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Abstract—This paper proposes a simulated annealing based
approach to determine the optimal or near-optimal path quickly
for a mobile robot in dynamic environments with static and
dynamic obstacles. The approach uses vertices of the obstacles to
define the search space. It processes off-line computation based
on known static obstacles, and re-computes the route online if a
moving obstacle is detected. The contributions of the work include
the employment of the simulated annealing algorithm for robot
path planning in dynamic environments, and the development of
a new algorithm planner for enhancement of the efficiency of
the path planning algorithm. The effectiveness of the proposed
approach is demonstrated through simulations under typical
dynamic environments and comparisons with existing methods.

Keywords—simulated annealing algorithm, robot path plan-
ning, dynamic environement

1. INTRODUCTION

Path planning is one of the most important aspects in au-
tomatic robot navigation. Generally, depending on how much
the robot knows about the environment around, two types of
path planning have been investigated:

1) Path planning based on clearly known environments, i.e.,
the robot has already known the location of the obstacles
before starting to move. The path of the robot could be
computed off-line, and the globally optimal path can be
obtained because the entire environment is known.

2) Path planning based on partly known or uncertain en-
vironments. The robot probes the environment by using
sensors to acquire the information about the location,
shape and size of the obstacles, and uses the local
information to perform online path planning.

Nowadays, the techniques for robot path planning in static
and known environments are relatively mature. Methods and
algorithms for this type of path planning have been well
developed with hundreds of publications in the open litera-
ture. Representative methods are Visibility Graph [1], Voronoi
diagrams [2], and Grids [3]. Given the entire information of
the environment, the globally optimal or near-optimal path
could be found using some algorithms such as the Genetic
Algorithm [4]. Davidor [5] developed a tailored genetic al-
gorithm with a modified crossover operator to optimize the
robot path. Nearchou [6] used the number of vertices produced
in visibility graphs to build fixed length chromosomes in
which the presence of a vertex within the path is indicated by
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setting a bit at the appropriate locus. This method employed
a reordering operator to enhance the performance, and was
capable of determining a near-optimal solution. Cai and Peng
[7] developed a fixed-length decimal encoding mechanism to
replace the variable-length encoding methods and other fixed-
length binary encoding approaches in genetic approach for
robot path planning.

However, as described in [8] and [9], quite often, a robot
could not predict the environment around because the status
and movement of the obstacles change all the time. The
robot cannot make a one time global path planning in the
environment. It has to acquire the surrounding environment
information using sensors and then to perform online and real-
time path planning. As a result, complexity and uncertainty of
robot path planning increase significantly in dynamic environ-
ments. Therefore, traditional path planning algorithms, such as
Visibility Graph, Voronoi diagrams, and Grids, do not perform
well in dynamic environments. How to manipulate the robot in
dynamic environments to travel to the destination safely and
optimally without collision is a major issue to be addressed.

Limited reports in the open literature have discussed the
optimal path planning for a robot in dynamic environments.
Lv and Feng [10] introduced numerical potential field to find
the path for the robot in dynamic environments. They used
an ant colony optimization algorithm to perform optimal path
searching. Xu, Xie, and Xie [11] also investigated dynamic
path planning using the concepts of artificial potential field and
genetic algorithm. Recently, Wang, Sillitoe and Mulvaney [12]
introduced a genetic algorithm planner to determine optimal
or near-optimal solutions for a mobile robot in dynamic
environments.

Implementing path planning algorithms in a real robot
in dynamic environments is also limited. Cao, Huang and
Zhou [13] proposed an evolutionary artificial potential field
algorithm for dynamic path planning for soccer robots in
RoboCup 2005. The method was used to plan the path for
mobile robots in a dynamic environment where the target and
obstacles are moving. In [13], the new force function and
relative threat coefficient function were defined first. Then,
a new potential field path-planning algorithm based on the
relative threat coefficient was presented. Finally, computer
simulation and experiment were conducted to demonstrate the
effectiveness of the dynamic path planning scheme.



However, the methods mentioned above all have some
drawbacks:

o When dealing with robot path planning in complex en-
vironments, the genetic algorithm based approaches are
computationally intensive and time consuming. According
to the simulation results in [12], the genetic algorithm
requires near 30 seconds to find the first feasible path for
the robot in the environment with 14 static obstacles and
5 dynamic obstacles.

o The other two methods [14] and [13] ignored the di-
mension of the obstacles. They considered an obstacle
as a point or simple square block which could generate
the repulsive force to robots. Therefore, the methods
are not suitable for optimal path searching in a variety
of environments with sharp obstacles. For searching the
optimal path for a robot, dimensions of the obstacles
should not be ignored.

Aiming to overcome those drawbacks, this work employs
the simulation annealing algorithm [15] for robot path planning
in dynamic environments. The simulated annealing based
approach could determine the optimal or near-optimal robot
path efficiently through various shapes of static and dynamic
obstacles. The obstacles are all described as polygons; this is
more realistic than the assumption made in [14] and [13]. The
simulated annealing algorithm is a generic and probabilistic
meta-algorithm for global optimization problems. It is able to
locate a good approximation to the global optimum of a given
function in a large search space. Simulated annealing based
approaches have already been used in searching optimal path
in stationary path planning methods in [16] and [14]. However,
they have not been effectively applied to dynamic robot path
planning. This motivates the work of this paper.

II. APPROACH DESCRIPTION

This section develops the simulated annealing algorithm
based approach for dynamic robot path planning. We will
discuss in detail the modelling of the environment, structure
of the approach/algorithm, the generation of the initial feasible
path, the new planner for generating the random path, and the
procedure of the online computation.

A. Environment Modelling and Assumptions

In our approach, both moving obstacles and static obstacles
are represented as bounding polygons. The vertices of the
obstacles in the environment form the search space for the
algorithm. The dynamic environment is designed to contain
stationary and moving obstacles. The trajectory of a moving
obstacle is constituted by a series of polygons with their
positions being updated along with the time. Any motion
parameters, such as speed and direction, of the dynamic
obstacle can be made available to the robot when the obstacle
is in the range of the sensor. The robot could change its moving
direction at any time.

The procedure of the proposed path planning algorithm in
dynamic environments is divided into two stages:

Step 1: Off-line path computation based on the information
of the stationary obstacles; and

Step 2: Online path computation once the moving obstacles
are detected by the sensor of the robot.

In offline computation, the entire information about the
location of the vertices of the static obstacles is known to
the robot. The algorithm begins with the computation of
the optimised path for the robot based on the positions of
the stationary obstacles before starting to travel. Once the
computation is complete, the robot can start to move through
the stationary obstacles.

The movement and the trajectory of a moving obstacle in
dynamic environments are unknown to the robot. The robot
will sense the moving information of the dynamic obstacle.
It is assumed that the function of the robot sensor is to
acquire the moving parameter of the dynamic obstacle, and
the sensor can detect 360-degree direction of the robot. When
a moving obstacle enters the detection range of the robot,
the sensor will detect the obstacle and the robot acquires
the moving information, such as speed and moving direction,
of the obstacle. Then, the robot uses the motion information
to compute the possibility of clashing of the robot with the
moving obstacle. If the moving obstacle will not hit the robot,
the robot will use the current path plan to travel through the
map. To make the algorithm practically feasible, the processing
time for the robot to re-compute a new feasible path when a
moving obstacle is detected is a key performance metric and
has to be sufficiently short.

For realistic simulations, as in [17], all obstacles in the
map are enlarged by a fixed value so that the robot could
approach obstacles without collision. The dimension of the
robot is neglected, and consequently the robot is regarded
as a single point. In Figure 1, the black polygons represent
static obstacles and the hollow polygons are moving obstacles.
All the obstacles are enlarged by some values, i.e., additional
margins are created, to prevent possible collision of the robot
with the obstacles. The vertices of the enlarged polygons form
the search space for the robot.

A mathematic model of determining the possibility of robot
colliding with a moving obstacle could be developed. The
model is described as follows:

1) The first crossing point between the robot path proposed
by the planner and the trajectory of a moving obstacle is
computed before examining the possibility of collision;

2) Based on the time ¢ required for the robot to cover the
distance from the current position to the first crossing
point, the instantaneous location of the moving obstacle
and consequently the exclusion area for this obstacle can
be computed;

3) If the robot path between the vertex and the crossing
point across the edges of the moving obstacle in odd
times, then a collision would occur between the robot
and the moving obstacle, otherwise the collision will not
happen.
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Fig. 1. Example of the dynamic environment.

B. Algorithm Structure and Expressions

Traditionally, the path length E is the evaluation criterion
for the quality of the path solution derived from the algorithm.
The shorter the path, the better the solution is.

A feasible path solution is expressed by a series of vertices
linking the start point through to the end point. Each vertex of
the obstacle has its series number; and a path is represented
by a sequence of vertex numbers. Therefore, a feasible path
solution X is described as:

X = {‘/starb ‘/start+la ‘/start+27 ) ‘/end—h Vvend} (])
The evaluation function E; is given by:
i=end—1
Ef= Y D(Vi.Vit1) @)
i=start
where D(V;, V;11) represents the direct distance from vertex
V; to Vi41. The pseudo-code of the algorithm is as following:

T = Tinitials
while (T > Tte’rminate)
randomly generate one feasible solution Xg;
evaluate X, Ey = f(X5);
count = 1;
while (count < Threshold)
generate a new feasible solution X,, base on Xs;
evaluate X, E, = f(X,);
if F(X,) < F(X,)

Xs - Xn;
else if rand(1) < (exp((f(Xs) — f(Xn))/T)
X =X,
count = count + 1;
endif
endwhile

T = cool_rate x T;

update X at each reduction of temperature T
endwhile
X is the optimal or near-optimal solution for the robot.

C. Initial Path Selection Process

It is known from Subsection B above that after each
reduction of initial temperature 7', a new feasible solution X,
is selected in each new round. It is essential for the algorithm
to quickly and correctly generate a random feasible path in
each round for the robot. For this purpose, the edges of the
static obstacles should be specified first. An edge is any strait-
line between two points on the edge of or within the obstacles.
Any path section crosses the edge is defined as an invalid path.
In the proposed program, a separate array is used to store all
the edges of the map.

In the initial stage of the program, except dynamic objects,
starting point, and end point, a vertex is chosen randomly from
the map. Then, use a strait line to connect the start point and the
selected vertex. If the path line intersects with any edges of the
obstacle in the map, the path is recognized as an invalid path.
Another vertex will be randomly selected again for testing. If
the strait line to the selected vertex does not intersect with any
edges in the map, the strait line is recognized as part of a valid
path. Then add the vertex into the path. After that, start from
the selected vertex to find next valid vertex. Keep doing the
above procedure until the end point is selected and also the
path line to the end point is a valid path, i.e., the path to the
end point does not intersects with any edges.

D. Random Path Planner

Different from the simple path planner that was previously
used in [10], a more complex random path planner is developed
in this paper. Additional deleting and switching operators are
used in the planner to generate a new solution by flipping
some bits of the X,. The algorithm randomly chooses one
operator to generate the new path. As shown in Figure 2, the
deleting operator randomly deletes one vertex from the initial
X, to generate a new solution, while the switching operator
randomly swaps two vertices in X,. As the same selection
criteria in generating initial path, each line section generated
by the operators should be firstly tested against the edges in
the map in order to generate a valid path line. This means that
the line section created does not intersect with any edges in
the map.

Fig. 2. Deleting operation.

Since the path length is the evaluation criterion, it is be-
lieved that randomly deleting vertices could contribute more to
the reduction of the path length of the solution. Therefore, the
possibility of choosing the deleting operator is set to be higher
than that of selecting the switching operator. In our simulation
program that will be discussed later, the possibility of choosing
the deleting operator is set to be 0.78. After generating a new



path solution by the deleting or switching operator, the new
solution will be evaluated using the evaluation function. Either
accept the new solution if it is better than the previous one;
or accept the solution in a certain probability characterised by
the current annealing temperature.

E. Online Path Planning

As stated in Introduction section, while a robot uses the
route generated by off-line planning to travel through static
obstacles, the online path planner is triggered automatically to
compute an alternative optimal path when a dynamic obstacle
is detected.

The moving information of the dynamic obstacles gathered
by the sensor of the robot includes speed and moving direction.
With this acquired information together with the moving
parameter of the robot, the robot could infer the possibility
of collision with the moving obstacles.

The simulated annealing optimization algorithm for finding
optimal path is triggered when the computation shows that the
robot will collide with the moving obstacle if no change of
movement will be made in the future. If the moving obstacle
will not hit the robot, the robot will use the current path plan to
travel through the map. If it is computed that a new alternative
path should be created, the simulated annealing algorithm
will be activated and reloaded with the updated search space.
The current status of the robot, the location information of
the dynamic obstacles that could cause the collision and the
location information of the static obstacles are all combined
as a new search space for the robot.

With the increasing number of the static and dynamic
obstacles, the search space becomes larger. As a result, the time
required for planning a path becomes longer. Therefore, in a
complicated situation with many static and dynamic obstacles,
it is required that the planning time is relatively short for
robot to change the directions to avoid the collision with the
obstacles.

III. SIMULATION RESULTS

Simulation experiments are carried out in this work using
math simulation software Matlab 7.1 [18] under Windows. The
hardware configuration is Intel Pentium M 1.6GHz CPU with
256MB memory.

A. Simulation Environment and Control Parameters

The algorithm is tested for four different environments.
Each environment contains static and dynamic obstacles. The
path is optimized for length. The solution derived from the
algorithm is optimal or near-optimal. The numbers of the static
and dynamic obstacles in the four testing environments are
tabulated in Table I. The numbers of the static vertices for
off-line planning are also listed in Table I.

In our simulation experiments, the dynamic obstacles have
random shapes in all four cases. The first two environments
simulate simple scenarios where the dynamic obstacles appear
simultaneously and travel simply forward in the same direction.
The last two environments are more complicated scenarios

TABLE 1
FOUR TESTING ENVIRONMENTS.

Environment No. of No. of No. of
Static Obstacles  Dynamic Obstacles  Static Vertices

1 3 2 10

2 6 2 25

3 9 4 53

4 14 6 82

TABLE 1I
CONTROL PARAMETERS FOR SIMULATION ANNEALING.

Initial Terminate Cooling  Deleting  Switching
Temperature ~ Temperature Rate Operator ~ Operator

Rate Rate

999999999 555555555 0.97 78% 22%

where the dynamic obstacles do not appear simultaneously
but each appears at a random time and moves forward or
backward. Also, the numbers of the static and moving obstacles
are larger than those of the simple environments. All the
position information of the static obstacles in the map is known
to the robot for off-line planning before the robot starts to
travel.

The control parameters for simulated annealing algorithm
are set in traditional way. According to [16], with bigger initial
temperature and smaller cooling rate, it is much more likely to
find the optimal solution, but it will require longer processing
time for running. After many times of testing, we set control
parameters of the algorithm as shown in Table II

B. Results and Discussions

Because the first two environments simulate simple sce-
narios where the dynamic obstacles appear simultaneously
and travel simply forward in the same direction, the most
complicated scenario, Environment 4, is presented first to
illustrate the simulation results.

In Environment 4, there are 14 static obstacles and 6
dynamic obstacles. Furthermore, for creating complexity, dy-
namic obstacles appear randomly at different times and move
in different directions. In Figure 3, the series of hollow poly-
gons are the trajectory of the dynamic obstacles. The obstacles
move along in the direction where the arrow indicates. The line
constituted by a series of points is the trajectory of the robot.
Another arrow is used to indicate the moving direction of the
robot.

Figures 3 and 4 show that the dynamic obstacles do not
appears simultaneously, four dynamic obstacles will appear
at random times after first two dynamic obstacles come out.
The dynamic obstacles are numbered in Figure 4. Figure 4
illustrates the simulation results of the algorithm using offline
and online planning to find an optimal or near-optimal path
for the robot in the simulated dynamic environment.

It is seen from Figure 4 that the robot changes its route to
avoid collision with dynamic obstacles 1 and 2. Also, the new
path replaces the original path and is still an optimal or near
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Fig. 4. Path planning in dynamic environment with 14 static objects and 6
dynamic objects.

optimal path. It is also observed from the figure that the robot
will use current path to travel if it no collision is predicted.
The robot’s computation shows that dynamic obstacles 5 and
6 will not affect its trajectory, so the robot uses the current
path to travel passing the obstacles in the map.

Figure 5 illustrates the convergence of the algorithm. It is
seen from Figure 5 that the result converges rapidly in each
round of temperature reduction. The algorithm could jump out
of the local minimum to converge to the global minimum.

Figure 6 depicts the simulation results of the four envi-
ronments. It is seen from the plots in Figure 6 that the paths
generated from the proposed algorithm are all optimal or near-
optimal. The robot has the ability to use online path planning to
change the route to avoid collision with the moving obstacles.

The efficiency of the proposed algorithm is also evaluated
quantitatively. Compared with previous work in [17] and [12],
the proposed algorithm could compute the alternative path
relatively quickly for the robot to avoid collision with the
moving obstacles as evidenced by the fact that the planning
time of the proposed algorithm is observed to be relatively
short to make a motion change.
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Fig. 5. Convergence of the algorithm.
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Fig. 6. Path planning in four different environments.

In order to highlight the high efficiency of the algorithm,
we focus on online planning. When online planning is trig-
gered, the processing time for generating an alternative path
is recorded. The online planner is tested 10 times for each
environment. From the results of the 10 tests, the average value
is computed as the efficiency metric for the algorithm. The
same control parameters are used in all four environments.

As shown in Table III, the processing times of the pro-
posed algorithm for all simulated environments are acceptable
in comparison with previous results in [12] and [17]. The
efficiency could be further improved through modifying the
control parameters or implementing the algorithm in low-level
languages such as C/C++.

In [17], a modified genetic algorithm based approach is in-
troduced to optimize the path for a robot in static environments.
The method also uses vertices as search space. Therefore,
comparisons between the genetic algorithm based approach
and the proposed simulated annealing based approach can
be made through comparing the processing times of the two



TABLE III
PROCESSING TIME IN EACH OF THE SIMULATED ENVIRONMENTS.

Environment 1 2 3 4
Number of vertices 10 25 53 82
Processing Time (s) 0.57 1.201 4.784  13.57

approaches in the same search space on an identical computer.

Both two methods are tested on a personal computer
equipped with Intel Pentium Duo 2 Core 1.6GHz Processor.
Figure 7 shows the simulation results of the two methods: the
left plot is for the genetic algorithm based approach [17], while
the right plot is for the simulated annealing algorithm based
approach developed in this paper.

Figure 8 compares the processing times of the two ap-
proaches for the same number of vertices. Each of the two
approaches is run 10 times for the same environment. The
results in the figure are the medians obtained over the 10 runs.
It is seen from Figure 8 that, compared with the genetic algo-
rithm based approach presented in [17], the proposed approach
requires noticeably shorter processing time for determining the
optimal robot path.
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Fig. 8. Comparisons of the computational time between the two methods.

IV. CONCLUSION

A simulated annealing algorithm based method has been

proposed to determine the optimal or near-optimal path quickly
for a mobile robot in dynamic environments with static and

dynamic obstacles. A new algorithm planner has also been
developed for enhancement of the efficiency of the path
planning algorithm. Simulation results have demonstrated the
effectiveness and efficiency of the proposed approach.
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