
Applied Bionics and Biomechanics 8 (2011) 411–428
DOI 10.3233/ABB-2011-0005
IOS Press

411

Robot object manipulation using stereoscopic

vision and conformal geometric algebra

Julio Zamora-Esquivela,∗ and Eduardo Bayro-Corrochanob

aIntel, Jalisco, Mexico
bDepartment of Electrical Engineering and Computer Science, CINVESTAV, Unidad Guadalajara,

Jalisco, Mexico

Abstract. This paper uses geometric algebra to formulate, in a single framework, the kinematics of a three finger robotic hand,

a binocular robotic head, and the interactions between 3D objects, all of which are seen in stereo images. The main objective is

the formulation of a kinematic control law to close the loop between perception and actions, which allows to perform a smooth

visually guided object manipulation.

Keywords: Conformal geometry, kinematics, grasping, tracking

1. Introduction

For the study of kinematics of mechanisms, differ-

ent mathematical frameworks have been used such as

vector calculus, quaternion algebra, or linear algebra,

the last one being the most frequently used. However,

in these mathematical systems it is very complicated

to handle the kinematics and dynamics involving geo-

metric primitives like points, lines, and planes. This

paper shows how the mathematical treatment is much

easier when it is handled in the conformal geometric

algebra framework. In order to exemplify, the formu-

lation of the kinematics for a binocular robot head and

for the Barrett hand are presented. In order to close

the loop between perception and action, the pose of

the object and the hand are estimated first, and then a

control law for approaching and grasping is applied.

This control law is geometrically formulated using the

visual-mechanical Jacobian matrix, which in turn is

computed using the principal lines of the camera and

the axis of the pan-tilt unit. In addition, it is shown

∗Corresponding author. Email: julio.zamora.esquivel@intel.com.

how to obtain a feasible grasping strategy based in the

mathematical model of the object and the manipulator.

2. Geometric algebra: An outline

Let Gn denote the geometric algebra of n-dimen-

sions, which is a graded-linear space. As well as

vector-addition and scalar multiplication, there is a

non-commutative product, which is associative and

distributive over addition. This is the geometric or Clif-

ford product.

The inner product of two vectors is the standard

scalar or dot product, which produces a scalar. The

outer or wedge product of two vectors is a new quan-

tity which we call a bivector. A bivector is thought of

as an oriented area in the plane containing a and b,

which is formed by sweeping a along b.

Thus, b ∧ a will have the opposite orientation,

making the wedge product anti-commutative. The

outer product is immediately generalizable to higher

dimensions. For example, (a ∧ b) ∧ c, a trivector, is

interpreted as the oriented volume formed by sweep-

ing the area a ∧ b along vector c. The outer product of

k vectors is a k-blade, and such a quantity is said to

1176-2322/11/$27.50 © 2011 – IOS Press and the authors. All rights reserved

mailto:julio.zamora.esquivel@intel.com

412 J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation

have grade k. A multivector the (linear combination of

objects of different grades) is a homogeneous k-vector

if it contains terms of only a single grade k.

In this paper, the geometric algebra Gn of the n

dimensional space by Gp,q,r will be specified, where

p, q and r stand for the number of basis vectors

which square to 1, −1 and 0 respectively and fulfill

n = p + q + r.

ei will be used to denote basis vector i. In the geo-

metric algebra Gp,q,r, the geometric product of two

basis vectors is defined as

eiej =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 for i=j∈1, . . . , p

−1 for i=j∈p + 1, . . . , p + q

0 for i=j∈p + q + 1, . . . , p + q + r.

ei ∧ ej for i /=j

This leads to a basis for the entire algebra:

{1}, {ei}, {ei ∧ ej}, {ei ∧ ej ∧ ek}, . . . ,

{e1 ∧ e2 ∧ . . . ∧ en} (1)

Any multivector can be expressed in terms of this

basis. The multivectors can be of grade 0 (scalars),

grade 1 (vectors), grade 2 (bivectors), grade 3 (trivec-

tors), etc., up to grade n (n-vectors). For example,

G4,1,0 has the basis

{1}, {e1, . . . , e5}, {e12, e13, . . . , e45},

{e123, . . . , e345}, {e1234, . . . , e2345}, {e12345 = I} (2)

where e2
1 = 1, e2

2 = 1, e2
3 = 1, e2

4 = 1, e2
5 = −1. G4,1,0

is a five-dimensional geometric algebra with 25 = 32

multivector blades.

3. Conformal geometry

Geometric algebra G4,1 = G4,1,0 can be used to

treat conformal geometry in a very elegant way. To

see how this is possible, the same formulation pre-

sented in [1] is followed, and the Euclidean vector

space R
3 is represented in R

4,1. This space has an

orthonormal vector basis given by {ei}. eij = ei ∧ ej

are bivectorial bases. Bivector basis e23, e31, and e12

correspond together with 1 to Hamilton’s quaternions.

The Euclidean pseudo-scalar unit Ie := e1 ∧ e2 ∧ e3,

a pseudo-scalar I = IeE, and the bivector E := e4 ∧

e5 = e4e5 are used for computing Euclidean and

conformal duals of multivectors. For more about con-

formal geometric algebra, refer to [1, 3, 4].

3.1. The stereographic projection

Conformal geometry is related to a stereographic

projection in Euclidean space. A stereographic pro-

jection consists on a mapping the points lying on a

hypersphere to points lying on a hyperplane. In this

case, the projection plane passes through the equator,

and the sphere is centered at the origin. To make a pro-

jection, a line is drawn from the north pole to each point

on the sphere and the intersection of this line, where

with the projection plane constitutes the stereographic

projection.

For simplicity, we will illustrate the equivalence

between stereographic projections and conformal geo-

metric algebra of R
1. We will be working in R

2,1 with

the basis vectors {e1, e4, e5} having the above men-

tioned properties. The projection plane will be the

x-axis, and the sphere will be a circle centered at the

origin with unitary radius.

Given a scalar xe representing a point on the x-

axis, point xc, lying on the circle that projects to it,

is calculated (see Fig. 1). The equation of the line

passing through the north pole and xe is given as

f (x) = − 1
xe

x + 1, and the equation of the circle is

x2 + g(x)2 = 1. Substituting the equation of the line

on the circle g = f , the point of intersection xc is

obtained, which can be represented in homogeneous

coordinates as the vector

xc = 2
xe

x2
e + 1

e1 +
x2
e − 1

x2
e + 1

e4 + e5. (3)

Fig. 1. Stereographic projection for 1-D.

J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation 413

From (3) we can infer the coordinates on the circle

for the point at infinity as

e∞ = limxe→∞ {xc}

= limxe→∞

{
2 xe

x2
e+1

e1 +
x2
e−1

x2
e+1

e4 + e5

}

= e4 + e5,

(4)

eo = 1
2 limxe→0 {xc}

= 1
2 limxe→0

{
2 xe

x2
e+1

e1 +
x2
e−1

x2
e+1

e4 + e5

}

= 1
2 (−e4 + e5),

(5)

Note that (3) can be rewritten as

xc = xe +
1

2
x2
ee∞ + eo, (6)

3.2. Spheres and planes

The equation of a sphere of radius ρ centered at

point pe ∈ R
3 can be written as (xe − pe)2 = ρ2. Since

xc · yc = −1/2(xe − ye)2, where xe and ye are the

Euclidean components, and xc · pc = −1/2ρ2, the for-

mula above can be rewritten in terms of homogeneous

coordinates. Since xc · e∞ = −1, the expression above

can be factored to

xc · (pc −
1

2
ρ2e∞) = 0, (7)

This equation corresponds to the so called Inner

Product Null Space (IPNS) representation, which

finally yields the simplified equation for the sphere

as s = pc − 1/2ρ2e∞ . Note from this equation that

a point is just a sphere with a radius of zero. Alterna-

tively, the dual of the sphere is represented as 4-vector

s∗ = sI. The advantage of the dual form is that the

sphere can be directly computed from four points as

s∗ = xc1 ∧ xc2 ∧ xc3 ∧ xc4 . (8)

If one of these points are replaced for the point at

infinity, the equation of a 3D plane is obtained

π∗ = xc1 ∧ xc2 ∧ xc3 ∧ e∞. (9)

So that π becomes in standard IPNS form

π = Iπ∗ = n + de∞ (10)

where n is the normal vector and d represents the

Hesse distance for the 3D space.

3.3. Circles and lines

A circle z can be regarded as the intersection of two

spheres s1 and s2 as z = (s1 ∧ s2) in IPNS. The dual

form of the circle can be expressed by three points lying

on the circle, namely

z∗ = xc1 ∧ xc2 ∧ xc3 . (11)

Similar to the case of planes, lines can be defined by

circles passing through the point at infinity as:

L∗ = xc1 ∧ xc2 ∧ e∞. (12)

The standard IPNS form of the line can be expressed

as

L = nIe − e∞mIe, (13)

where n and m stand for the line orientation and

moment, respectively. The line in the IPNS standard

form is a bivector representing the six Plücker coordi-

nates.

4. Rigid transformations

We can express rigid transformations in conformal

geometry carrying out plane reflections.

4.1. Reflection

The combination of reflections of conformal geo-

metric entities enables the forming of other transfor-

mations. The reflection of a point x with respect to

the plane π is equal to x minus twice the directed dis-

tance between the point and plane (see Fig. 2). That

is, ref (x) = x − 2(π · x)π−1. This expression is calcu-

lated by using the reflection ref (xc) = −πxcπ
−1 and

the property of Clifford product of vectors 2(b · a) =

ab + ba.

Table 1

Representation of conformal geometric entities in conformal geo-

metric algebra

Entity IPNS Representation OPNS Dual representation

Sphere s = p − 1/2ρ2e∞ s∗ = x1 ∧ x2 ∧ x3 ∧ x4

Point xc = xe + 1/2x2
ee∞ + e0 x∗ = s1 ∧ s2 ∧ s3 ∧ s4

Line L = nIe − e∞mIe L∗ = x1 ∧ x2 ∧ e∞

Plane π = n + de∞ π∗ = x1 ∧ x2 ∧ x3 ∧ e∞

Circle z = s1 ∧ s2 z∗ = x1 ∧ x2 ∧ x3

Pair of P Pp = s1 ∧ s2 ∧ s3 P∗
p = x1 ∧ x2

414 J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation

Fig. 2. Reflection of a point x with respect to the plane π.

Fig. 3. Reflection about parallel planes.

For a IPNS geometric entity Q, the reflection with

respect to the plane π is given as

Q′ = πQπ−1 (14)

4.2. Translation

The translation of conformal geometric entities can

be done by carrying out two reflections at parallel

planes π1 and π2 (see Fig. 3). That is

Q′ = (π2π1)︸ ︷︷ ︸
Ta

Q(π−1
1 π−1

2)︸ ︷︷ ︸
T̃a

(15)

Ta = (n + de∞)n = 1 +
1

2
ae∞ = e

a
2 e∞ (16)

with a = 2dn.

Fig. 4. Reflection about nonparallel planes.

4.3. Rotation

The rotation is the product of two reflections at

nonparallel planes which pass through the origin (see

Fig. 4)

Q′ = (π2π1)︸ ︷︷ ︸
Rθ

Q(π−1
1 π−1

2)︸ ︷︷ ︸
R̃θ

(17)

Or computing the conformal product of the normals

of the planes.

Rθ = n2n1 = cos

(
θ

2

)
− sin

(
θ

2

)
l = e− θ

2 l (18)

with l = n2 ∧ n1 and θ twice the angle between the

planes π2 and π1. The screw motion called motor is

related to an arbitrary axis L is M = TRT̃

Q′ = (TRT̃)︸ ︷︷ ︸
Mθ

Q(T R̃T̃)︸ ︷︷ ︸
M̃θ

(19)

Mθ = TRT̃ = cos

(
θ

2

)
− sin

(
θ

2

)
L = e− θ

2 L (20)

The direct kinematics for serial robot arms is a suc-

cession of motors as can be seen in [2], and it is valid

for points, lines, planes, circles, and spheres

Q′ =

n∏

i=1

MiQ

n∏

i=1

M̃n−i+1 (21)

J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation 415

5. Barrett hand direct kinematics

In this work, the Barret hand is used, which is a

type of spherical hand. This hand has three fingers,

which are moved around a circle mimicking a five to

six fingered hand. It was found quite convenient to for-

mulate the kinematics of the Barret in the conformal

geometric algebra framework because this mathemati-

cal system offers a very powerful geometric language,

which uses as computational geometric unit the sphere.

The grasping of this spherical hand can be formulated

in an intuitive and easy way in terms of geometric

entities like lines, planes, circles, and spheres, see [3].

The direct kinematics involves the computation of

the position and orientation of the end-effector given

the parameters of the joints. The direct kinematics can

be easily computed given the lines of the screws.

In order to explain the kinematics of Barrett hand,

the kinematic of one finger is shown. This example

will assume that the finger is totally extended. Note

that such a hypothetical positions is not reachable in

normal operation, but it simplifies the explanation.

We initiated denoting some points on the finger,

which help describe their position.

x1o = Awe1 + A1e2 + Dwe3, (22)

x2o = Awe1 + (A1 + A2)e2 + Dwe3, (23)

x3o = Awe1 + (A1 + A2 + A3)e2 + Dwe3. (24)

The points x1o, x2o, and x3o describe the position of

each joint and the end of the finger in the Euclidean

space, see Fig. 5.

Fig. 5. Barrett hand hypothetical position.

Each one of these points is mapped to a point of

conformal geometry by x = x + 1/2 ‖x‖2 e∞ + eo

Once these points have been defined, it is quite sim-

ple to calculate the axis lines

L1o = −Aw(e2 ∧ e∞) + e12, (25)

L2o = (x1o ∧ e1 ∧ e∞) Ic, (26)

L3o = (x2o ∧ e1 ∧ e∞) Ic. (27)

which will then be used as motor’s axes. When the

hand is initialized, the fingers move away to home

position. That means �2 = 2.46o in the joint two and

�3 = 50o degrees in joint three. In order to move

the finger from this hypothetical position to its home

position, an appropriate transformation needs to be

obtained

M2o = cos (�2/2) − sin(�2/2)L2o, (28)

M3o = cos (�3/2) − sin(�3/2)L3o. (29)

Once the transformations have been calculated, they

are applied to the points and lines, which must move.

x2 = M2ox2oM̃2o, (30)

x3 = M2oM3ox3oM̃3oM̃2o, (31)

L3 = M2oL3oM̃2o. (32)

The point x1 = x1o is not affected by the transfor-

mation, the same for the lines L1 = L1o and L2 = L2o

(see Fig. 6).

Since the rotation angle of both axis L2 and L3 are

related, fractions of angle q1 will be used to describe

their individual rotation angles. The motors of each

joint are computed using (2/35)2q4 to rotate around

L1, (1/125)q1 around L2 and (1/375)q1 around L3,

the angles’ coefficients where taken from the Barrett

hand user manual.

M1 = cos(q4/35) + sin(q4/35)L1, (33)

M2 = cos(q1/250) − sin(q1/250)L2, (34)

M3 = cos(q1/750) − sin(q1/750)L3. (35)

The position of each point is related to the angles q1

and q4 as follows:

416 J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation

Fig. 6. Barrett hand at home position.

Fig. 7. Pan tilt unit has 2 D.O.F. and the depth as a virtual D.O.F.

x′
1 = M1x1M̃1, (36)

x′
2 = M1M2x2M̃2M̃1, (37)

x′
3 = M1M2M3x3M̃3M̃2M̃1. (38)

L′
3 = M1M2L3M̃2M̃1, (39)

L′
2 = M1L2M̃1. (40)

Sincex′
3,L′

1,L′
2 andL′

3 are already known, the speed

of the end of the finger can be calculated as follows

Ẋ′
3 = X′

3 ·

(
−

2

35
L′

1q̇4 +
1

125
L′

2q̇1 +
1

375
L′

3q̇1

)
.

(41)

where q̇1 and q̇4 represent the velocity of its respective

joint.

6. Tracking

An example using our new formulation of the Jaco-

bian will be presented. This is the control of a pan-tilt

unit.

6.1. The pan-tilt unit

An algorithm for the velocity control of a pan-

tilt unit (PTU Fig. 7) is implemented assuming three

degree of freedom. The stereo depth is considered as

one virtual D.O.F., thus the PTU has a similar kine-

matic behavior as a serial robot arm with three D.O.F.

In order to carry out a velocity control, the direct

kinematics need to be computed first. This is very easy

to do, the axis lines are known:

L1 = −e31 (42)

L2 = e12 + d1e1e∞ (43)

L3 = e1e∞ (44)

Since Mi = e− 1
2 qiLi and M̃i = e

1
2 qiLi , the position

of end effectors is computed as

xp(q) = x′
p = M1M2M3xpM̃3M̃2M̃1. (45)

The state variable representation of the system is as

follows

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ′
p = x′ · (L′

1 L′
2 L′

3)

⎛
⎜⎝

u1

u2

u3

⎞
⎟⎠

y = x′
p

(46)

where the position of end effector at home position xp

is the conformal mapping of xpe = d3e1 + (d1 + d2)e2

(see eq. 6), the line L′
i is the current position of Li and

ui is the velocity of the i-joint of the system. As L3 is

an axis at infinity M3 is a translator, that is, the virtual

component is a prismatic joint.

J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation 417

6.2. Exact linearization via feedback

The following state feedback control law is now

chosen in order to get a new linear system.

⎛
⎜⎝

u1

u2

u3

⎞
⎟⎠ = (x′

p · L′
1 x′

p · L′
2 x′

p · L′
3)

−1

⎛
⎜⎝

v1

v2

v3

⎞
⎟⎠ (47)

where V = (v1, v2, v3)T is the new input to the linear

system. Then, the equations of the system are rewritten

{
ẋ′
p = V

y = x′
p.

(48)

6.3. Asymptotic output tracking

The problem of following a constant reference xt

is solved computing the error between the end effec-

tor’s position x′
p and the target position xt as er =

(x′
p ∧ xt) · e∞. The control law is then given by

V = −ke (49)

This error is small if the control system is doing it’s

job. The actual error is mapped to an error in the joint

space using the Jacobian inverse.

U = J−1V (50)

where the Jacobian is expressed as J = x′
p ·

(L′
1 L′

2 L′
3)

j1 = x′
p · (L1)

j2 = x′
p · (M1L2M̃1)

j3 = x′
p · (M1M2L3M̃2M̃1) (51)

Once the Jacobian is calculated, it is easy to com-

pute the dqi using crammer’s rule in terms of wedge

products.

⎛
⎜⎝

u1

u2

u3

⎞
⎟⎠ = (j1 ∧ j2 ∧ j3)−1 ·

⎛
⎜⎝

V ∧ j2 ∧ j3

j1 ∧ V ∧ j3

j1 ∧ j2 ∧ V

⎞
⎟⎠ (52)

This is possible because j1 ∧ j2 ∧ j3 = det(J)Ie.

Finally we have dqi which will tend to reduce these

errors. This control law could be used in case of

j1 /= j2 /= j3, otherwise the Jacobian matrix will have

singularities. Then the pseudo inverse of Jacobian most

be used.

6.4. Pseudo-inverse of the Jacobian

Since j1 and j2 are tree dimensional vectors, they

generate a 3 × 2 Jacobian matrix. In this case the

pseudo inverse of Jacobian matrix is being used to

create a new control law

J =
[
j1 j2

]
(53)

Using the pseudo-inverse of Moore-Penrose

J+ = (JT J)−1JT (54)

Now evaluating J in 54

J+ =
1

det(JT J)

(
(j2 · j2)j1 − (j2 · j1)j2

(j1 · j1)j2 − (j2 · j1)j1

)
(55)

Using Clifford algebra, this equation could be fur-

ther simplified

det(JT J) = (j1 · j1) (j2 · j2) − (j1 · j2)2 (56)

= (|j1||j2|)
2 − (|j1||j2|)

2cos2(θ), (57)

= (|j1||j2|)
2sin2(θ), (58)

= |j1 ∧ j2|
2 (59)

θ being the angle between vectors. Each J+ row could

be simplified as follows

(j2 · j2)j1 − (j2 · j1)j2 = j2 · (j2 ∧ j1) (60)

(j1 · j1)j2 − (j2 · j1)j1 = j1 · (j1 ∧ j2) (61)

Now the equation (54) can be rewritten as

J+ =
1

|j1 ∧ j2|
2

(
j2 · (j2 ∧ j1)

j1 · (j1 ∧ j2)

)

=

(
j2 · (j2 ∧ j1)−1

j1 · (j1 ∧ j2)−1

)
(62)

418 J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation

Using this equation, the input can be computed as

U = J+V . That is equal to

U = (j1 ∧ j2)−1 ·

(
V ∧ j2

j1 ∧ V

)
(63)

Note that in subsections 6.3 and 6.4, the Jacobian,

its inverse, and pseudo-inverse was formulated using

wedge products. This gives a geometric interpretation

of the matrix columns. The existence of singularities

is inherent to the problem, and it is independent of the

mathematical formalism. However, the use of confor-

mal geometric algebra helps formulate the entries of

the Jacobian in terms of inner products of centers of

mass and the involved line axes (see equation 51). The

independence of the columns indicate the presence of

singularities, which, due to our geometric representa-

tion, orient us directly towards the robot configuration

we should expect a singularity from. The equation 52 is

also an interesting and very useful equation where the

entries of the Jacobian, with fully geometric interpre-

tation, are combined with the control law V to compute

the joint velocities. This way, the equation that relates

the joint velocities with the velocities of projected 3D

points will be derived below . This can be used to moni-

tor the use of monocular vision motion in the 3D visual

space.

6.5. Visual tracking

The target point is measured using two calibrated

cameras (see Fig. 8). With each image, the center of

Fig. 8. Stereo cameras.

0 50 100 150 200 250

−30

−25

−20

−15

−10

−5

0
x−PTU

x−Object

0 50 100 150 200 250
−15

−10

−5

0

5

10

15

20

25

30
y−Object

y−PTU

0 50 100 150 200 250
−20

−15

−10

−5

0

5

10

15

20

25

30
z−Object

z−PTU

Fig. 9. (x, y, z) coordinates of the focus of attention.

J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation 419

mass of the object in movement is estimated and retro-

projected in order to finally estimate its 3D point. To

compute the mass center, the current image Ia is first

subtracted to an image in memory Ib. The image in

memory is the average of the last N images. This allows

the background to be subtracted.

Ik(t) = Ia(t) − Ib(t − 1) ∗ N (64)

Ib(t) = (Ib(t − 1) ∗ N + Ia)/(N + 1) (65)

Afterwards, the moments of x and y are computed.

They are divided by the mass (pixels in movement),

which corresponds to the intensity difference between

the current and the memory images. This is the way

the mass center is calculated.

xo =

∫ n

0

∫ m

0 Ikydxdy∫ n

0

∫ m

0 Ikdxdy
(66)

yo =

∫ n

0

∫ m

0 Ikxdxdy∫ n

0

∫ m

0 Ikdxdy
(67)

When the camera moves, the background changes.

Then, it is necessary to reset N to 0 in order to restart

the tracking process.

Once points (Xo, X
′
o) are located in the images, the

lines of retro-projection are calculated.

L = Xoc ∧ Cc ∧ e∞, (68)

L′ = X′
oc

∧ Cc ∧ e∞. (69)

The 3D point is the intersection of these lines.

In tracking experiment, the binocular head should

smoothly track a target. The Fig. (9) shows the 3D

coordinates of the focus of attention. Figure 10 shows

examples of the image sequence. The curves of the 3D

object trajectory are very rough. However, the control

rule manages to keep the trajectory of the pan-tilt unit

smooth.

6.6. Visual Jacobian

A point in the image is given by s = (x, y)T .

Whereas a 3-D point is represented by X. The rela-

tionship between ṡ and Ṡ is called visual Jacobian.

The projection matrix of a camera in general position

is represented by the planes π1, π2 y π3.

P =

⎛
⎜⎝

π1

π2

π3

⎞
⎟⎠ , (70)

Point X is projected onto the image at the point

Fig. 10. Tracking sequence.

420 J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation

s =

(
π1·X
π3·X

π2·X
π3·X

)
(71)

To simplify the explanation, variable x is introduced

and its time derivative ẋ defined as

x =

⎛
⎜⎝

π1 · X

π2 · X

π3 · X

⎞
⎟⎠ ẋ =

⎛
⎜⎝

π1 · Ẋ

π2 · Ẋ

π3 · Ẋ

⎞
⎟⎠ (72)

Furthermore s is given by s1 = x1/x3 and its

derivative

ṡ1 = ẋ1
1

x3
+ x1

(
−ẋ3

x2
3

)
(73)

ṡ1 =
x3ẋ1 − x1ẋ3

x2
3

(74)

By substitution of x and ẋ in equation 74 one gets

ṡ1 = κ [(π3 · X) π1 − (π1 · X) π3] · Ẋ (75)

ṡ1 = κ [X · (π3 ∧ π1)] · Ẋ (76)

where κ = 1/x2
3. Following the same algebraic steps

for s2, it is possible to write the following equation

ṡ = κX ·

(
π1 ∧ π3

π2 ∧ π3

)
· Ẋ (77)

Geometrically, π1 ∧ π3 represents an intersection

line of planes π1 and π3. We denote the lines of these

intersections by Lx and Ly

Lx = π1 ∧ π3 (78)

Ly = π2 ∧ π3 (79)

It is possible then to rewrite 77 as

ṡ = κX ·

(
Lx

Ly

)
· Ẋ (80)

In order to close the loop between the perception

and action, the relationship between velocities at the

points of the image and the velocities of the joints of

the pan-tilt unit are computed.

Taking the equation of differential kinematics 46 and

visual Jacobian 80, it is possible to finally write a new

expression

ṡ = κ

((
X′ · L′

x

)
·
(
X′ · L′

1

) (
X′ · L′

x

)
·
(
X′ · L′

2

)
(
X′ · L′

y

)
·
(
X′ · L′

1

) (
X′ · L′

y

)
·
(
X′ · L′

2

)
)

q̇ (81)

Equation 81 can be used to relate the visual world

with the robot mechanism (pan-tilt unit). Since the

velocities at the joints q̇i can be estimated, the inverse

differential kinematics of the mechanism can be com-

puted backwards until the first joint is reached close

to the camera. Then, by computing the inner product

of the center of mass of the limbs with the joint axes

Li together with q̇1 of the first joint near to the cam-

era, equation 81 can be computed. This equation for

monocular vision follows the velocity of 3D points.

Since the complexity of the expression is greatly

reduced, and it is robust due to the use of inner products

with line axes, the approach is fast and accurate. The

associated control is linear, thus the error is minimized

through time guaranteeing its convergence.

6.7. Exact linearization via feedback

The following state feedback control law is now

chosen in order to get a new linear and controllable

system.

(
u1

u2

)
=

((
X′ · L′

x

)
·
(
X′ · L′

1

) (
X′ · L′

x

)
·
(
X′ · L′

2

)
(
X′ · L′

y

)
·
(
X′ · L′

1

) (
X′ · L′

y

)
·
(
X′ · L′

2

)
)−1

×

(
v1

v2

)

where V = (v1, v2)T is the new input to the linear

system. The equations of the system are then rewritten

{
ṡ′p = V

y = s′p
(82)

J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation 421

Fig. 11. Sequence of tracking.

For this test, the task of tracking of a circuit board

was selected. The coordinate system was selected at

the center of the camera, and the principal planes of

the camera are given by

π1 = fxe1 + xoe3 (83)

π2 = fye2 + yoe3 (84)

π3 = e3 (85)

where fx, fy, xo y yo are the camera’s parameters.

Using these planes, lines Lx y Ly are computed. The

axis of the pan-tilt is known.

L1 = e23 + d1e2 (86)

L2 = e12 + d2e2 (87)

Note that the tilt axis is called L1, and the pan

axis is L2 because the coordinate system is in the

camera. L′
2 is a function of the tilt angle L′

2 =

M1L2M̃1 with M1 = cos(θtilt) + sen(θtilt)L1. In this

experiment, a point on the circuit board was selected,

and, using the KLT algorithm, the displacement was

tracked in the image transforming the velocities of the

Fig. 12. Mathematical model of the object.

pan-tilt’s joint using the visual-mechanical Jacobian

of Eq. VI-D.

In Fig. 11, a sequence of images captured by the

robot can be seen. In these images, one can see that the

position of the circuit board does not change while the

background is in continuous change.

422 J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation

Fig. 13. Pose estimation of a disc with a fixed camera.

Fig. 14. Pose estimation of a recipient.

7. Pose estimation

There are many approaches to solve the pose esti-

mation problem. This particular approach, the known

mathematical model of the object is projected on the

camera’s image. This is possible because, after the cal-

ibration, the intrinsic parameters of the camera are

known, see Fig. 12. The image of the mathematical

projected model is compared with the image of the seg-

mented object. If a match is found between them, then

this means that the mathematical object is placed in

the same position and orientation than the real object.

Otherwise, the descendant gradient will be followed to

rotate and translate the mathematical model, in order

to reduce the registration error.

Figure 13 shows the pose estimation result. In this

case, there is a maximum error of 0.4◦ in the orientation

estimation and 5 mm of maximum error in the posi-

tion estimation of the object. The problem becomes

more difficult to solve when the stereoscopic system is

moving. Figure 14 shows the result of this approach.

To know the real object’s position with respect to the

world coordinate system, it is necessary to know the

extrinsic camera’s parameters. Figure 15 illustrates

the object’s position and orientation with respect to

the robot’s hand. In the upper row of this image,

an augmented reality position sequence of the object

can be seen. This means that the mathematical object

can be added in the real image. Furthermore, in the

second row of the same image, the result of the pose

estimation can be seen in virtual reality.

8. Grasping the objects

The complexity of grasping objects depends greatly

on the nature of the object surface, its weight, and its

3D location. Platonic objects are easy to recognize and

grasp. In contrast, real objects can have high nonlinear

surfaces, holes, and can even be flexible. This paper fol-

lows a simple approach based on one of Newton’s basic

rules, which takes into consideration certain forces and

moments in equilibrium. The robot grasper has to iden-

tify key grasping points. In this regard, grasping rules

will be developed using geometric products of entities

like points, lines, planes, circles, and spheres in order

to discover the key grasping points. Due to the sim-

plicity of the rules, they are not computational time

consuming.

J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation 423

Fig. 15. Augmented reality representing an object and the robot hand.

Table 2

Functions describing the surface of objects

Particle H = 3e1 + 4e2 + 5e3

Sphere H = cos(s)cos(t)e1 + cos(s)sin(t)e2 + sin(s)e3

Cylinder H = cos(t)e1 + sin(t)e2 + se3

Plane H = te1 + se2 + (3s + 4t + 2)e3

Considering that the use of cameras only allows

vision of the surface of the observed objects, this paper

will consider these surfaces as bi-dimensional and

embedded in a 3D space. The surfaces can be described

by the following function

H(s, t) = hx(s, t)e1 + hy(s, t)e2 + hz(s, t)e3 (88)

where s and t are real parameters in the range [0, 1].

Such parametrization allows us to work with differ-

ent objects like points, conics, quadric, or even more

complex objects like cups, glasses, etc.

Since the objective is to grasp such objects with the

Barrett Hand, the consideration that it only has three

fingers must be made. Therefore, the problem consists

in finding three “touching points” for which the system

is in equilibrium during the grasping; this means that

the sum of the forces equals to zero, as well as the

sum of the moments. For this case, the consideration

Fig. 16. The friction cone.

that there friction exists in each “touching point” was

made.

As friction is being considered, a set of forces that

can be applied exist over surface H(s, t); such forces

424 J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation

are inside a cone which has a normal vector N(s, t) of

the surface as its axis (as shown in Fig. 16), and its

radius depends on the friction’s coefficient.

‖F − Fn‖ ≤ −µ(|Fn|), (89)

Fn = (F · N(s, t))N(s, t) is the normal component of

F . The angle for the incidence of F with respect to the

normal can be calculated using the wedge product and

should be smaller than a fixed θµ

‖F ∧ N(s, t)‖

F · N(s, t)
≤ tan(θµ). (90)

The surface of the object is known, so its normal

vector can be computed in each point using

N(s, t) =

(
∂H(s, t)

∂s
∧

∂H(s, t)

∂t

)
Ie. (91)

In surfaces with little friction, angle θ is very small.

Therefore, the value of F tends to its projection over the

normal (F ≈ Fn). To maintain equilibrium, the sum of

the forces must be zero (Fig. 17).

3∑

i=1

‖Fn‖ N(si, ti) = 0. (92)

This fact restricts the grasp points over the surface in

which the forces can be applied. This number of points

is more reduced if it’s considered that the forces over

the object are equal considering the unit normal.

3∑

i=1

N(si, ti) = 0. (93)

Additionally, to maintain the equilibrium, the sum of

moments must be zero

3∑

i=1

H(s, t) ∧ N(s, t) = 0. (94)

The points on the surface having the same directed

distance to the center of mass of the object fulfill

H(s, t) ∧ N(s, t) = 0. Because the normal in such

points crosses the center of mass (Cm), it does

not produce any moment. Before determining the

external and internal points, the center of mass must

be computed as

Cm =

∫ 1

0

∫ 1

0

H(s, t)dsdt. (95)

Fig. 17. Object and its normal vectors.

Fig. 18. Object relative position.

J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation 425

Once Cm is calculated, the next constraint can be

established

(H(s, t) − Cm) ∧ N(s, t) = 0. (96)

The values s and t satisfying (96) form a sub-

space called “grasping space”, and they accomplish

that H(s, t) are critical points on the surface (being

maximums, minimums, or inflections). The equation

(96) is hard to fulfill due to the noise, and it is neces-

sary to consider a cone of vectors. So, an angle called

α is introduced,

‖(H(s, t) − Cm) ∧ N(s, t)‖

(H(s, t) − Cm) · N(s, t)
≤ tan(α) (97)

Since cameras are being manipulated, a cloud of

points can be obtained, and a surface can be interpo-

lated between these points. This procedure, however,

introduces errors and equation (96), unfortunately, can-

not be satisfied; for this reason, equation (97) is used,

which allows some looseness.

The constraint imposing that the three forces must

be equal is hard to fulfill because it implies that the

three points must be symmetric with respect to the mass

center. When such points are not present, the constraint

can be relaxed to allow that only two forces are equal

in order to fulfill the hand’s kinematic equations. Then,

the normals N(s1, t1) and N(s2, t2) must be symmetric

with respect to N(s3, t3) (see Fig. 18).

Fig. 19. Grasping an sphere.

Fig. 20. Grasping a disc.

426 J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation

Fig. 21. Grasping an egg.

Fig. 22. Visually guided grasping.

J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation 427

Fig. 23. Changing the object’s pose.

N(s3, t3)N(s1, t1)N(s3, t3)−1 = N(s2, t2) (98)

Once the three grasping points (P1 = H(s1, t1),

P2 = H(s2, t2), P3 = H(s3, t3)) are calculated, it is

really easy to determine the angles at the joints of each

finger. To determine the angle of the spread (q4 = β),

the following are used

cos(β) =
(p1 − Cm) · (Cm − p3)

|p1 − cm| |Cm − p3|
(99)

sin(β) =
|(p1 − Cm) ∧ (Cm − p3)|

|p1 − cm| |Cm − p3|
(100)

To calculate each one of the finger angles, its elongation

is determined as

x′
3 · e2 = |(p1 − Cm)| −

Aw

sin(β)
− A1. (101)

x′
3 · e2 = |(p2 − Cm)| −

Aw

sin(β)
− A1. (102)

x′
3 · e2 = |(p3 − Cm)| + h − A1. (103)

where x′
3 · e2 determines the opening distance of the

finger

x′
3 · e2 = (M2M3x3M̃3M̃2) · e2 (104)

x′
3 · e2 = A1 + A2 cos

(
1

125q + I2

)

+A3 cos
(

4
375q + I2 + I3

)
(105)

Solving for angle q results in the opening angle for

each finger. On the other hand, transformation M must

be found, which allows the hand to be put in a such way

that each finger-end coincides with the correspond-

ing contact-point. Such transformation M is divided in

three transformations (M1, M2, M3) for the sole pur-

pose of an easy explanation. With the same purpose,

the finger-ends are labeled as X1, X2, and X3, and the

contact-points as P1, P2, and P3.

428 J. Zamora-Esquivel and E. Bayro-Corrochano / Robot object manipulation

The first transformation M1 is the translation

between the object and the hand, which is equal to

the directed distance between the centers of the circles

called Z∗
h = X1 ∧ X2 ∧ X3 and Z∗

o = P1 ∧ P2 ∧ P3,

and it can be calculated as

M1 = e
− 1

2

(
Z∗

h
Z∗

h
∧e∞

∧
Z∗

o
Z∗

o∧e∞
∧e∞

)
Ic

(106)

The second transformation allows the alignment

of the planes π∗
h = Z∗

h = X1 ∧ X2 ∧ X3 ∧ e∞ and

π∗
o = Z∗

o ∧ e∞, which are generated by the new points

of the hand and the object. This transformation is cal-

culated as

M2 = e− 1
2 πh∧πo (107)

The third transformation allows the points to over-

lap. This can be calculated using the planes π∗
1 = Zo ∧

X3 ∧ e∞ and π∗
2 = Zo ∧ P3 ∧ e∞, which are gener-

ated by the circle’s axis and any of the points

M3 = e− 1
2 π1∧π2 (108)

The transformation M = M3M2M1 can be parame-

trized to generate a trajectory for the object grasping.

9. Results

This section presents the experimental results of our

grasping algorithm. Each pair of images corresponds

to the simulated and the real one (see images 15–18).

These images show the Barret hand in action. For each

object, the algorithm manages to find the optimal grasp

points, so that the object is held properly and in equi-

librium. Note that the found points correspond to the

natural grasping points.

The results of the combination of pose estimation

algorithms, visual control, and grasping are presented

to create a new algorithm for visually guided grasp-

ing. In image 22 a sequence of images of the grasping

achieved is presented. As the bottle approaches the

hand, the fingers look for possible grasp points.

When the object pose or the object itself is changed,

the algorithm computes a new grasping approach.

Image (23) shows a sequence of images changing the

pose of the object.

10. Conclusion

The visual Jacobian matrix and direct kinematics

of robotic devices such as the Barrett hand and the

Pan-Tilt unit were modeled using the powerful confor-

mal geometric algebra as computational framework.

To close the loop between perception and action, the

poses of the object and the hand are estimated. Then,

a control law for approaching and grasping is applied.

This control law is geometrically formulated using the

visual-mechanical Jacobian matrix, which in turn is

computed using the principal lines of the camera and

the axis of the pan-tilt unit. This paper proves that

based on the intrinsic information of an object, it is

possible to find a feasible grasping strategy. In this

case, the conformal geometric algebra helps resolve

this kind of problems using lines and planes as vector

or bivectors instead of points as it is done in classi-

cal vector calculus. The experimental results confirm

the efficiency of these algorithms for visual track-

ing, grasping, pose estimation, and visually guided

grasping.

References

[1] H. Li, D. Hestenes and A. Rockwood, Generalized

homogeneous coordinates for computational geometry, in

Geometric Computing with Clifford Algebras, G. Somer, ed.,

Springer-Verlag, Heidelberg, 2001, pp. 27–52.

[2] E. Bayro-Corrochano and D. Kähler, Motor algebra approach

for computing the kinematics of robot manipulators,

Journal of Robotics Systems 17(9) (2000), 495–516.

[3] E. Bayro-Corrochano, Robot perception using clifford con-

formal geometry, Chap. 13, in Handbook of Computational

Geometry for Pattern Recognition, Computer Vision, Neuro-

computing and Robotics, E. Bayro-Corrochano, ed., Springer

Verlag, Heidelberg, May 2005.

[4] L.E. Falcon-Morales and E. Bayro-Corrochano, Design of

algorithms of robor vision using conformal geometric alge-

bra. International Mathematical Forum, Journal of Theory and

Applications 2 (2007), 17–20.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

