
Robot Operating System 2: Design, Architecture, and Uses In The Wild

Steve Macenski
Samsung Research America
s.macenski@samsung.com

Tully Foote
Open Robotics

tfoote@openrobotics.org

Brian Gerkey
Open Robotics

gerkey@openrobotics.org

Chris Lalancette
Open Robotics

clalancette@openrobotics.org

William Woodall
Open Robotics

william@openrobotics.org

Abstract— 1The next chapter of the robotics revolution is well
underway with the deployment of robots for a broad range of
commercial use-cases. Even in a myriad of applications and
environments, there exists a common vocabulary of components
that robots share - the need for a modular, scalable, and reliable
architecture; sensing; planning; mobility; and autonomy. The
Robot Operating System (ROS) was an integral part of the last
chapter, demonstrably expediting robotics research with freely-
available components and a modular framework. However, ROS
1 was not designed with many necessary production-grade fea-
tures and algorithms. ROS 2 and its related projects have been
redesigned from the ground up to meet the challenges set forth
by modern robotic systems in new and exploratory domains at
all scales. In this review, we highlight the philosophical and
architectural changes of ROS 2 powering this new chapter
in the robotics revolution. We also show through case studies
the influence ROS 2 and its adoption has had on accelerating
real robot systems to reliable deployment in an assortment of
challenging environments.

I. INTRODUCTION

Many software platforms have been proposed, sometimes
called middlewares, introducing modular and adaptable fea-
tures making it easier to build robot systems. Over time,
some middlewares have grown to become rich ecosystems
of utilities, algorithms, and sample applications. Few rival
the Robot Operating System (ROS 1) in its significance on
the maturing robotics industry.

ROS 1 was popularized by the robotics incubator, Willow
Garage [1]. Every effort was made to create a quality
and performant system, but security, network topology, and
system up-time were not prioritized. Regardless, ROS 1
has become influential in nearly every intelligent machine
sector. Its commercial rise was the result of flagship projects
providing autonomous navigation, simulation, visualization,
control, and more [2], [3], [4]. As commercial opportunities
transitioned into products, ROS’s foundation as a research
platform began to show its limitations. Security, reliability
in non-traditional environments, and support for large scale

1This manuscript has been accepted for publication in Science Robotics.
This version has not undergone final editing. Please refer to the complete
version of record at https://www.science.org/doi/10.1126/
scirobotics.abm6074. The manuscript may not be reproduced or
used in any manner that does not fall within the fair use provisions of
the Copyright Act without the prior, written permission of AAAS.

embedded systems became essential to push the industry for-
ward. Further, many companies where building workarounds
on top or inside of ROS 1 to create reliable applications [5].

The second generation of the Robot Operating System,
ROS 2, was redesigned from the ground up to address these
challenges while building on the success of its community-
driven capabilities [6]. ROS 2 is based on the Data Dis-
tribution Service (DDS), an open standard for communica-
tions that is used in critical infrastructure such as military,
spacecraft, and financial systems [7]. It solves many of the
problems in building reliable robotics systems. DDS enables
ROS 2 to obtain best-in-class security, embedded and real-
time support, multi-robot communication, and operations
in non-ideal networking environments. DDS was selected
after considering other communication technologies, e.g.
ZeroMQ, RabbitMQ, due to its breadth of features including
a UDP transport, distributed discovery, a builtin security
standard [8].

In this review article, we will establish ROS 2’s state of
the art suitability for modern robot systems and showcase
the technological and philosophical changes that have driven
its success. Then, we will expand on that foundation to
demonstrate how ROS 2 is influencing the deployment of
autonomous systems in several unique domains. Five case
studies explore how ROS 2 has enabled or accelerated robots
into the wild on land, sea, air, and even space.

II. RELATED WORK

The history of robot software is long and storied, going
back more than 50 years with robots like Shakey [9].
Over time, much has been written about how to structure
classical planners, concurrent behaviors, and three-layer ar-
chitectures [10], [11], [12]. An early example of this is
the Task Control Architecture (TCA), which was used to
control a variety of robots. For example, CARMEN was
built on TCA’s message-passing system called IPC (Inter-
Process Communications) [13], [14]. Message-passing has
its own rich history in distributed systems: from IBM’s work
on message queuing, Java’s Jini, and middlewares such as
MQTT [15], [16], [17].

Robotics frameworks provide architectural methods to
decompose complex software into smaller and more man-

ar
X

iv
:2

21
1.

07
75

2v
1

 [
cs

.R
O

]
 1

4
N

ov
 2

02
2

https://www.science.org/doi/10.1126/scirobotics.abm6074
https://www.science.org/doi/10.1126/scirobotics.abm6074

ageable pieces. Some of these components can find re-use
in other systems and may be established into libraries to
be leveraged by users. An early attempt to manage this
complexity was via a client/server approach in Player [18].
A Player server communicates with robot hardware and runs
the algorithms needed to perform its task. Clients can connect
to the server to extract data and control the robot over a TCP
connection. However, its architecture hampered reliability,
code reuse, and ability to change out components.

YARP aids in building control systems organized as peers,
communicating over several protocols [19]. It facilitates
research development and collaboration by promoting code
reuse and modularity while retaining high performance.
YARP can be used for any application, but its community
has focused on humanoid and legged robotics, such as iCub
and the MIT Cheetah and only supports C++.

LCM is a middleware which uses a publish/subscribe
model with bindings in many languages. It concentrates on
handling messaging and data marshalling in high-bandwidth
low-latency environments [20]. This limits the range of
robotic applications for which LCM can be effectively used.
OROCOS is a set of libraries for robot control, focused on
real-time control systems and related topics, such as comput-
ing kinematic chains and Bayesian filtering [21]. The project
has grown into a full framework integrating the CORBA
middleware and tooling for deterministic computation in real-
time applications. The LCM and OROCOS frameworks each
concentrate on smaller pieces of the overall system, with a
non-trivial proportion of the overall robotics problem left to
the end-user.

ROS 1 contains a set of libraries that are useful when
building many kinds of robots [1]. There are utilities for
monitoring processes, introspecting communications, receiv-
ing time-series transformations, and more. ROS 1 also has a
large ecosystem of sensor, control, and algorithmic packages
made available by community contributions, enabling a small
team to build complex robotics applications. While ROS 1
solves many of the complexity issues inherent to robotics,
it struggles to consistently deliver data over lossy links (like
WiFi or satellite links), has a single point of failure, and does
not have any built-in security mechanisms. A table of key
differences between ROS 1 and ROS 2 can be seen in Table
I.

The ROS 1 community attempted to address some of these
concerns, but in nearly all cases, there were compromises
made due architectural and engineering limitations. For ex-
ample, to address the single point of failure (“rosmaster”),
it was required to patch all of the existing client libraries
individually with bespoke solutions. In other cases, it was
possible to extend ROS 1 for security, via the SROS project.
Though successful, it was difficult to maintain and needed
further development to meet security trends. These are just
two of the many attempts to patch ROS 1, which extended
its useful lifetime but did not solve its core limitations.

Category ROS 1 ROS 2
Network Transport Bespoke protocol

built on TCP/UDP
Existing standard
(DDS), with
abstraction
supporting
addition of others

Network Architecture Central name
server (roscore)

Peer-to-peer
discovery

Platform Support Linux Linux, Windows,
macOS

Client Libraries Written
independently in
each language

Sharing a
common
underlying C
library (rcl)

Node vs. Process Single node per
process

Multiple nodes
per process

Threading Model Callback queues
and handlers

Swappable
executor

Node State Management None Lifecycle nodes
Embedded Systems Minimal

experimental
support
(rosserial)

Commercially
supported
implementation
(micro-ROS)

Parameter Access Auxilliary
protocol built on
XMLRPC

Implemented
using service calls

Parameter Types Type inferred
when assigned

Type declared and
enforced

TABLE I: Summary of ROS 2 features compared to ROS 1

III. ROS 2

ROS 2 is a software platform for developing robotics
applications, also known as a robotics software development
kit (SDK). Importantly, ROS 2 is open source. ROS 2 is
distributed under the Apache 2.0 License, which grants users
broad rights to modify, apply, and redistribute the software,
with no obligation to contribute back [22]. ROS 2 relies on
a federated ecosystem, in which contributors are encouraged
to create and release their own software. Most additional
packages also use the Apache 2.0 License or similar. Making
code free is fundamental to driving mass adoption - it allows
users to leverage ROS 2 without constraining how they use
or distribute their applications.

A. Scope

ROS 2 supports a broad range of robotics applications,
from education and research to product development and
deployment. It comprises a large set of interrelated software
components that are commonly used to develop robotics
applications. The software ecosystem is divided into three
categories:

• Middleware: Referred to as the plumbing, the ROS 2
middleware encompasses communication among com-
ponents, from network APIs to message parsers.

• Algorithms: ROS 2 provides many of the algorithms
commonly used when building robotics applications,
e.g. perception, SLAM, planning, and beyond.

• Developer tools: ROS 2 includes a suite of command-
line and graphical tools for configuration, launch, in-
trospection, visualization, debugging, simulation, and
logging. There is also a large suite of tools for source
management, build processes, and distribution.

In this section, we will explore the first category, the mid-
dleware, as the foundation of ROS 2.

B. Design

1) Design Principles: The design of ROS 2 has been
guided by a set of principles and a set of specific require-
ments. The following principles are asserted:

Distribution As with similarly complex domains, prob-
lems in robotics are best tackled with a distributed systems
approach [23]. Requirements are separated into functionally
independent components, like device drivers for hardware,
perception systems, control systems, executives, and so on.
At run-time, these components have their own execution
context and share data via explicit communication. This
composition should be conducted in a decentralized and
secure manner.

Abstraction To govern communication, interface spec-
ifications must be establish. These messages define the
semantics of the data exchanged. A favorable abstraction
balances the benefits of exposing the details of a component
against the costs of overfitting the rest of the application to
that component, thereby making it difficult to substitute an
alternative. This approach leads to an ecosystem of interop-
erable components abstracted away from specific vendors of
hardware or software components [24].

Asynchrony The messages defined are communicated
among the components asynchronously, creating an event-
based system [25]. With this approach, an application can
work across the multiple time domains that arise from com-
bining physical devices with a host of software components;
each of which may have its own frequency for providing
data, accepting commands, or signaling events.

Modularity The UNIX design goal to ‘make each pro-
gram do one thing well’ is mirrored [26]. Modularity is en-
forced at multiple levels, across library APIs, message defini-
tions, command-line tools, and even the software ecosystem
itself. The ecosystem is organized into a large number of
federated packages, as opposed to a single codebase.

We do not pretend that these design principles are universal
and without trade-offs. Asynchrony can also make it more
difficult to achieve deterministic execution. For any single,
well-defined problem, it is possible to construct a special-
purpose monolithic solution that is more computationally ef-
ficient because it does not involve abstractions or distributed
communication.

However, after a decade of experience with the ROS 1
project, we claim that adherence to these principles will
generally lead to better outcomes. This approach facilitates
code reuse, software testing, fault isolation, collaboration
within interdisciplinary project teams, and cooperation at a
global scale.

2) Design Requirements: ROS 2 aims to meet certain
requirements based on the design principles and needs of
robotics developers.

Security Any software that interacts with a network must
include features to secure that interaction against accidental

and malicious misuse. ROS 2’s integrated security system
includes authentication, encryption, and access control [27],
[28], [29]. Designers can configure ROS 2 to meet their
needs through access control policies that define who can
communicate about what [30].

Embedded systems As a general rule, a robot includes
sensors, actuators, and other peripherals. These devices can
be relatively sophisticated, containing micro-controllers that
need to communicate with CPU(s) where ROS 2 is running.
A full ROS 2 stack is not expected to run on small embedded
devices, though ROS 2 should facilitate and standardize in-
tegration of CPUs and micro-controllers. Micro-ROS allows
ROS 2 to be reused on embedded systems [31].

Diverse networks Robots are used in a variety of net-
working environments, from wired LAN for robot arms
on assembly lines to multi-hop satellite connections for
planetary rovers. Additionally, robots will often use internal
networks to connect processes within and across CPUs.
ROS 2 provides quality of service that configures how data
flows through the system, thereby adapting to the constraints
of a network [32].

Real-time computing From humanoids to self-driving
cars, it is common for robot applications to include real-time
computing requirements. To meet safety and/or performance
goals, some parts of a system must execute in deterministic
amounts of time. ROS 2 offers APIs for developers of real-
time systems to enforce application-specific constraints [33],
[34].

Product readiness When a robot moves beyond the lab
and into commercial use, new constraints are introduced.
ROS 2 aims to meet product requirements spanning design,
development, and project governance. One objective result
of these efforts is Apex.AI’s functional safety (ISO 26262)
certification of their ROS 2-based autonomous vehicle soft-
ware [35]. This allows ROS 2 to be run in safety critical
systems like autonomous vehicles and heavy machinery.

C. Communication Patterns

The ROS 2 APIs provide access to communication pat-
terns. These are notably topics, services, and actions, which
are organized under the concept of a node. ROS 2 also
provides APIs for parameters, timers, launch, and other
auxiliary tools which can be used to design a robotic system.

Topics The most common pattern that users will interact
with is topics, which are an asynchronous message passing
framework. This is similar to other asynchronous frame-
works, such as ASIO [36]. ROS 2 provides the same publish-
subscribe functionality, but focuses on using asynchronous
messaging to organize a system using strongly typed inter-
faces. It does so by organizing endpoints in a computational
graph under the concept of a node. The node is an important
organizational unit which allows a user to reason about a
complex system, shown in Fig. 1.

The anonymous publish-subscribe architecture allows
many-to-many communication, which is advantageous for
system introspection. A developer may observe any messages

passing on a topic by creating a subscription to that topic
without any changes.

Services Asynchronous communication is not always the
right tool. ROS 2 also provides a request-response style
pattern, known as services. Request-response communica-
tion provides easy data association between a request and
response pair, which can be useful when ensuring a task
was completed or received, shown in Fig. 1. Uniquely,
ROS 2 allows a service client’s process to not be blocked
during a call. Services are also organized under a node
for organization and introspection, allowing a subsystem’s
interfaces to appear together in system diagnostics.

Actions A unique communication pattern of ROS 2 is
the action. Actions are goal-oriented and asynchronous
communication interfaces with a request, response, periodic
feedback, and the ability to be canceled, Fig. 1. This pattern
is used in long-running tasks like autonomous navigation or
manipulation, though it has a variety of uses. Like services,
actions are non-blocking and organized under the node.

D. Middleware Architecture

Adhering to the previous design philosophies, the archi-
tecture of ROS 2 consists of several important abstraction
layers distributed across many decoupled packages. These
abstraction layers make it possible to have multiple solu-
tions for required functionality, e.g. multiple middlewares or
loggers. Additionally, the distribution across many packages
allows users to replace components or take only the pieces
of the system they require, which may be important for
certification.

1) Abstraction Layers: Figure 2 displays the abstraction
layers within ROS 2. They are generally hidden behind the
client library during development and developers would only
need to be aware of them for unusually application-specific
needs. Most users will experience only the client libraries.

The client libraries provide access to the core communica-
tion APIs. They are tailored to each programming language
to make them more idiomatic and take advantage of language
specific features. Communication is agnostic to how the
system is distributed across compute resources - whether
they be in the same process, a different process, or even
a different computer. A user may distribute their application
across multiple machines and processes, and even leverage
cloud compute resources, with minimal changes to the source
code. ROS 2 is capable of connecting to cloud resources over
the internet. There are products to assist integration of ROS 2
into cloud platforms, such as AWS IoT RoboRunner and
related RoboMaker products [37]. It is advisable, however,
to use more specialized purpose-built technologies.

The client libraries depend on an intermediate interface,
rcl, which provides common functionality to each client
library. This library is written in C and is used by all of
the client libraries, although not required. Below rcl, the
middleware abstraction layer called rmw (ROS MiddleWare)
provides the essential communication interfaces. The vendors
for each middleware implements the rmw interface and are
made interchangeable without code changes.

Users may choose different rmw implementations, and
thereby different middleware technologies, based on a va-
riety of constraints like performance, software license, or
supported platforms. While all of the supported rmws are
based on DDS, a few community-supported rmws exist for
other communications methods [7]. This abstraction layer
provides flexibility to ROS 2, allowing it to change over
time with minimal impact to the systems built atop it.

The network interfaces (e.g. topics, services, actions) are
defined with Message Types using an Interface Description
Language (IDL). ROS 2 defines these types using the ros
idl format (.msg files) or the OMG IDL standard (.idl
files). User-provided interface definitions are generated at
compile time and create code required for communication
in any client library language.

2) Architectural Node Patterns: There are additional ar-
chitectural patterns to help developers structure their pro-
grams. ROS 2 provides a pattern for managing the lifecycle
of nodes which transition through a state machine with states
like Unconfigured, Inactive, Active, and Finalized. These
states allow system integrators to control when certain nodes
are active. This is an important tool for coordinating various
parts of the distributed asynchronous system.

As previously discussed in the last section, communi-
cations are agnostic to the location of endpoints within
machines and processes. However, in which machine or
process to put each node is not something that should be
decided when writing the node, but instead depends on
how the node is used in the larger system. Nodes that are
written as components can be allocated to any process as a
configuration. This is an important feature for systems under
development, allowing the developer to rearrange where
nodes are running based on a variety of circumstances. For
example, multiple nodes might be configured to share a
process in order to conserve system resources or reduce
latency.

E. Software Quality

For ROS 2 to be adopted in critical applications, it must
be designed and implemented in a demonstrably high-quality
manner. Regulatory and certification bodies need to under-
stand the current state of a system and the processes that
led to it. To that end, a three-part approach is continuously
executed to measure and expose software quality:

• Design documentation: Prior to a major addition, a
written rationale and design for the work must be
established. This documentation manifests as a design
article or a ROS Enhancement Proposal (REP) [38],
[39]. At the time of writing, there are 44 design articles
and 7 REPs documenting the design of ROS 2.

• Testing: Each feature in ROS 2 requires tests to ensure
that it behaves correctly. Those tests are executed reg-
ularly in continuous integration. A combination of unit
and integration tests are deployed, as well as a suite of
static analysis tools (“linters”). At the time of writing,
32,000–33,000 tests are run on ROS 2, including 13
linters.

Fig. 1: ROS 2 node interfaces: topics, services, and actions.

Fig. 2: ROS 2 Client Library API Stack.

• Quality declaration: Not every ROS 2 package needs
to be rigorously documented and tested. Thus, a multi-
level quality policy is defined [40]. This policy defines
the requirements for each quality level in terms of devel-
opment practices, test coverage, security, and more. At
the time of writing, 45 ROS 2 packages have achieved
the highest level, Quality Level 1.

F. Performance and Reliability

Networking is an important aspect of robotics frameworks.
In reliable networking situations, the standard solution is
TCP/IP due to its optimizations in most operating systems.
Unfortunately, TCP/IP struggles to deliver data in wireless
communications since interruptions can cause back-offs, re-
transmits, and delays. ROS 1 was built on TCP/IP and

suffered in these situations.

ROS 2 does not struggle in these situations. DDS uses
UDP to deliver data, which does not attempt to re-transmit
data. Instead, DDS decides when and how to re-transmit
in unreliable conditions. DDS introduces Quality-of-Service
(QoS) to expose these settings to optimize for the available
bandwidth and latency.

The reliability setting determines whether message de-
livery is guaranteed. Using ‘best-effort’, the publisher will
attempt to deliver the message once, useful when new data
will make the old obsolete (e.g. sensor data). Set to ‘reliable’,
the publisher will continue to send data until the receiver
acknowledges receipt.

The durability QoS setting determines the persistence of

a message. ‘Volatile’ messages will be forgotten once after
being sent. Meanwhile, ‘transient-local’ will store and send
late-joining subscriptions data as necessary.

A connection’s history determines the behavior when
the network cannot keep up with the data. Set to ‘keep-
all’, all data is retained until the application consumes it.
Most applications use ‘keep-last’, which retains a fixed-sized
queue of data, overriding the oldest as needed. Other settings,
including deadline, lifespan, liveliness, and lease duration to
help in designing real-time systems.

Experiments were conducted to benchmark the networking
performance of ROS 2. The charts in Figure 3a shows
the results of sending and receiving different sizes of mes-
sages through ROS 2. This experiment was run on a 6-
core Intel i7-6800K CPU running at 3.4GHz, with 32Gb
of RAM. The machine was running Fedora 34, using
CycloneDDS, and the latest ROS 2 Rolling distribution
packages as of September 23, 2021 [41]. The performance
tests utilized can be found in https://github.com/
ros2/performance_test and https://github.
com/ros2/buildfarm_perf_tests.

The tests comprise of one publisher and one subscription.
For each message size, 1,000 messages are sent per second
and the system records the latency, effective publication rate,
and CPU utilization. The message sizes are selected to test
different aspects, ranging from small to larger messages at
key intervals. The test is repeated in different processes,
within the same process, and within the same process using
intra-process communication.

The data shows that intra-process communication is the
most efficient, with 95th percentile latency below 1 mil-
lisecond for all sizes below 8 MB. Intra-process is the most
reliable, meeting the sending rate for all sizes below 8 MB.
This bypasses the middleware stack and delivers data by
passing pointers from the publisher to the subscription. This
improvement is particularly magnified when working with
large messages, around 1 MB and larger, which are most
often associated with images, pointclouds, or other forms of
high-resolution data. When using node composition, the data
shows a similar story - the 95th percentile latency is below
1 millisecond with no dropped messages for sizes below 8
MB.

Multi-process communication allows the publisher and
subscription to be on separate machines on the network.
Expectedly, it also shows the highest latency, below 1 mil-
lisecond until 1 MB, then spiking to 7.85 milliseconds by 8
MB. The send rate shows a similar trend; at sizes up to 2
MB, the 95th percentile send rate is 1000 Hz, decreasing to
213 Hz for 8 MB.

Using multiple processes and inter-process communication
is the most flexible scenario, but it also displays the highest
latency and CPU utilization. Simply using node composition
and/or intra-process communication, the latency, CPU uti-
lization, and sending rate are each cut significantly. However,
for small messages, all of the mechanisms were able to
publish reliably in excess of 1kHz without loss.

DDS’s default configurations is not particularly effective

at communicating information larger than 1 MB, which
represents a real challenge to users. There are a few reasons
for this: the small default UDP buffer sizes, UDP fragmen-
tation limits, and DDS reliability guarantees requiring the
re-transmit of packets. Many of these issues can be removed
with tuning of the networking parameters at the expense of
compute resources. The performance may also be improved
by using the composition and intra-process communication
patterns in ROS 2. Composition is the recommended design
pattern in ROS 2 and is made simple to encourage its
adoption.

The charts in Figure 3b shows the resilience of ROS 2 to
packet loss in the network. The tests were run on an Ubuntu
20.04 virtual machine, containing 6 Intel Xeon E5-2666 v3
CPUs at 2.9GHz and 16GB of RAM, using the CycloneDDS
rmw. For each test the same publisher and subscription node,
in separate processes, were run. The networking was run
through mininet, a network emulator which lets users
specify arbitrary topologies and link characteristics. In this
experiment, the bandwidth was capped at 54Mbps (compa-
rable to a slow wireless network) and the packet loss was
varied between 0 and 20 percent. Each message consisted of
an array of 1000 bytes and the number of messages that
were received was tallied. In a network with a moderate
amount of loss, ROS 2 can still deliver data over the network
effectively. 20% is a particularly bad networking environment
where performance is expected to drop more significantly.

G. Security
Security is an important element to any modern com-

mercial robotics SDK. ROS 2 relies on the DDS-Security
standard, but also provides an additional suite of tools,
SROS2, to make managing security infrastructure easy. There
are 3 main concepts in DDS-security:

Authentication Establishes the identity of a message or
participant in the network. ROS 2 uses digital signatures for
authentication, known as public key cryptography. SROS2
includes command-line utilities for generating and storing
these digital signatures.

Access Control Allows for fine-grained policies to be
applied to the authenticated network participants. It allows
a participant to only discover approved participants and
communicate over pre-approved network interfaces. SROS2
has command-line tools for generating these configurations.

Encryption This ensures that third-parties cannot eaves-
drop or replay data into the network. Encryption is performed
using AES-GCM symmetric-key cryptography. The key ma-
terial is derived from the shared secret obtained as part of
authentication.

IV. CASE STUDIES

Five case studies were conducted that highlight the mate-
rial acceleration provided by ROS 2. Each study provides a
principally qualitative analysis of ROS 2’s influence on each
organization based on interviews, customer experiences, and
codebases analyzed during the study. The variety of use cases
and scales demonstrates the significance of ROS 2 across the
robotics sector.

https://github.com/ros2/performance_test
https://github.com/ros2/performance_test
https://github.com/ros2/buildfarm_perf_tests
https://github.com/ros2/buildfarm_perf_tests

1k 4k 16k 32k 60k 512k 1m 2m 4m 8m
0

2

4

6

8

10

Message Size (bytes)

M
ea

n
L

at
en

cy
(m

s)

Intra-process
Single process
Inter-process

1k 4k 16k 32k 60k 512k 1m 2m 4m 8m
0

5

10

15

20

25

30

35

Message Size (bytes)

M
ea

n
C

PU
(%

)

Intra-process
Single process
Inter-process

1k 4k 16k 32k 60k 512k 1m 2m 4m 8m
0

100

200

300

400

500

600

700

800

900

1,000

Message Size (bytes)

Se
nd

in
g

ra
te

(H
z)

Intra-process
Single process
Inter-process

(a) Different message sizes

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

0% packet loss

Time (s)

#
of

M
es

sa
ge

s

Messages Sent
Messages Received

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

10% packet loss

Time (s)

#
of

M
es

sa
ge

s

Messages Sent
Messages Received

2 4 6 8 10 12 14 16
0

5

10

15

20

25

30

20% packet loss

Time (s)

#
of

M
es

sa
ge

s

Messages Sent
Messages Received

(b) Sending data with packet loss

Fig. 3: ROS 2 performance results (standard deviation not shown since it is so small)

A. Land: Ghost Robotics

Ghost Robotics is a Philadelphia-based company spe-
cializing in quadruped robots for defense, enterprise, and
research. Their robots, shown in Figure 4a, are made for
unstructured natural environments that cannot be traversed
by traditional wheeled or tracked robots. Ghost’s Vision-60
robot is being deployed in caves, mines, forests, and deserts,
and can easily walk through several inches of water or snow.
Their robots were used by the University of Pennsylvania
team in the DARPA Subterranean Challenge and Ghost has
active partnerships with the US military for base security and
other experimental applications [42].

ROS 2 is used on their main compute platform, an
Nvidia Jetson Xavier, which handles mission execution,
high-level gait planning, terrain mapping, and localization.
Approximately 90% of Ghost’s software utilizes ROS 2 for
its communication and architecture, while the remaining is
planned to follow suit in the near future.

1) Software Architecture: ROS 2 has had a powerful
role in structuring their internal collaborations and software
design. Both their high level and mission control software ar-
chitectures are heavily integrated with ROS 2. They leverage
publish-subscribe interfaces between their main subsystems,
allowing them to enjoy a consistent API while the techniques
within each are being continuously improved. This clean
separation between projects has allowed them to perform
parallel development without disrupting the activities of other
teams.

According to Hunter Allen, Senior Autonomy Engineer,
“It’s been great; it is fundamental to our autonomy archi-

tecture.” Their mission control software uses ROS 2 actions
to request, cancel, or attain feedback regarding an current
mission. It takes a mission identifier to cross-reference with
an internal database of potential missions to execute. Next, it
assembles each task in the mission and activates the required
capabilities for the particular mission, modeled as lifecycle
nodes. Finally, it executes the mission.

Most of Ghost’s software is implemented as both lifecy-
cle and component nodes. The lifecycle node are used to
dynamically activate and deactivate features depending on
the current mission requirements, such as toggling between
GPS-based and VIO-based localization. They have dozens of
unique capabilities readily available for different missions,
which take up little background resources when idle. The
component nodes are independent modules developed by
multiple teams and combined at run-time. Ghost found that
these strategies are important when collaborating with a large
interdisciplinary team on a limited-compute platform.

The provided ROS 2 tools allowed Ghost to create a highly
flexible and efficient autonomy system in only a few months.
By contrast, the company estimates it would have taken many
years with multiple engineers to create a similar capability
if starting from scratch, thereby helping support new custom
user applications in the wild.

2) The COVID-19 Pandemic: After the initial COVID-
19 lock-downs, the robot software team doubled in effective
size while having reduced access to crucial hardware. At
the same time, they were preparing for a demonstration with
the US Air Force (USAF) only months away. Ultimately, the
company was successful by pivoting their processes to utilize

(a) Ghost Robotic’s Vision-60 robot. (b) Mission Robotics submersible robot.

(c) OTTO Motor’s ‘OTTO 100’ robots. (d) Auterion-powered drone by Freefly.

Fig. 4: Case-study robot systems deployed on land, air, and sea.

capabilities made available in ROS 2.
Prior to the pandemic, the majority of development oc-

curred using robots in their offices. When access to robots
was abruptly stopped, Ghost had to switch development over
to the ROS 2 simulator, Gazebo. A single engineer was
able to create custom Gazebo plugins and simulation files
required to represent the quadruped. This simulation was
used to develop the entirety of the USAF demonstration’s
autonomy system. This new capability is still utilized long
after they were able to return to their offices - it has permitted
faster internal development to create custom behaviors and
deploy them onto customer’s robots.

3) ROS 2 as an Equalizer: ROS 2 is a strong equalizing
force for Ghost Robotics. It has helped them compete effec-
tively with well-funded and entrenched competitors. Rather
than building an end-to-end proprietary portfolio of software,
they leverage ROS 2’s capabilities where possible. According
to Allen, “We have a competitive product because we have
the tools needed to make a competitive product. We don’t
have to waste time making what ROS 2 already does.”
With only 23 employees, as of August 2021, compared to
competitors an order of magnitude larger, ROS 2 has leveled
the playing field. Ghost was able to release their Vision-60
robot to customers for deployed use after only 30 engineer-
years (approx. 7.5 engineers over 4 years).

ROS 2 provides high-quality communications and count-

less utilities Ghost uses such as TF2, URDF, rosbag, rviz,
roscli, Gazebo, which has accelerated Ghost’s robots into
the wild.

B. Sea: Mission Robotics

Mission Robotics is a San Francisco Bay Area company
building marine robots, Figure 4b. Their design prioritizes
flexibility, supporting a wide range of customers who each
customize the platform for their application. Use cases for
Mission’s robots include structure inspection, environmental
survey, salvage, and security. These tasks are traditionally
performed by professional divers, whose time is scarce and
valuable. The addition of robots allows important underwater
work to be done more often, for longer periods of time, and
at far less risk to humans.

Mission’s vehicles carry sensors that gather data about the
surface and underwater environment. The robot’s sensor suite
will vary between users and even between dives performed
by a user. It is important that users be able to add and remove
components for a given dive, while being assured of having
reliable access to the resulting data. Mission Robotics uses
ROS 2 as the common data bus for these data streams and
to enable customers to easily integrate new hardware.

1) Customer Architecture: Mission’s core on-robot soft-
ware does not rely on ROS 2. The engineering team, having
experience using DDS, built their internal system on Cyclone

and Connext DDS directly [41]. This internal software is
maintained exclusively by a small subset of the team at
Mission.

The requirements of marine missions are typically specific
to customers and not easily generalized, resulting in cus-
tomization after purchase. Common practice in the industry
is to attach additional sensors or tools as needed, but operate
and access each additional peripheral independently, via
various device-specific interfaces.

Mission instead uses ROS 2 as the common interface.
When a new sensor, such as a special low-light camera, is to
be integrated, a device driver is developed that communicates
with the sensor and publishes its data over ROS 2. The driver
is deployed in a Docker container, isolating it from the rest of
the vehicle. Importantly, Mission’s customers can create their
own extensions, using ROS 2 as the lingua franca, allowing
them to modify their robots quickly for custom applications
and share common infrastructure.

As an example, Mission worked with Aqualink to add
depth sensing to an autonomous surface vessel. The payload
of interest was a Zed stereo camera, which had out-of-
the-box ROS 2 drivers, including support for the Jetson
Nano single-board computer used. According to Mission
Robotics CTO Charles Cross, “stereo cameras are growing
in popularity in the marine robotics space, especially in
clear-water applications like coral reef mapping and species
identification.” By integrating the Zed camera via ROS 2
on the Jetson, Mission and Aqualink were able to create a
starting point for anyone wanting to develop new computer
vision and autonomy capabilities for marine applications.
This work has attracted the attention of other potential
customers, with one of them saying that Mission’s approach
to payload integration feels “like it was almost ahead of its
time.”

2) ROS 2 as an Accelerator: Support for ROS 2 is a
selling point for Mission, providing abstractions for internal
systems and offering a familiar developer experience. Cross
reports that for at least three of their customers, “support
for ROS 2 integration has explicitly played a role in their
purchasing decision.”

Mission sees ROS 2 as an accelerator for their entire
industry. According to Cross, “in the marine sector, there is
little standardization and a lack of building on existing ca-
pabilities.” As a result, “people keep reinventing the wheel,”
from data logging, to sensor integration, to message formats.
This duplicate effort is wasteful and leads to a proliferation
of incompatible systems.

Mission Robotics believes that ROS 2 is changing this for
marine robotics as it has done for other industries. A common
set of messages, APIs, and tools will greatly accelerate
the work of Mission and other companies in the sector.
In particular, the use of rosbag for data logging opens the
door to collaboration. Such information exchange can benefit
robotics engineers, operators, and marine scientists who are
the often the end-users of the data. As Cross says, “using
a consistent communications system is a big win for this
industry.”

C. Air: Auterion Systems
Auterion is an aerial drone startup from Zürich, Switzer-

land. It was founded with the goal of nurturing the open-
source PX4 Autopilot developer community [43]. Building
on their PX4 flight experience, Auterion produces a commer-
cial autopilot based on the project and offers commercial
support for customer integrations. Auterion’s products are
used widely throughout the industry and support many types
of airframes, including Freefly shown in Fig. 4d.

Historically, drones could only be operated safely by
skilled pilots or in open spaces. Auterion aims to bring
drones into unstructured spaces with hazards while oper-
ating under more autonomy. With their emphasis on open
standards, Auterion selected ROS 2 to integrate higher level
functionality into their drone systems alongside the PX4
Autopilot.

1) Logging and Introspection: ROS 2’s logging, intro-
spection, and debugging improved the efficiency of their
development process on Skynode, their fully-integrated au-
topilot solution. The logging capabilities from ROS 2 are
used to collect run-time events such as errors, debug outputs,
and other metadata about the system. These are stored
for later analysis and debugging. Auterion also relies on
rosbag2 to collect the raw data stream at run-time from
all layers of the system, from sensor streams to vehicle
behaviors. This comprehensive logging is especially valuable
for drones because environmental aspects such as wind have
important effects on flight conditions, which are difficult to
reproduce. As a consequence, ROS 2’s dataset and logging
capabilities are central to effective development, debugging,
and validation processes.

Auterion also takes advantage of robust introspection
capabilities. Auterion uses rviz2, a 3-dimensional renderer
which can visualize drones and all of their sensor data in an
interactive environment.

The 3-dimensional visualisation, data recording, and log-
ging capabilities in ROS 2 were one of the driving reasons
Auterion utilizes ROS 2. The value of these tools was
captured most succinctly by Nuno Marques, a Software
Engineer at Auterion, “The fact that we have introspection
and visualization tools make all the difference.” Leverag-
ing these capabilities has allowed the company to focus
their development efforts on core flight control capabilities
and customer requirements rather than building foundational
tooling.

2) Safe, Automated Testing: Flying drones has inherent
risks to people and things on the ground, as well as to the
airframe itself. A great deal of labor and time is required
to conduct safe flight testing since every physical flight has
a risk of crashing. In simulation, however, the cost and
risks associated with test flights is near zero. A failure in
simulation can be fixed and iterated upon quickly, then rerun.
Auterion uses ROS 2’s simulation, Gazebo to be able to
conduct end-to-end tests of the software prior to hardware
testing to validate safe functionality.

Gazebo is used in their continuous integration pipeline
to prevent regressions on an array of vehicle types and

scenarios. Tests are run in parallel for fast results, which
allows developers to focus on a specific problem while
remaining confident the software is safe.

Auterion also leverages simulation testing to validate
features in challenging scenarios during development. For
example, they can setup flight regimes or specific situations
which are important to validate their work. In 2021, Auterion
flew approximately 22,000 hours within Gazebo, including
high-risk scenarios impractical to test with hardware. Aute-
rion estimates that these simulations replaced 12 full-time
engineers to provide the same value in live tests. Since the
cost of their airframes range from $1,000 to $100,000, there
is considerable risk in any testing - especially in dangerous
flight conditions which need testing. ROS 2 simulations in
development and validation combine to enable lower costs
and faster development.

D. Space: NASA VIPER

NASA’s Volatiles Investigating Polar Exploration Rover
(VIPER) mission is scheduled to be launched to the southern
polar region of the Moon in November 2023. The VIPER
rover will use a variety of instruments to search for water
ice and other resources during a 100-day mission. Earth
compute resources will be used to map, register terrain, and
compute stereo solutions to aid in operations through its X-
band link to the Deep Space Network. Many of the Earth-
based operation tools, compute modules, and high-fidelity
simulations are based on ROS 2 and Gazebo, as shown in
Figure 5.

NASA’s Core Flight system provides hardware interfaces,
basic error checking, and payload services [44]. A satellite
link carries commands to and telemetry from the rover. Earth-
bound telemetry is received and sent to a ROS 2 network and
processed by an ensemble of nodes. The nodes transform
the image data into pointclouds, compute visual odometry
and terrain registration, and fuses the data to provide pose
corrections. That data is fed into NASA’s Visual Environment
for Remote Virtual Exploration (VERVE), which allows
operators to visualize the rover’s environment [45]. The
operators use the result to simulate a move, and then finally
execute the move on the rover.

1) Mission Testing in Simulation: Since VIPER is a
spaceflight mission, the team is focused on producing highly
reliably software. To achieve this, they are extensively utiliz-
ing Gazebo to provide high-fidelity testing of all their com-
ponents and systems. Mark Allen said “having a simulator
[Gazebo] is essential for the development of all the VIPER
software in some capacity.”

The VIPER team turned to Gazebo to aid in development
since it was infeasible to model an accurately functioning lu-
nar rover on Earth. They emphasized “the Lunar environment
is so unique, with lighting and gravity, testing in simulation
[is] incredibly important since its impossible to test on
the ground on Earth effectively.” The project was able to
create a simulation utilizing custom plugins to Gazebo’s user
interfaces. It is designed for a high degree of customization
to support a broad range of robotics needs - even space.

NASA developed new plugins to model mission-specifics,
such as camera lens flare, lunar lighting conditions, gravity,
and terrain on the lunar surface. NASA was able to simulate
the vehicle interfaces down to low-level serial links. The
simulation was valuable to help iterate and improve upon
system design choices for VIPER. With the rover simulated
down to the hardware level, the VIPER team used Gazebo
to test and validate almost all of their rover’s software prior
to launch.

VIPER reused 284,500 significant lines of code (SLOC)
without modification from Gazebo, modifying < 1% to pass
validation. NASA’s estimated development rate for the simu-
lator was 116 SLOC per work-month (2456 work-months to
fully implement). This code reuse accelerated development
allowing them to produce a simulation in merely 266 work-
months focused VIPER specific elements [46].

A combination of Gazebo and ROS 2 is used to train the
rover’s operators. ROS 2 is used to inject faults into the rover;
using VERVE, the operators need to determine how to clear
the faults to get the rover moving.

2) Creating a Legacy: NASA has utilized many differ-
ent communication mechanisms but in recent years, many
projects have chosen DDS because of its ability to traverse
satellite links that may have high latency, low bandwidth,
and low reliability. The VIPER team evaluated the options
and selected DDS as well for the Earth-based operations.

Besides a communications mechanism, the VIPER team
was eager to use ROS 2 for its rapid development capa-
bilities, introspection and visualization tools, and openly
available source. These characteristics shorten the learning
curve for new engineers to apply what they know onto flight
missions.

However, using new software in a flight mission requires a
rigorous Verification and Validation (V&V) process. NASA
prefers to use components that has been vetted in previous
missions; leveraging heritage software leads to reduced de-
velopment times and costs [47]. VIPER is reusing 84% of the
588,000 lines of code from the Resource Prospector along
with Gazebo and approximately 312 open-source ROS 2
packages [46]. ROS 2 has not been used in prior missions,
but the VIPER team decided that the features that it provides
was worth the extra administrative overhead of going through
the process.

After ROS 2 has been validated and used in ground
operations for the VIPER mission, it becomes much easier
for ROS 2 to be used in future missions in multiple roles and
allow for more reuse of robotic software between mission
programs.

E. Large Scale: OTTO Motors

OTTO Motors is an Ontario-based Clearpath Robotics
spinoff company selling land and sea research platforms.
OTTO produces warehouse and factory material handling
services using autonomous robots to replace manually con-
trolled equipment at scale - Figure 4c. They have deployed
thousands of robots worldwide and operate fleets of over

(a) (b)

Fig. 5: (a) VIPER on Lunar Surface (rendering), (b) Command and Operations Software.

100 in a single facility. Customers such as Toyota and Gen-
eral Electric have adopted OTTO. This case study provides
unique insight into large scale robot applications. ROS 2 has
coordinated more than 2 million hours of operation and 1.5
million kilometers traveled since it was deployed on OTTO’s
robots.

1) Scaling Multi-Robot Technology: OTTO Motors orig-
inally developed their technology on ROS 1. Using it, they
were unable to test more than 25 robots on the same shared
ROS 1 network using a custom multi-master system with
their fleet management software. This was sufficient for small
fleets, but as OTTO grew into larger facilities, this became
a bottleneck.

OTTO conducted a survey of available technologies and
independently came to the same conclusion that the best
technology for the multi-robot fleet communications was
DDS. The greater network effect worked in their favor to
continue in the ROS ecosystem, thus they were one of the
early adopters of ROS 2. This allowed them to take advantage
of the capabilities enabled in ROS, while not independently
maintaining a proprietary DDS framework.

After migrating to ROS 2, OTTO was able to scale up to
100+ robots in customer facilities. Larger multi-robot scale
was enabled because ROS 2 has fine-grained and scalable
network topology management as well as better support for
managing bandwidth through QoS on shared network links.
These deployments in 2017 represented some of the first
commercial deployments of ROS 2 anywhere in the world.
ROS 2 demonstrably accelerated their time to market by
quickly enabling them to scale to unprecedented numbers
of robots. OTTO Motors estimates they have saved between
$1M to $5M over 5 years by using ROS 2. In addition they
saved hundreds of engineering hours by not rewriting these
tools into a proprietary framework.

OTTO Motor’s CTO Ryan Gariepy considers the ROS
ecosystem to be necessary to the business, “Had ROS writ
large not existed, the whole business might not have been
feasible. It would have been too expensive.” He estimates that
their continuing engineering costs would be 5–10% higher
annually without it.

2) Acceleration of Development: OTTO Motors’ develop-
ment and deployment have been sped up in two additional
areas. First, it has accelerated their internal feature devel-
opment process. The distributed architecture and isolation of
processes have allowed a large, physically distributed team to
collaborate. Using clearly defined ROS 2 interfaces allowed
OTTO to separate major classes of tasks. Ryan Gariepy
stated in an interview, “at the scale of robots we’re building
and the complexity that is modern manufacturing, you really
need the flexibility to patch in and out capabilities and share
across a large team.” Their product software is spread across
many repositories owned by different teams in a diverse set
of languages, combined at run-time via ROS 2.

Next, providing ROS 2 support has proven valuable to
their customers and clients. OTTO and Clearpath sell their
platforms to other businesses to build on top of for custom
products. A company recently bought platforms from OTTO
to create UV sanitizing robots in response to the COVID-19
pandemic. Since they have both clearly defined and standard
APIs, these external collaborators easily leveraged the robot
platform and tied it into their autonomy systems. Ryan
Gariepy summarized it as follows, “With the ROS APIs we
provide, our external partners are now able to build apps
on top of our autonomy capabilities without requiring us
to train them in robotics concepts or proprietary libraries.”
This ability to separate concerns and abstract vendor specific
hardware, even an entire robot platform, allows companies
to rapidly build a new product to ensure public safety.

F. Discussion
These five case studies illustrate an extensive range of ap-

plications, environments, and rationales for the use of ROS 2.
These were selected to provide a unique cross-section of
modern, applied robotics systems deployed in every domain.
However different they are in their applications, there exists
several common threads they share.

ROS 2 enables many to better reuse software components
in their systems. Mission Robotics leverages the ROS com-
munity’s device drivers and integrations such that their cus-
tomers can quickly adapt to a particular use-case in marine
robotics. Likewise, Auterion uses not only lower level drivers

but also the higher level algorithms from the community. The
VIPER team uses ROS 2 to facilitate software reuse within
the agency. During our interviews, they expressed that it was
challenging to get other NASA groups to reuse code and that
the ROS ecosystem has internal name recognition making it
easier to encourage such collaborations.

Another common thread was enabling collaborations, both
internally and externally. Ghost Robotics and OTTO Motors
use interfaces and composition nodes to separate parts of a
complex system so teams can collaborate without needing
to concern themselves with the details of other parts of the
system. Both Mission and Auterion are able to build custom
solutions collaboratively with their customers by utilizing
ROS 2.

Finally, ROS 2 has allowed businesses to accelerate others
via the sale of trusted platforms. All of the companies
surveyed sell their platforms to other businesses to build
products on top of. The proliferation of ROS expertise in
the industry, matched with its freely available licensing, has
made it the major robotics SDK. By employing ROS 2 and
its conventions, they are able to sell platforms that can be
put to work in bespoke applications quickly.

It should be noted that these themes, software reuse;
collaborations; trusted platforms, are highly correlated with
the design principles laid out in Section III-B.1. In particular,
they are in line with the design principles of Distribution,
Abstraction, and Modularity. The adherence to those design
principles have directly resulted in the emergent themes in
our studies, which represent some of the largest acceleration
factors for the robotics industry today.

V. CONCLUSION

ROS 2 has been redesigned from the ground up to meet the
challenges of modern robotics. It was designed based off of
a thoughtful set of principles, modern robotics requirements,
and support for extensive customization. Largely based on
DDS, ROS 2 is a reliable and high quality robotics frame-
work that can support a broad range of applications. This
framework continues to help accelerate the deployment of
robots out of the lab, into the wild, and is driving the next
wave of the robotics revolution.

We have shown through a series of case studies how it
is demonstrably accelerating companies and institutions into
useful deployment in many types of environments at a wide
variety of scales. They display that ROS 2 is an enabler,
an equalizer, and an accelerator. The standardization around
ROS 2 in a variety of industries is creating opportunities
for new collaborations, faster development, and propelling
newly developed technologies forward. This trend will likely
continue to manifest in the coming years as ROS 2 continues
to reach its peak maturity.

VI. ACKNOWLEDGMENTS

We would like to thank the companies representatives
interviewed in the case studies. This includes: Hunter Allen
and James Laney from Ghost Robotics, Charles Cross from
Mission Robotics, Nuno Marques and Markus Achtelik from

Auterion, Mark Allen and Terry Fong from NASA Ames,
and Ryan Gariepy from OTTO Motors. We would also like
to thank the team at Open Robotics, members of the ROS 2
Technical Steering Committee, and the community for their
passionate support.

REFERENCES

[1] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote,
Jeremy Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS:
an open-source Robot Operating System. In IEEE International
Conference on Robotics and Automation Workshop on Open Source
Software, 2009.

[2] Sachin Chitta, Eitan Marder-Eppstein, Wim Meeussen, Vijay Pradeep,
Adolfo Rodrı́guez Tsouroukdissian, Jonathan Bohren, David Coleman,
Bence Magyar, Gennaro Raiola, Mathias Lüdtke, and Enrique Fernan-
dez Perdomo. ros control: A generic and simple control framework
for ROS. Journal of Open Source Software, 2(20):456, 2017.

[3] Eitan Marder-Eppstein, Eric Berger, Tully Foote, Brian Gerkey, and
Kurt Konolige. The Office Marathon: Robust navigation in an indoor
office environment. In IEEE International Conference on Robotics
and Automation, pages 300–307, 2010.

[4] David Coleman, Ioan Sucan, Sachin Chitta, and Nikolaus Correll.
Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt!
Case Study. Journal of Software Engineering for Robotics, 5(1):3–16,
2014.

[5] Brian Cairl (Fetch Robotics Inc.). Deterministic, asynchronous mes-
sage driven task execution with ros. In ROSCon Madrid 2018. Open
Robotics, September 2018.

[6] Steve Macenski, Francisco Martı́n, Ruffin White, and Jonatan
Ginés Clavero. The Marathon 2: A Navigation System. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2020.

[7] G. Pardo-Castellote. OMG Data-Distribution Service: architectural
overview. In International Conference on Distributed Computing
Systems Workshops, pages 200–206, 2003.

[8] William Woodall. ROS on DDS. https://design.ros2.org/
articles/ros_on_dds.html, accessed February 11, 2022.

[9] Benjamin Kuipers, Edward A. Feigenbaum, Peter E. Hart, and Nils J.
Nilsson. Shakey: From Conception to History. AI Magazine, pages
88–103, 2017.

[10] Richard E Fikes and Nils J Nilsson. Strips: A new approach to
the application of theorem proving to problem solving. Artificial
intelligence, 2(3-4):189–208, 1971.

[11] Rodney Brooks. A robust layered control system for a mobile robot.
IEEE journal on robotics and automation, 2(1):14–23, 1986.

[12] Erann Gat, R Peter Bonnasso, Robin Murphy, et al. On three-layer
architectures. Artificial intelligence and mobile robots, 195:210, 1998.

[13] Reid G Simmons. Structured control for autonomous robots. IEEE
transactions on robotics and automation, 10(1):34–43, 1994.

[14] Michael Montemerlo, Nicholas Roy, and Sebastian Thrun. Perspec-
tives on standardization in mobile robot programming: The carnegie
mellon navigation (carmen) toolkit. In Proceedings 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS
2003)(Cat. No. 03CH37453), volume 3, pages 2436–2441. IEEE,
2003.

[15] C Mohan and R Dievendorff. Recent work on distributed commit
protocols, and recoverable messaging and queuing. Data Engineering,
17(1):1, 1994.

[16] Jim Waldo. The jini architecture for network-centric computing.
Communications of the ACM, 42(7):76–82, 1999.

[17] OASIS. MQTT Version 5.0: OASIS Standard, 2019.
[18] Brian P. Gerkey, Richard T. Vaughan, Kasper Støy, Andrew Howard,

Gaurav S. Sukhatme, and Maja J Matarić. Most Valuable Player: A
Robot Device Server for Distributed Control. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2001.

[19] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. YARP: Yet
Another Robot Platform. International Journal of Advanced Robotic
Systems, 3(1):43–48, 2006.

[20] Albert S. Huang, Edwin Olson, and David C. Moore. LCM:
Lightweight Communications and Marshalling. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 4057–
4062, 2010.

[21] H. Bruyninckx, P. Soetens, and B. Koninckx. The real-time motion
control core of the Orocos project. In IEEE International Conference
on Robotics and Automation, 2003.

https://design.ros2.org/articles/ros_on_dds.html
https://design.ros2.org/articles/ros_on_dds.html

[22] Apache Software Foundation. Apache License, Version 2.0. https:
//www.apache.org/licenses/LICENSE-2.0.html,
accessed September 3, 2021.

[23] K. Birman and T. A. Joseph. Exploiting virtual synchrony in
distributed systems. In ACM Symposium on Operating Systems
Principles, pages 123–138, 1987.

[24] Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman. Linux
device drivers. ”O’Reilly Media, Inc.”, 2005.

[25] Gero Mühl, Ludger Fiege, and Peter Pietzuch. Distributed event-based
systems. Springer Science & Business Media, 2006.

[26] M. D. McIlroy, E. N. Pinson, and B. A. Tague. Unix Time-Sharing
System: Foreword. The Bell System Technical Journal, 57(6):1899–
1904, 1978.

[27] Aravind Sundaresan and Leonard Gerard. Secure ros: Imposing secure
communication in a ros system. In ROSCon Vancouver 2017. Open
Robotics, September 2017.

[28] Kyle Fazzari. ROS 2 DDS-Security integration. https://design.
ros2.org/articles/ros2_dds_security.html, accessed
September 6, 2021.

[29] OMG. DDS Security. https://www.omg.org/spec/
DDS-SECURITY/1.0/PDF, accessed February 9, 2022.

[30] Ruffin White, Gianluca Caiazza, Henrik Christensen, and Agostino
Cortesi. Procedurally provisioned access control for robotic systems.
In IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2018.

[31] Ingo Lütkebohle, Borja Outerelo Gamarra, Iñigo Muguruza Goenaga,
Jaime Martin Losa, and Vı́ctor Mayoral Vilches. micro-ROS: ROS 2
on microcontrollers. In ROSCon. Open Robotics, October 2019.

[32] Object Management Group. Data Distribution Service for Real-time
Systems Specification, December, 2004.

[33] Lennart Puck, P Keller, Tristan Schnell, Carsten Plasberg, Atanas
Tanev, Georg Heppner, Arne Rönnau, and Rüdiger Dillmann. Dis-
tributed and Synchronized Setup towards Real-Time Robotic Control
using ROS2 on Linux. In 2020 IEEE 16th International Conference
on Automation Science and Engineering (CASE), pages 1287–1293.
IEEE, 2020.

[34] Jan Staschulat, Ingo Lütkebohle, and Ralph Lange. The rclc Execu-
tor: Domain-specific deterministic scheduling mechanisms for ROS
applications on microcontrollers: work-in-progress. In International
Conference on Embedded Software, pages 18–19. IEEE, 2020.

[35] Mehul Sagar. ISO Certification of ROS 2. In Embedded World
Conference, March 2021.

[36] John Torjo. Asio C++ Network Programming: Enhance Your Skills
with Practical Examples for C++ Network Programming, 2013.

[37] Channy Yun. AWS IoT RoboRunner for Building Robot Fleet
Management Applications, accessed February 11, 2022.

[38] ROS 2 Design. http://design.ros2.org/, accessed August 5,
2021.

[39] ROS Enhancement Proposals. https://ros.org/reps/
rep-0000.html, accessed August 5, 2021.

[40] William Woodall. REP 2004: Package Quality Categories. https:
//ros.org/reps/rep-2004.html, accessed August 5, 2021.

[41] Eclipse Foundation. Cyclone DDS. https://cyclonedds.io/,
accessed September 3, 2021.

[42] Ian D. Miller, Fernando Cladera, Anthony Cowley, Shreyas S. Shiv-
akumar, Elijah S. Lee, Laura Jarin-Lipschitz, Akhilesh Bhat, Neil
Rodrigues, Alex Zhou, Avraham Cohen, Adarsh Kulkarni, James
Laney, Camillo Jose Taylor, and Vijay Kumar. Mine tunnel exploration
using multiple quadrupedal robots, 2020.

[43] Lorenz Meier, Dominik Honegger, and Marc Pollefeys. Px4: A
node-based multithreaded open source robotics framework for deeply
embedded platforms. In 2015 IEEE International Conference on
Robotics and Automation (ICRA), pages 6235–6240, 2015.

[44] David McComas. NASA/GSFC’s Flight Software Core Flight System.
In Flight Software Workshop, 2012.

[45] Susan Y Lee, David Lees, Tamar Cohen, Mark Allan, Matthew Deans,
Theodore Morse, Eric Park, and Trey Smith. Reusable science tools
for analog exploration missions: xgds web tools, verve, and gigapan
voyage. Acta Astronautica, 90(2):268–288, 2013.

[46] Sherry Stukes, Mark Allan, Matthew Deans Georgia Bajjalieh, Ter-
rence Fong, Jairus Hihn, and Hans Utz. An innovative approach to
modeling viper rover software life cycle cost. In 2021 IEEE Aerospace
Conference (50100). IEEE, 2021.

[47] Charley Price. Heritage Software Save up to 97% on future V&V
for real projects. https://www.nasa.gov/sites/default/

files/03-09_ivv_guidance_for_ivv_for_product_
line_software.pdf, accessed September 7, 2021.

https://www.apache.org/licenses/LICENSE-2.0.html
https://www.apache.org/licenses/LICENSE-2.0.html
https://design.ros2.org/articles/ros2_dds_security.html
https://design.ros2.org/articles/ros2_dds_security.html
https://www.omg.org/spec/DDS-SECURITY/1.0/PDF
https://www.omg.org/spec/DDS-SECURITY/1.0/PDF
http://design.ros2.org/
https://ros.org/reps/rep-0000.html
https://ros.org/reps/rep-0000.html
https://ros.org/reps/rep-2004.html
https://ros.org/reps/rep-2004.html
https://cyclonedds.io/
https://www.nasa.gov/sites/default/files/03-09_ivv_guidance_for_ivv_for_product_line_software.pdf
https://www.nasa.gov/sites/default/files/03-09_ivv_guidance_for_ivv_for_product_line_software.pdf
https://www.nasa.gov/sites/default/files/03-09_ivv_guidance_for_ivv_for_product_line_software.pdf

	I Introduction
	II Related Work
	III ROS 2
	III-A Scope
	III-B Design
	III-B.1 Design Principles
	III-B.2 Design Requirements

	III-C Communication Patterns
	III-D Middleware Architecture
	III-D.1 Abstraction Layers
	III-D.2 Architectural Node Patterns

	III-E Software Quality
	III-F Performance and Reliability
	III-G Security

	IV Case Studies
	IV-A Land: Ghost Robotics
	IV-A.1 Software Architecture
	IV-A.2 The COVID-19 Pandemic
	IV-A.3 ROS 2 as an Equalizer

	IV-B Sea: Mission Robotics
	IV-B.1 Customer Architecture
	IV-B.2 ROS 2 as an Accelerator

	IV-C Air: Auterion Systems
	IV-C.1 Logging and Introspection
	IV-C.2 Safe, Automated Testing

	IV-D Space: NASA VIPER
	IV-D.1 Mission Testing in Simulation
	IV-D.2 Creating a Legacy

	IV-E Large Scale: OTTO Motors
	IV-E.1 Scaling Multi-Robot Technology
	IV-E.2 Acceleration of Development

	IV-F Discussion

	V Conclusion
	VI Acknowledgments
	References

