback controller (EPC) 



Pose-stabilizing Feedback Control 

• We have developed a controller that allows the robot to reach 
an arbitrary target pose in a smooth curve. 

     [Park and Kuipers, ICRA-11] 
– While satisfying linear and angular velocity bounds, slowing down at 

high curvature points; 

– Without singularity at the target. 

– Target pose is exponentially stable. 

• It allows us to compactly parameterize smooth and realizable 
robot trajectories in terms of the target pose and the gain 
value (4D). 
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Pose-stabilizing Feedback Control 
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• (𝑟, ,  ) describes the target  T 
viewed from the vehicle in 
terms of the line of sight (LOS). 

• At 𝑟 = 0, LOS is aligned with T. [Park and Kuipers, ICRA-11] 



Pose-stabilizing Feedback Control 

• Curvature-dependent choice of linear velocity 
 

 

– Guarantees bounded linear and angular velocities 

• Slowdown rule near target pose 
 

 

– Removes singularity at 𝑟 → 0 

– Target pose is exponentially stable 

– 𝑣max can be viewed as a gain value 
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[Park and Kuipers, ICRA-11] 



Combined Controller-Robot Model 
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[Park and Kuipers, ICRA-11] 

• Closed-loop robot dynamic simulation with the controller 
target and gain, 𝑧∗ = (𝑟, 𝜃, 𝛿, 𝑣max) 

– Non-holonomic, motor saturations, and P-controller for velocities 
(joystick) 

– 𝑧∗ parameterize the simulated responses of the robot system under 
the feedback controller. 



Defining Our Search Space: 
Controller-based Trajectory Parameterization 

• Our 4D parameterization 𝑧∗ = (𝑟, 𝜃, 𝛿, 𝑣max) defines a continuous 
space of closed-loop trajectories. 

– It identifies a useful subspace of the infinite and continuous space of 
possible trajectories that are smooth and realizable by construction. 
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• Compact parameterization allows efficient search. 



Our MPEPC Approach: Objectives 

• Efficient search for candidate trajectories 

• Efficient evaluation of candidate trajectories, 
considering robot and pedestrian motion 
uncertainties 

• Easy and straightforward implementation 

• Accommodation of user preferences 
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Trajectory Evaluation 

• Trajectories parameterized by 𝑧∗: 

 

• Overall expected cost of a candidate trajectory, 
considering probability of collision 

 

 

 

– Negative progress over the static plan (Navigation Function, NF) 

– Penalty for probability of collision 

– Quadratic action cost (on velocities) 

 

 

 

 

14 



Incorporation of Motion Uncertainties 
Makes the Optimization Easier 

• We construct probability weights as a function 
of robot and pedestrian motion uncertainties 

– We define simple approximations for: 

• Probability of collision and 

• Survivability of a trajectory segment. 

– Probability weights allow us to formulate the 
problem as unconstrained optimization over a 
smooth surface. 
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Discrete Approximation to 
Probability of Collision and Survivability 

• For j-th sample along the trajectory, probability 
of collision to the i-th object in the map is 
approximated as: 
 

 
– 𝑑𝑖(𝑗) is the minimum distance from any part of the 

robot body to any part of the i-th object in the map 
at time j. 

– 𝜎𝑖 are uncertainty parameters.  

• Survivability of a trajectory segment is a 
probability that the trajectory segment will be 
collision free to any obstacles 
 
 
 

–   
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Incorporating Probability Weights and Expected Values 
 Creates a Smooth Optimization Surface 
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• Collision penalty weighted by 
probability of collision 

• Additive action cost to modify 
robot behavior 

• Progress weighted by 
survivability 
 



Expected Cost of a Trajectory Candidate 
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• The expected cost of a trajectory 
candidate is a probability-weighted 
time integral over [0, T] 

 

• Probability weights create a smooth 
cost surface by setting physically 
meaningful soft boundaries around 
obstacles 

 

• Weights on action cost can be tuned 
to match user preferences 



Expected Cost of a Trajectory Candidate 
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Progress Collision 

Action Overall 



Our MPEPC Approach: Objectives 

• Efficient generation of motion hypothesis and 
fine motion control 

• Efficient evaluation of candidate trajectories, 
considering robot and pedestrian motion 
uncertainties 

• Implementation is easy and straightforward 

• Action costs express user preferences 
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Implementation is Straightforward 
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• Off-the-shelf optimization packages 

– Low-dimensional unconstrained optimization on 
continuous domain 

– No special post processing or optimization techniques 

– Real-time operation (C++) 

• Two-phase optimization 

1. Coarse pre-sampling of the search space to find a good 
initial condition. 

2. Local gradient-based search from the best candidate 
from the pre-sampling phase. 
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Robot Motion MPEPC Planner 

Robot Motion MPEPC Planner 

MPEPC in Action 



The proposed navigation algorithm handles multiple dynamic objects. 

 We can shape robot behavior by changing weights in action cost. 

Moving 

aggressively in a 

cluttered hall with 

multiple 

pedestrians 

(low weights on 

action cost) 

Moving slowly in 

a cluttered hall 

with multiple 

pedestrians 

(high weights on 

action cost) 
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Different People Have Different Preferences 



Initial Tests on a Physical Platform 
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Navigation is a 
Constant Decision-Making Process 

• The navigation problem can be factored by 
decomposing the task in the hierarchical architecture. 

 

• The search for the optimal trajectory can be made 
easier by integrating planning and control. 

 

• Motion uncertainties need to be considered explicitly. 

 

• What do they teach in driving school? 
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Navigation is a 
Constant Decision-Making Process 

• The navigation problem can be factored by 
decomposing the task in the hierarchical architecture. 

 

• The search for the optimal trajectory can be made 
easier by integrating planning and control. 

 

• Motion uncertainties need to be considered explicitly. 

 

• Identify, predict, decide and execute. 

– Minimize the probability that you might get in trouble, while 
progressing along the road. 
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Conclusion 

• We provide a compact representation of a space of smooth 
and realizable trajectories. 

 

• We formulate local motion planning as an unconstrained 
optimization problem by computing expected values, using 
probability weights. 

 

• The formulation allows straightforward low-dimensional 
optimization on a continuous domain. 

 

• We have simple, easy to understand tunable parameters 
for qualitative robot behavior. 
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Thank You 
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