
338 Session No. 8 Robots and Integrated Systems

ROBOT PIANNING, EXECUTION, AND MONITORING
IN AN UNCERTAIN ENVIRONMENT

John H. Munson
Stanford Research Ins t i tu te

Menlo Park, Cal i forn ia, U.S.A.

ABSTRACT

An in te l l igent robot, operating in an external
environment that cannot be f u l l y modeled in the
robot's software, must be able to monitor the suc­
cess of its execution of a previously generated
plan . This paper outlines a unif led i ormalism for
describing and relat ing the various functi ons oi a
robot operating in such an environment. After
exploring the d is t inet ion between the external
world and the robot' s i nternal model of i t , and
the d is t inct ion between actions that interact with
the world and the robot's descriptions of those
actions, we formalize the concepts of a plan and
of i ts execution. Current developments at Stanford
Research Inst i tu te , and the benchmark idea oi an

ultimate rat ional robot, are both analyzed in
this framework.

INTRODUCTION AND MOTIVATION

In robotry, however, a di f ferent s i tuat ion
obtains. The system must interact wlth the real
environment, or world, which is represented inter­
nally by the robot's model. In general' for a
number of reasons, th is representation w i l l be
neither comprehensive nor exact :

(1) Real-valued quant it ies cannot bo measured,
nor represented, with i n f m i t e precision ;

(2) Many physical objects and s i tuat i ons do
not admit of complete description (for
example, a human, or a complex piece of
equipment);

(3) Sensory or perceptual ac t i v i t i es , used to
update the model in accordance with the
world, are subject to accuracy l imi tat ions
and also to gross errors,

(4) Effector acti v l t ies that affect the world
are subject to inaccuracies (e .g , , distance
moved) and also to gross fa i lu res ,

(5) The state-of- the-art may not permit a model
large enough or sophisticated enough to
represent f u l l y the pertinent aspects of
the world, even ignoring the other d i f f i -
cul t ies l i s ted . *

We can describe robotry as that subfield of
A r t i f i c i a l Intel l igence (AI) in which the i n te l -
l igent system in the computer deals d i rect ly with
a rea l , external environment. As a part of AI ,
robotry potent Ia l ly partakes of all the problem
areas oi AI : We want to develop robots capable oi
problem sol ving , pattern rocogni t ion , 1 anguage
comprehension, and so on. However, interaction
with an external environment that cannot be f u l l y
modeled in the computer emphasizes a new set of
problems 1 argely unique to robotry. These problems
center on the robot's execution, in an uncertain
environment, of previously generaled pians.

In any AI problem t ormulation there is an in i or-
mati on structure within the computer that const i-
tutes a model of the problem domain. Given the
present state oi the ar t , the models tend to be
reasonably simple. Puzzles and board games have
been very popular problem domains for AI because
the domains can be fu l ly represented by re la t ive ly
simple and unambiguous models, freeing the experi-
menter t o concentrate on the problem-solving issues
Ot her domains, which ref lect real-world problems,
are typical ly abstracted and l imited to simple
models tha t serve as vehicles for problem-solving
studies. An excellent example ot th is approach is
the monkey-and-bananas problem.(1,2) The states
of the model are i ew, and the act ions of the opera­
tors that can affec t the model are considered to
be unequi vocal .

In such an approach, the test for successful
operat ion of the problem-solving system is inher-
ently based on the model i t s e l f . If the system
finds what it reports to be a solution to a problem
(and if the system is logical ly sound), the experi­
menter is sat ist led .

Ry assumption, the model constitutes the sum
to ta l of knowledge about i t s environment on the
basis of which the robot must make i t s plans. The
acid test of the plans occurs, however, when they
are executed by the physical robot acting in the
world . Thi s d is t inet ion between the internal and
external environments introduces new issues of
execution and monitoring that are characterist ic
of robotry.

This paper deals, then, with the beginnings of
a theory re lat ing robot planning, execution, and
monitoring in an uncertain environment. We are
concerned with formalizing the robot's uncertainty
about world-states and the consequences of i t s
actions, and i t s ab i l i t y to deal with a planning
tree whose branches have measures of probabi l i ty
or uncert ainty associ ated with them.

It is too early to say what directions the
teasible implementations o1 such theory w i l l take,
since the t e r n tory is a part of AI that is largely
unexplored. Because of the almost universal occur­
rence of uncertainty in rea l i s t i c environments,
research in robot ry ls l ikely to be led u l t imately
to new iormulations incorporating the ideas of

We recognize that th is f i f t h point could apply,
and the considerations of th is paper be applicable,
to cases in which a computer deals with an external
environment" that is not physical—for example,
another computer program or human bel ief structure.
For s impl ic i ty , however, and in keeping with the
i n i t i a l motivation of th is work at SRI, we shall
continue to refer to the domain of our inquiry as
robotry.

Session No. 8 Robots and Integrated Systems 339

probability theory, Tuzzy sets,(3,4) or modal
logic,(5) in contrast to the two-valued deductive
logic characterist ic of current work in problem
solving and theorem proving.

ROBOT WORLD STATES AND MODEL STATES

As a general framework, we adopt the iamiliar
terminology of state spaces and transitions induced
t herein by various operators . We define W, the
robot's world space, as the collection of possible
states of the environment of the robot, W - (w1} •
At a given point in time, the world is in some
state w1. We associate wi with the experimenter's
(presumably omniscient) view of the robot and its
surroundings, so that w1 includes all there is to

know " about the environment. Clearly, given the
present st atus of our capabilities in informat ion
representation, we cannot reduce W to an explicit
formulation .

We define M, the robot's model space, as the
set {rnj} of possl bio states of a dist inguished
data structure in the robot's computer, i.e., the
model. By assumption, the model comprises all
of the robot's information about the current
status of itself and its surroundings. At a given
point in time, the model is in some statr. m 1 .*

In keeping with the reasons listed in the intro­
duction, there is no simple relationship between
the elements of W and the elements oi M. In
particular, there is no unique functional mapping
in either direct ion. Present-day models are
necessarily very simple and crude relative to the
worlds they represent, so that a given stale of
the model will represent many states of the world.
Conversely, when the world is in a given state, the
model may be in any state. Intuitively, we feel
that some state or states of the model are correct
descriptions of a given world state, whereas others
are incorrect. Formally, one can postulate a
modeling relation R.W.M, which maps world states
into the model states that correctly (or best)
represent them.

In general, the modeling relation R cannot bo
a function in the mathematlcal sense, uniquely
defined at every point in W, If, for example, the
world consists of a single doorway, there will be
not only states of W that clearly map into mopen
and inclosed, but also marginal states for which
the correct state of M is ambiguous. Further­
more, the marginal region is context-sens!tive:

*The states of the robot's model, denoted by mi
herein, are the same as the states denoted by S,
Si, etc., in the paper describing the STRIPS plan­
ner. (6) Also, our model is called the world
model therein, and there are other minor differ­
ences in notation.
Although the experimenter's "omniscient view" may

include knowledge of the robot's model and its
program, these are not contained in wi ; Wi includes
only the external, or physical robot and surround
ings .

it diters depending whether we are modeling the
ability of the doorway to let the robot pass, to
shut out a draft of air, etc.

One approach to this difficulty is to detine R
as a partial function, defined only whore the map­
ping is unambi guous, but this prohibi ts the model­
ing of marginal states . A better alternati ve is to
include both mappings wm mopen and wm— nicinsed ,
where wm is a marginal state. One might further
try to refine the mapping by attaching probability
or conlidence assignments to both branches of the
mapping, but it is questionable whether the idea of
probability captures the desired spirit in this
situation. Perhaps a more appealing approach is
the introduction of fuzzy sets and iuzzv func­
tions developed by Zadeh,(3) Chang,(4) and others,
in which various mathematical concepts (e.g., set
membership) are broadened to include nonbinary
alternati ves. It is beyond the scope ot this paper
to explore this issue further. We merely point out
that this is an unsolved problem that arises at
every turn in the modeling of real environments.

ACTIONS AND OPERATORS

Included in the robot system is a set Q - {Qj} of
actions, through which the robot 1ntoract s with i ts
world, causlng changes in i ts environment and/or
gathering perceptual informat ion therefrom. We may
think of each action as being embodied in an actIon
routlne in the robot's software, which can bo
invoked as desired by the robot's overall executive
routine. From our viewpoint (that of the omni-
scient experimenter) , the ant i cipated outcome of
the application ol Qj when the world is in some
state wx and the model is in some state m1 is a
change to new states ln both the world and the model,
thus, the action may be described by a functional
relation mapping the world-and-model Cart es i an
product space into i tself .

We dist inguish sharply between the robot's actions
and i t s operators, 0 - [0] . Whereas an action Q
is a routine the robot can execute in order to ihter-
act with the world, the corresponding operator 0
is the description of the expected results of that
action that is available within the robot system.
We might ca l l the operator the robot's model ol
the action .

Because the robot's software (except for the
action routines) can only deal with the model, and
not the world, an operator can only be a relat ion
among states of the model,

We can think of each operator as being embodied in
an operator descript ion, a routine (or data for
dr iv ing an. interpretive routine) that yields the
desired functional transformation when applied to
the model. We shall use the terms operator' and
operator description interchangeably, and the

symbol 0. to refer to both.

Q1 : W X M W X M

340 Session No. 8 Robots and Integrated Systems

Actions and their Possible Outcomes

In developing and describing actions and opera­
tors for a robot, we tend to think of them accord­
ing to their desired outcome: roll ahead x feet,
go to the next room, plan a route, and so on.

We must pay heed, however, to the fact that various
outcomes are possible and that the experimenter's
estimates of the possible outcomes of actions and
their likelihoods differ from the estimates made
by the robot (i.e., contained in the operators).

An omniscient experimenter might report the
behavior of a robot like the SRI robot, executing
the action roll ahead x feet, as follows:
Usually, the full roll is completed . Experience

shows that, for a given x, the actual distance
rolled is described by a Gaussian distribution
with mean 0.98 x and standard deviation 0.04 x.
The robot's position coordinates in the model will
be incremented by x cos θ and x sin θ where 8 is
the current angular position of the robot in the
model (not in the world) . If , however, there is
an obstacle in the robot's path, it will bump that
obstacle, stop, update the model with the new
robot position and also with the entry of a new
object, and terminate the action. On the other
hand, we have programmed the robot to check the
model before moving, and if it finds a modeled
obstacle in the path (whether there in reality or
not) it will terminate the action without moving
and will report the cause of its failure.

Several points may be made about this description.
Although it describes one of the robot's primitive
actions, it is already somewhat complex. Even so,
it is far from being comprehensive: The experimenter
has neglected to describe addit ional "failure
modes of the action that may occur in reality, such
as slippage of the robot's wheels.

Even among the modes he has described, the
experimenter cannot predict the exact outcome of
a motion, and he has quantifled his degree of
ignorance among the infinity of possible outcomes
with a probabilistic relation Qj containing a
(Gaussian) probabillty density f unction . In other
cases , a "fuzzy" or modal form of Qj might be
deemed to best express the human's manner of es t i ­
mation .

In practice, one models the outcome of a com­
pleted robot motion with a single outcome specifi­
cation. One would like to dispense with the tedious
mechanics of error analysis, but it is a fact that
such motions lead to cumulative error that must be
dealt with ultimately. This seems to be a basic
problem of robotry in a physical environment. The
natural solution is to use perceptual feedback on
some sort of peri odic basis, perhaps governed by
accumulated anticipated error, to correct the

errors in the robot's dead reckoning.

In the illustrative action description given
above, we observe that the final states of the
world and the model depend in a significant way
on the initial states of both. That is, factoring

Qj into its components, we have

Qj (w 1 ,m 1) = (wf ,mf) = (Qj,w (wi,mi) , Q (w1 ,m 1)) ,

in which the dependence of q on mi and ol Qj'm

on w1 cannot in general be ignored.
We further observe t hat what we have called a

single act ion Qj is in fact a (theoret ically
infinite) f amily or schema of actions , generated
by the parameter x, the nominal distance the robot
is to move. We loosely refer to such a parameter­
ized family as a single action, using Q j as a
shorthand notation for the family QJ;Z, where z is
the set of parameters defining the tamily. Note
that the functional dependence of Qj;z on z together
with Wi and mi may bo arbitrarily complex. In an
actual robot system, of course, a single action
routIne implements such a f amily oi actions, re­
ceiving the parameters as arguments when called.

Operators and thei r PossIble Outcomes

We have just seen that there are three possible
sources of variation in the final states of M and
W resulting from an action Qj : the implicit de­
pendence of QJ on a parameter, its functional
dependence on' the initial states, and the possi bility
that QJ is a probabilistic relation, rather than
a single-valued function . Correspondingly, an
operator OJ has the form of a family of functional
relations from M to M, generated by a set of param­
eters z. It is reasonable to take the parameter
set for an operator as being identical to those
for the corresponding act ion.

We distinguish different types oi operators
according to the number and nature of thei r speci­
fied outcomes. A simple operator is single-valued,
i.e., a function: O1 (m 1) = mf . A compound operator
is a multiple-valued relation over part or all of
its domain : OJ (m1) = {mf1l,mf2 ,...........mfn}.A compound
operator expresses the robot system's anticipation
that, when action Q is applied with the model in
state mi , the resulting state will be mf1 or mf2
or . . . or mfn, without attaching any measures of
likelihood to the alternate outcomes. A complex
operator is a multiple-valued relation for which
likelihood estimates have been attached to the
alternate outcomes, using a probabilistic (or fuzzy
or modal) formalism.

Furthermore, the operator functions and relations
may be partial functions and relations, defined
over proper subsets of M. The domain over which a
given operator is defined represents the set of
states of the model in which the robot considers
that operator to be applicable. We shall subse­
quently observe the use of such criteria of appli-
cability in the planning process.*

The domain-defining formulas are called precon­
ditions in lief . 6.

Session No. 8 Robots and Integrated Systems 341

Just as there is no simple relationship inherent
between states of the world and states of the model,
so there is none between the functional form of an
action and that of its associated operator. On one
hand, operators will tend to be quite crude in rep­
resenting actions, given the present state of the
art, just as models will be crude in representing
the world. On the other hand, by way oi example,
consider an action that might be represented as a
simple function (if we do not scrutinize it too
closely)--for example, an action go straight to
location L. " In the experimenter's view, this
action has a fully predictable outcome: it will
succeed for states of the world in which there is
no obstacle on the straight-line path from the
robot 's current location Lc to L, and will fail
when there is an obs tacle. We can consider several
possible operator forms, any of which might reason­
ably be used in practice to represent tins action:

(1) A simple operator, whose outcome merely
specifles that the robot j s at L (thus, it
always predicts success) ;

(2) A compound operator, specify i ng that the
robot ends up either at L or at some un­
known location U;*

(3) A simple operator, more complicated than
(1) above, that places the robot at L or
at U according to whether there is an
obstacle on the path in the model,

('1) A complex operator that estimates the liko-
lihood of the robot's encountering an
obstacle. This est imate might be based on
both information from the model and a priori
estimates of the likelihood of surprises.
For example, if the model indicates no
obstacle, the operat or might place the
robot at L with 90% probability and at U
with 10% probability.

Clear!y, an important question is that of the
fidellty of an operator in representing its associ­
ated action. Ideally, we want the transit Ions in
M generated by the operator to mirror the trans!tions
in W generated by the action. This idea can be
expressed formally, as follows. Let us make the
simplifying assumption that the action' s effects
on the world do not depend on the model--i.e., we
consider that QJ,W is equi valent to a function

j tw

throughout M—we may consider that 0. f a i t h f u l l y
represents Qj in the context of the modeling re la­
t ion R. Periect agreement would mean that Oj t e l l s
the robot as best it can, confined to the language
of M, what Qj w i l l do in W.*

(The foregoing is merely the nucleus of a formal
theory of computer representation of actions, and
we have skipped over the deta i l s . To properly
develop such a theory would require the treatment
of several topics, including the proper def in i t ion
oi the inverse of R, the establishment of measures
and metrics in W, and the extension oi a l l the
pertinent concepts to the probabi l ist IC—or fuzzy
or modal--case. We suggest that the development
of such a theory of representations of the world
may be an interesting and rewarding endeavor. To
carry lt further here would be beyond the scope
and aims of this paper) ,

The Form of an Operator Description

The foregoing discussion of an operator as a
mathemati cal re lat ion possesses full generallty .
It f a i l s , however, to take into account the
pract ical i t ies of computer implementation of oper­
ators . To this end, we redescribe the operator
description in more convenient operational terms.

It is convenient to break the operator descrip­
t ion into the following components :

• The name of the operator (and, synonymously,
of its associated action);

• Its parameters, if any (in which case the
operator is actually a schema),

Then the modeling relation R : W → M, together with
the relation Qj,w in W, induces a relation in M.
To the extent that 0 agrees with this induced
relation—i.e.i to the extent that Oj = RQj,wR-1

• Specification of the domain of applicability
of the operator;

• Speciflcation of the value of the operator
at each point (state) in the domain. 11 the
operator has multiple outcomes, this becomes
a multiple specification, with appropria te
measures of probabillty (in the case of a
complex operator) attached to each branch .

The output specification(s) may have an explicit
functional dependence on the domain, and both of
them may depend explicitly on the paramet ers.

In the present development of the SRI robot
system, the model is an uns tructured collect ion
of relatively simple entri es--namel y , axioms i n
the first-order predicate calculus. The specifi-
cation of the domain of an operator takes the form
of a statement in the predicate cnlculus, which we
call the precondition(s). The domain oi the

The operator description might specify that U is
constrained to be of the form

, if the robot system can handle such infor
mation.

Ideally, in addition, the effect Q of the
action on the model would also equal RQJ,W R-1.

That is, at execution time the action would up­
date the model to keep It correctly descrIbing
the world, exac tly as predicted by the ideal
operator.

342 Session No. 8 Robots and Integrated Systems

operator then consists of a l l states (axiom sets)
in the model space in which the precondition state"
ment is provable as a theorem.

An (individual) outcome of an operator is
expressed as a set of changes to be made in the
model, in the form of an add l i s t and a delete
l i s t , describing the additions to and deletions
irom the model. The reader is referred to Ref . 6
for examples of model entries , precondi t ion expres­
sions , and add- and delete-expressions.

PLANS AND PLANNERS

A planner is a robot system component that, in
i t s normal mode of operation, takes three inputs:

• An i n i t i a l state of the model, ma (often the
current state of the robot fs model),

• A set of operator descriptions;
• A goal specif icat ion, go.

The goal specif ication defines or induces a set
Mg of model states, the goal states, in which the
specification gO is va l id . (For example, the goal
specif ication may be a formula in the predicate
calculus, and Mg is the set of states--] .e . , axiom
sets—in which gO is derivable as a theorem.)

The output of a planner is a plan. In tu i t i ve ly ,
we think of a plan as a sequence of operators
(O1 , . . . ,OΩ) with instanti ated parameters , causing
state transit ions in the model space M leading
irom the i n i t i a l state ma to a goal state:

However, our actual def in i t ion of a plan general­
izes this in tu i t i ve concept in several ways: a
plan need not begin in the specified i n i t i a l
state, it may not succeed in reaching a goal state;
it may consist of a tree or a more complicated
directed-graph structure, it may inciude operators
with multiple outcomes; and the nodes of a plan
are not single states of the model, but subsets of
M.

The de f in i t i on that fol lows i s assumed to be
taken in the context of a given model space, M,
and a givon set o1 operators, 0.

A plan is a colored, directed graph that sat is-
f ies the following four conditions .

(1) Each arc oi the graph is colored (labeled)
with an operator OJ € O,or a parameterized
operator schema.

(2) To each node nk of the graph is attached
a formula Fk which in turn specifies a
subset Mk of the model space M.

(3) Only arcs of a single color emanate from
a single node.

(4) The state set M, at a node is contained
in the domain of the operator 0, coloring
the arc(s) emanating from the node; or,
equivalently, F, implies the preconditions
of 0, .

Condition (1) allows steps of a plan (arcs) to
be fu l l y specified or to have free variables, which
may ref lect either don't-care conditions or goneral
izations of an instantiated plan . Plan generaliza­
t ion is a fundamental and important process for
learning in a robot system. We hope to give the

SRI robot the ab i l i t y , once it has generated a plan
for a specific s i tuat ion, to generalize the plan
to refer to arbitrary objects, locations, etc . and
to store the generalized plan in the form of a new
meta-action routine and meta-operator with an
appropriate operator descript ion.

As an i l l us t ra t ion of Conditions (1) and (2),
consider a plan for the SRI robot that includes
the fragment

where the operator schema 0 indicates the robot
pushing any object ob from any location x to any
location y. Then the predicate-calculus formula
Fk induces a set of states Mk in M; namely, those
states (i . e . , sets oi axioms) in which an instance
of Fk can be deduced. These are just the states
in which the robot and some object are at the same
place. Note that the state set Mk is generalized
from a single state in two important ways. F i rs t ,
Fk has parameters (ob, x) corresponding to the
parameters of Oj, so that the plan is generalized
and can be applied to any object at any location.
Second, the bulk of the state-delining inlormati on
is treated as don't-care information: the applic­
ab i l i t y of the plan does not depend on whether
the robot's TV camera is on, etc. Thus, in general,
M, is an (in f in i te) family of states ref lect ing
the expansion of a l l the don't-care conditions.

A directed graph is a col lect ion of nodes (vert ices),
connected by arcs (edges) each of which can only be

traversed in one direct ion, defined as "forward".
If a label from a set of labels (here, the robot
operators) is attached to each arc, we ca l l the
graph colored and ca l l the labels the colors . Pro-
ceeding in the forward direct ion, we say an arc
emanates from i ts predecessor node and points to
i t s successor node. Node ns in the directed graph
is accessible from node nr if there exists a con­
nected path of forward traversals along arcs leading
from nr to ns .

Session No. 8 Robots and Integrated Systems 343

Condition (3) means that at any point (node) in
a plan, the plan will unambiguously specify to a
robot executive what action to invoke next. If an
operator is parameterized—i.e., an operator schema
it is assumed that the parameters will be bound to
specific values in the model at the time of execu­
tion. Multiple arcs emanating from a node signify
multiple possible outcomes of the operator that
labels the arcs :

(3) For at least one node
implies g

ns of P , Fs

These characterize compound and complex plans,
described below.

Condltion (4) constitutes a basic check on the
semantics of the plan. If the robot's model is in
a state m that is a member of a state set Mk , so
that we could say the robot is "at" node nk, in the
plan , this cond jtion guarantees that the opera tor
O1 emanat ing from node nk is applicable to the
state m.

Translated into execution-time terms, this means
the following: If a robot exocutive is at point nk
in the execution of n plan, and if the state of the
robot model at that time is a member of Mk, then
insoiar as the robot can tell, it should be proper
to invoke the action routine Qj corresponding to
Oj . More precisely, assuming that the model state
correctly represents the world state, and assuming
that the operator description fai thfully represents
the action routine, then the conditions for success­
ful application of the action routine should be met.

The robot's executive can thus monitor the execu­
tion ot a plan by comparing the robot's model after
each action against the appropriate state set(s)
Mk in the plan. For this reason, the Mk's are
called moni tor sets, and the Fk's, monitor iormulas.

Complete and Incomplete Plans

The foregoing definition of a plan has been made
quite broad, in anticipation of the day when a robot
might maintain large, complicated plans, of which
only fragments might be required in specific instan­
ces at execution time. Our main interest, however,
is in the use of a plan (or an appropriate fragment
of a larger plan)* to carry the robot from a
specific initial state to a specific goal. We say
that P is a complete plan from state ma to goal go
if P contains a subgraph P such that:

(1) P' is a plan,
(2) All of P' is accessible from a node nr such

that ma € Mr ;

A plan P that does not satisfy those conditions is
incomplete (in the context of a given initial state
and goal).

Typically, a planner is provided with an initial
state and a goal, and its objectIve is to create a
complete plan. The output of the planner, however,
may fail to satisfy either or both of (2) and (3)
above. Such an incomplete plan may st i l l have value;
in particular, the robot executive may be able to
proceed with an incomplete plan that has a node nr
that includes the initial state. This topic is
resumed in a subsequent section on the robot execu­
tive.

Simple Compound, and Complex Plans

We define a simple plan as one containing only
simple operators--hence, a graph with only a single
arc emanating from each nonterminal node. A
compound pi an is one including compound operators
(and, possibly, simple operators) , hence, multiple
arcs of a single color may emanate from a node.
Finally, a complex plan is one that also includes
complex operators, in which estimates ot like]ihood
are attached to the arcs representing multiple out­
comes .

(In diagramming a plan, it may be more convenient
to int roduce auxillary nod es on t he compound and
complex operators, so that a single arc of a given
color emanates from each state node:

Note that a well-formed subgraph of a plan is
itself a plan.

The state-transit!on graph then takes on the
appearance of a game graph, in which chance or
the unknown makes a play at the auxiliary nodes.)

In most problem-solving work to date, the task
presented to the planner has been to produce a
simple, complete plan . The QA3 theorem prover(2,
7) at SRI, when used as a robot pianner, reports
success only when it has produced a completo plan--
i.e., proved the theorem representing the goal.
QA3 does have a rudimentary capability to act as a
compound planner by using operator-description
axioms of the form (0, applied to mi implies mf
or mf') and to proceed from both resultant states
to the goal.

The STRIPS Planner for the SRI Robot

The STRIPS planner(6) is currently the corner­
stone of our software implementation efforts for

344 Session No. 8 Robots and Integrated Systems

the SRI robot. STRIPS works in a model space of
the type described herein, using a GPS-like stra­
tegy. (1) Given operator descriptions, an init ial
model ma, and a goal statement g0, STRIPS uses
theorem-proving methods(2,7) to find differences
between g and mQ. Selecting an operator that may
be relevant to reducing such a difference, STRIPS
attempts to show (again using theorem-proving
methods) that part or all of the difference can be
eliminated by the application of the operator.
Success in this endeavor allows STRIPS to postulate
the preconditions of the operator as a subgoal to
be achieved from tho init ial state.

STRIPS iterates the foregoing process, dealing
at any time with a problem composed of a goal (the
original goal or a subgoal) together with a model
state, and maintaining a planning tree of such
subproblems. New model states appear in the plan­
ning tree when STRIPS finds that a preconditions
subgoal is realized in a state. STRIPS applies the
associated operator to that state, generating a
new state which (together with the next-most-recent
subgoal established along that branch of the plan­
ning tree) constitutes a new subproblem. (Space
does not permit a fuller description of STRIPS
here; the reader is referred to Ref. 6 for a
description and examples.)

If STRIPS succeeds in advancing the init ial
state, by successive application of operators, to
a state satisfying the goal, it has achieved a
complete plan. The arcs of the plan are labeled
with the operators that were applied. The nodes
of the plan, however, are not the successive states
calculated along the solution path. Rather, associ
ated with each node is a monitor formula Fk
generated as follows.

Remember that an operator Oj appears in the plan
only when Its preconditions have been proved from
the axiom set representing a particular state. Let
Sj denote the support of the preconditions of Qj--
l.e.i the conjunction of all the axioms actually
required in the proof. Then Sj is included in Fk,
the monitor formula for the node from which 0
emanates.

The foregoing is a minimal prescription for Fk,
since it merely satisfies Condition (4) in the
definition of a plan. An Fk can be made much
stronger (more restrictive) by backing up axioms
from other Sj 's downstream in the plan and con­
joining them to the Fk in question. The developers
of STRIPS plan to incorporate such a procedure. It
is described in detail in Ref. 8. Basically, every
axiom appearing in every Sj is backed up, node by
node, toward the beginning of the plan as long as
the axiom was not added to the model by the operator
(arc) being traversed.

The result of this accumulation of axioms is to
create Fk's that guarantee not merely the applic­
ability of the forthcoming operator, but the applic­
ability of all subsequent operators and the attain­
ment of the goal, as long as the intervening operators
(or actions) make the predicted changes to the model.

In this sense, the augmented F. 's (called kernels
in Ref. 8) serve as comprehensive tests for the
applicability of a plan, beginning at any node.
When a plan is stored away as a meta-operator, the
Fk for the init ial node (or for each node con­
sidered as a potential entry point) can act as its
preconditions.

STRIPS currently runs until it produces complete
plans (or until it has exhausted all possibilities,
or is cut off). It should not be difficult, how­
ever, to introduce termination criteria enabling
STRIPS to produce incomplete plans compatible with
various executive structures, such as are dis­
cussed below.

THE EXECUTIVE

We now consider robot systems in which tho top
level of the control hierarchy is represented by
a system component called the executive. The
executive can call on the planner, as a subroutine,
the executive can also execute a plan by calling
on actions (corresponding to operators in the plan)
that cause the robot to act in the world .

In practice, the executive may communicate in
various ways with an experimenter at a console
attached to the robot system. For the present,
however, we assume simply that the executive has
had presented to it a goal statement in a problem
language (e.g., the predicate calculus) that it
shares with tho planner. We shall distinguish
several levels of executive capability according
to the sophistication with which the executive
monitors the behavior of the robot and chooses
between planning and action.

A Classification of Executives

We may catalog the various classes of robot
systems according to the nature of the plans that
the executive can accept from the plannei—i.e.,
whether complete or incomplete, and whether simple,
compound, or complex—and according to whether the
executive checks the model for feedback ' after
each step of execution. This categorization is
shown in the following table.

Complete
plans
only

No feedback
(Simple plans
only)

Feedback

Simple
Compound
Complex

Complete or
incomplete

plans

B

C
E
G

D
F
H

The letter identifiers are used in the subsequent
discussion. We shall refer to a Type A system,
etc., or to a Type A executive, although the
basis for the distinction often lies as much in

Session No 8 Robots and Integrated Systems 345

the planner as in the executive itself. Generally
speaking, the systems increase in complexity as
their identifiers advance through the alphabet.

The Type A executive receives a simple, complete
plan and acts on it with no feedback from the actual
operation of the robot. More precisely, remember­
ing that a (simple) plan is a sequence of instanti­
ated operators interleaved with monitor formulas,
we can define a Type A executive as one that ignores
the monitor formulas and blindly executes the actions
corresponding to the operators in sequence. Assum­
ing only that each action terminates within a finite
amount of time and returns control to the executive,
the executive will run through the entire list,
implicitly assuming that the result of each action
leaves the world ready for the next one. As far as
a Type A executive can tell, it has successfully
carried out the plan.

It should be noted that we have not prohibited
an action routine working under control of a Type
A executive from employing feedback in its own
internal workings• An act ion routine may cause
the robot to move, may take pictures or utilize
other sensory inputs for navigation, etc., and may
update the model with any amount of information
that it has acquired from the world. Our definition
merely prescribes that at the end of an action the
Type A executive does not access the updated model
to determine whether the conditions for applying
the next action are met.

Although Type A executives may seem needlessly
crude within the framework of this paper, they occur
naturally in robot research programs because they
are the easiest to implement. Having created a
planner (e.g., QA3), one merely needs to make the
instantiated operator list comprising a plan avail­
able to a minimal executive routine that will call
the associa ted action routines in order. This
allows the experimenter to see the robot in action
without developing the more complex intercommunica­
tions demanded by more sophisticated executives .
Early experiments with the SRI robot were carried
out in this fashion.

We define a Type B executive as one that can
accept incomplete plans from the planner but which,
like a Type A executive, executes each accepted
plan without feedback. A Type B system is interest­
ing because, with a very simple executive, it can
achieve a crude monitoring ability by relying on
the abilities of the planner. The planner can pre­
sent an incomplete plan that only attempts to achieve
a portion of the original goal (for example, a
single clause in a formula representing the goal) .
Alternatively, the plan might only specify the
first operation to be applied to the initial state,
or the operations up to and including the first one
with a multiple outcome. After blindly executing
the actions corresponding to the incomplete plan,
the executive returns to the planner, presenting the
new current state of the model and the initial goal
as a new problem.

Assuming that the planner takes the new problem
and solves it from scratch, it will effect ively
reestablish the validity of any unused portion of
its former planning tree that i t has to regenerate.
If, on the other hand, unplanned outcomes of the
executed actions have affected the model so as to
invalidate the previous work, the planner will
automatically have a revised problem to work on.
In the extreme case, in which the incomplete plans
on which the executive acts have only one step each,
the planner has in effect taken over the job of
checking the monitor sets at each step during actual
execution. This mode of operation is conservative,
in that the robot does not plan to execute actions
that are not properly applicable. It is grossly
inefficient, in that the planner will typically be
redoing much of its previous computation at every
step. (However, the Type B executive, like Typo A,
can be a worthwhile experimental approach, in view
of the human labor involved in setting up more
complex executives.)

It is apparent that one could remove the major
inefficiency of a Type B system by allowing the
planner to retain the planning trees from its pre­
vious attempts and reestablish the validity of
unused segments. This would have the same effect
as some of the more sophisticated executives to
be described below. In general, it may be an
arbitrary matter whether a particular calculation
or decision is described as being performed in the
planner or in the executive, since they communicate
di rectly wi th each other.

A Type C executive receives a complete, simple
pi an, and proceeds to execute the plan step by step.
After each execution step, however, the executive
stops to see whether the monitor formula for the
next step is satisfied before proceeding with i t .
(As suggested above, the executive might actually
call upon the deductive machinery of the planner
to perform this check.) As long as the checks are
satisfied, the execution of the plan proceeds. If
the plan is completed, the executive checks tor
satisfaction of the goal condition and, if it is
satisfied, reports success.

If at any point the monitor check fails, it
implies that the execution of an action resulted
in an unplanned model state not prescribed by the
simple plan. The simplest Type C executive would
merely start afresh with the now-current state and
the initial goal as a new problem to be solved by
the pianner, and execute the resultant plan. It
is evident, however, that some port i on of the
planner 's previous work may st i l l be valuable. In
particular, the successive monitor formulas of
the former plan serve as inviting target goals for
getting back on the track oi the plan, since it

is plausible on heuristic grounds that the new
state of the robot may be quite close to satisfying
at least one of the monitor formulas. Thus, the
planner could be called again and given an initial
planning tree whose nodes contain the former monitor
formulas as subgoals. If the planner can make
a plan from the new state to any moni tor formula,

346

the old plan w i l l carry the rest of the way to the
goal . A procedure of this sort , for replanning
with the kernels (monitor formulas) produced by
STRIPS, is described in Ref. 8.

An executive that checks the model after per­
forming each action is able to deal with alternate
outcomes, hence with compound or complex plans.
Type G (and Type E) executives are such; after each
execution step, a Type G executive refers to the
model and the plan. As long as the new model state
agrees with the momtor formula at any of the suc­
cessor nodes of the arc just executed, execution
proceeds. If this check f a i l s , the executive
behaves as described under Type C.

Because execut ives of Types C , E, and G require
complete plans by def in i t ion , the question of when
to plan and when to act is simple for these classes
(as we have seen) . Since a complete plan promises
to carry the robot a l l the way to i t s goal—at
least, assuming the r ight outcomes occur when
several are possible--there is l i t t l e point in
i urther planning as long as the checks at every
step show that the next action can be applied
along a path to a goal st ate.

Executives Acting with Incomplete Plans

If, however, we allow incomplete plans that do
not extend al l the way to the goal,* appropriate
to executives of Types D, F, and H, there is a
very real question at times whether it is more
efficacious to act on an incomplete plan or to
continue planning. There is a r isk either way.
The r isk involved in further planning (which w i l l
tend to emphasize the extension of the exist ing
incomplete plan) is that, if unanticipated out­
comes occurring during subsequent executi on render
the plan inval id , the ef for t is wasted. The r isk
in execution is that it may be leading up a blind
alley in terms of attainment of the f i na l goal.
Further planning might have exposed the f u t i l i t y
of the incomplete plan.

Thus, we are led to a formulation for Type D,
F, and II executives in which planning and execution
are competing ac t iv i t ies that can be engaged in by
the executive. It is assumed that both ac t IV I t ies
have associated, imite costs . Planning costs real
time or computer time (i f it were free, the robot
would of course plan everything a l l the time). In
fact, in the present state of the ar t , the planning
of a step may often take considerably longer than
i t s execution. Execution also takes time, and in
addition may make i r reversible, undesirable changes
in the world and the model. Thus, at a given point
in time, the executive needs to make a cost-
effective decision between planning and acting.

In the section that follows, we sketch an
abstract cost-effectiveness formulati on for t reat­
ing robot planning and execution. It appears that
this formulation is general enough to describe a
broad class of robot executive systems.

Session No. 8 Robots and Integrated Systems

A COST-EFFECTIVENESS FORMULATION
FOR ROBOT EXECUTIVES

Game theory, which descends from the work of
Von Neumann and Morgenstern,(9) may be character­
ized as the study of rational decision-making under
conditions of uncertainty. Given the " philosophical"
assumptions that the benefits and costs of an ent i ty1

possible actions relat ive to an environment can be
quantified into units of a common measure (u t i l i t y) ,
and that the iormalism of probabil i ty theory is an
adequate vehicle for representing uncertainties
about the environment and the outcomes of actions,
game theory provides a formal ism for investigating
optimum strategies for the enti ty (human, organiza­
t ion , or robot) . A major goal of game-theoretic
reasoning can be summarized in the concept of cost-
effectiveness : choosing strategies that yield the
largest expectation value of effectiveness (posi t ive
benefits) minus cost, when the two are related to
each other through the measure of u t i l i t y .

It we make the same philosophical assumptions
about the operation of a robot in an uncertain
(i . e . , imperfectly modeled) environment, game theory
is the natural vehj cle for f inding and descnibing,
in abstract terms at least, the optimum or u l l i ­
mate" behavior strategies for a robot executive.
It must be quickly admitted that, because of our
pr imit ive capabil i t ies in quantifying real environ­
ments, there seems l i t t l e hope of using the elegant
abstractions of game theory as a guide to the con­
struction of practical executives. The game-
theoretic viewpoint, however, does provide a land­
mark and a conceptual viewpoint for comparing
specific executive structures with the ultimate
rat ional executive.

Let us sketch a cost-effectiveness-based robot
executive. As usual, we distinguish between the
world and the model, and between actions and oper­
ators . We st i l l view the model as an assemblage
of exp l ic i t entries, but observe that some entries
may express the level of confidence or degree of
uncertainty of others. For example, the robot may
model not only i t s location, x, but the error in
i t s location Ax, which may be incremented each time
the robot moves. The presence of objects, the
status of doors, etc . , may be assigned levels of
confidence that are increased through observations
or decreased with the passage ol time.

A plan must always begin with a monitor formula
sat isf ied in the current model state, if executing
the f i r s t step of the plan is to be a rea l i s t i c
current option.
This is in marked contrast to most human ac t i v i t i es ,

in which the comparable "planning" is so rapid and
so automatic that it is often carried out on the sub­
conscious leve l . At most, the human may devote con­
scious ef for t to estimating the l ikelihood of success
along various branches of 'spontaneously generated
complex plans .

Session No. 8 Robots and Integrated Systems 347

A goal Is sti l l a specification in terms of
states of the model, but now a specification of the
goal's utility is added. The utility of a goal
must also include the concept ot timeliness; achiev­
ing a goal in a minute is clearly preferable, in
general, to achieving it in an hour. The time
dependence of utility may be explicit in some cases,
e.g., This goal is worthless if not achieved by
one o'clock. In general, however, it appears
appropriate to attach a cost to the passage of time
in all phases of the robot's activities. This cost
of the robot' s (and the experimenter's) time could
be calculated automatically by the robot's execu­
tive in considering the cost-effectiveness of every
action.

Among a family of states constituting a goal,
the utility may vary irom state to state, reflect­
ing the concept that some states are better
at tainment s oi the goal than others. The executive
can thus judge when a goal is attained well enough
to dispense with further effort. A human often
does this—for example, when maneuvering a car into
a parking place.

The introduction of utility for goals, with
time dependence, provides the mechanism for the
treatment of multiple goals. priori ties among goals,
urgency, etc. The experimenter can then give the
robot goal commands equivalent to Drop what you're
doing and perform this task right away, you
have nothing else to do, explore the environment,
and so on.

In our terminology, the operators for a cost-
el tec tive executive are complex, specifying multiple
outcomes with probabilitv estimates nttached to
each . In addJtion, each operator must be supplied
with an estimate (or a priori estimates must be
generated) ot the time that the corresponding
ac tion is expected to consume . Ot her, explicit
measures of the cost of the action might be pro­
vided, if, for example, the action consumed n
valunble resource, such as electrical power in the
case oi a self-contained robot .

Armed with such goal descr i ptions and operator
descriptions, a planner in a robot system performs
a search that is governed by utility, not merely
probability. One can envision a STRIPS-IJkc planner,
for example, maint a)ning a complex planning tree
but terminating any branch of the tree for which t he
accumulated costs of the actions exceed the utility
of the goal. More generally, the calculation <>i
expected utility for the portion of plan extant at
each node in the plarming t ree becomes the guidi ng
measure for search . This calcula t i on must combine
the costliness of the partial plan thus tar gener­
ated (i.e., the expected cost of execut ing it) with
an estimate ol the costliness ot the remainder oi
the plan needed to make it complete (see the dis­
cussion of the "A" search algorithm in Refs. 10
and 11.) Thus, the cost-effective planner must have
some mechanism, however crude, 1 or estimating the
nearness ot a plan to completeness and thus esti­
mating 11 s progress at any point .

This leads us to the major conceptual step in
the formulation of a cost-effective executive. If
the progress of a planner in generating a plan can,
however crudely, be estimated and dealt with as a
measurable quantity, just as the progress of the
robot across the room can, why not treat the plan­
ner as a kind of action routine that affects, not
the external environment, but a quasi-environment
whose states are plans? Furthermore, just as an
action routine has an operator description that
models it, so we can provide the executive with a
quasi-operator description for the planner, that
estimates (for a given current model state, goal,
and existing accumulation of plan) the outcome of
a call to the planner. By using this description
to estimate the cost-effeetIveness of a call to the
planner, and by comparing that with the estimated
cost-effectiveness attached to any exist ing complete
or incomplete plans, the executive can make a
rational decision whether to plan or to act.

We note that the executive may be able to buy
differing amounts of effort from t he planner,
specified in various ways, e.g., Proceed to a
complete plan (with some time limit), Plan until
you encounter the first application oi a complex
operator, Plan only along branches wi th cumtil a-
tive probability of occurrence greater than 0.2,
Cut off all branches oi the plan whose anticipated

utility falls below a certain value, and so on.
Thus, a planner may be considered as a family of
quasi-actions, parameterized by the condltions
governing its effort when called, and the planner
description should (however crudely) reflect this
variability. *

It we consider the formal space in which a cost-
ef lective executive operates, It is apparent that
it is at least the product ot the space of model
states and the space of plans. Actions (not includ­
ing the planner) cause transitions in this space
by changing the state oi the model and also by
trimming down the plan, i .e., obsoleting that part
of the plan that is no longer relevant to the new
model state. The planner, on the other hand,
generally augments the plan or creates a plan where
none exists, while not affectlng the st ate oi the
model.

Formally, t herofore, both the actions and the
planner can be described at the mota-level by

In any cost-etiective robot executive likely to
be implemented in the foreseeable Iuture, 1 he
decision when to plan and when to net will probably
be implemented by an ad hoc routine that calculates
the utilitles of both sides and makes a simple
decision. Abstractly, however, given a complicated
planner descrlption or descriptions for a family
ot planners, the problem oi when and how to call
a planner J n preference to ac t ing could become
difficult enough to require the services of a
meta-planner in the executive.

348

functional relations in a space whose states incor­
porate the model state and the state of the plan.
We ca l l this space the knowledge space of the robot,
K. K has states of the form {mi ;P;C}, where mi is
a state of the model, P is a state of the plan, and
C is a set of additional control information re­
quired to specify fu l l y the state of the executive.

The need for the control information C can be
i l lust rated by the following examples. Suppose that
the executive cal ls a planner, and the planner f a i l s
to create any new plan. Again, suppose that a
planner is called and yields a plan, which is exe­
cuted but which leaves the model in i t s i n i t i a l
state (or, perhaps, by some measure, no closer to
the goal than the i n i t i a l state was). In either of
these cases, both the model and the state of the plan
end up where they were or ig ina l ly . Clearly, to avoid
endless looping, the executive must have some infor­
mation about i t s recent history; we define this as
the control information, C.

In practice, the control information is l i ke ly
to be buried in the executive routines in the form
of program control f lags, or even embodied in the
progress of the program's location counter. For
example, a simple executive might have a flow chart
that works as follows: If there is no plan for the
current state, ca l l the planner. If there is s t i l l
no plan, ex i t . Otherwise, execute the plan. I±
the goal is achieved, exi t with success. Otherwise,
return to the top." From the lo f ty viewpoint of
the knowledge-space abstraction, we can discern in
the flow of control an extremely simple form of
control information. More important, we have a
conceptual framework in which to relate this to
other executive structures.

SUMMARY: PRESENT STATUS
AND PROBLEMS FOR THE FUTURE

In this paper, we have presented a general for­
mulation that we believe is appropriate to the
planning, execution, and monitoring functions of a
robot working in an uncertain (i . e . , imperfectly
modeled) environment. We feel that this formulation
is general enough to encompass the ultimate
rational robot executive, working under the game-

theoretic doctrine of cost-effectiveness. At the
same time, it has provided a specific framework
within which to view the development of the STRIPS
problem solver at SRI, and we feel that it will
continue to serve as a guide and a check on further
efforts.

STRIPS and the formulation herein grew out of a
common impetus, namely, the observed inadequacies
of problem solvers confined to the first-order
predicate calculus for work in a dynamic problem
environment. This issue is discussed by the creators
of STRIPS in Ref. 6. Our response in both develop­
ments has been to choose the formalism of states
and operators as the basic problem representation,
leading to the use (in STRIPS) of GPS-like search
methods, while retaining the calculus as a deductive
mechanism within states.

Session No. 8 Robots and Integrated Systems

It is the author's opinion, however, that any
system confined to crisp, black-and-white reason­
ing (i.e., logical formalisms in which all formulas
ultimately map into the two truth values TRUE and
FALSE) will turn out to be inadequate for intelli­
gent behavior in realistic environments. Even in
the most menial tasks, the human operates in a
perennially inexact and potentially uncertain environ­
ment, in which probably and maybe and might
and sort of are constant companions. A robot per­
forming similar tasks must be prepared to handle
comparable contingencies, unless it works in an
environment fully sanitized by the expensive
process of engineering away all the uncertainties.
This view motivates the several references herein
to probability theory and other logics that are not
two-valued, and the portrayal of a cost-effectivenoss-
based robot executive (originally developed in Ref.
12) .

Still, we must walk before we can run. The first
implementation of STRIPS, which exists at the time
of this writing (early 1971), utilizes two-valued
logic. In fact, STRIPS is currently confined to
producing simple plans, rather than compound ones.
Nonetheless, in combining formal deductive methods
with a state-space formalism, STRIPS represents a
major advance in our problem-solving capability.

In the future, an attempt may be made to incor­
porate compound operators and probabilistic out­
comes in STRIPS. It appears that the most immediate
effort, though, will be devoted to further under­
standing the relationship between the monitor
formulas and the plan structure, and using this
knowledge to control the revision and generalization
of plans.

At this writing, the executive to work with STRIPS
and operate the SRI robot has not been coded. We
may expect it to be a Type C or D or F executive,
in terms of the classification discussed earlier,
and to build on the ideas presented in Ref. 8. A
major portion of the effort in creating an execu­
tive for the SRI robot actually lies in establishing
communication with an experimenter at a computer
console for the transmission of state-defining axioms,
goals, responses, and miscellaneous system instruc­
tions, including the use of a limited subset of
natural English.(13) A large, corollary effort is
involved in programming the action routines for the
robot's navigation and perception, and devising
their operator descriptions. Many of these action
routines call lower-level routines that control the
robot vehicle, and the action routines have to have
some problem-solving capability in their own right.
We are trying to relate the plans or flow charts
for these action routines to the concepts developed
in Ref. 6 and herein.

We have alluded to certain problem areas that
have been skirted in the current implementation
efforts. One of these is the role of uncertainty.
A second is the problem of representing or model­
ing complicated environments. A third is the
extremely complex issue of human use of language

Session No. 8 Robots and Integrated Systems

and concepts, and their ref lect ion in the formalisms
and routines used in the robot system. (For example,
our robot should perhaps '' go to" an object to push
i t , and go to it to observe it visual ly, in quite
different ways.) Compounded together—because they
interact strongly—these three problem areas might
be considered to form the hub of the study of i n t e l l i
gent behavior, which w i l l attract the efforts of AI
workers for many years to come.

REFERENCES

(1) G. Ernst and A. Newell, GPS: A Case Study in
Generality and Problem Solving, ACM Monograph
Series (Academic Press, 1969).

(2) C. C. Green, The Application of Theorem-
Proving to Question-Answering Systems," Ph.D.
Dissertation, Stanford University, Electr ical
Engineering Department (June 1969).

(3) L. A. Zadeh, Fuzzy Sets, Information and
Control, pp. 338-353 (June 1965).

(A) R. C. T. Lee and C. L. Chang, Some Properties
of Fuzzy Logic, '' Department of Health, Educa­
t ion, and Welfare, Division of Computer Research
and Technology, National Inst i tutes of Health,
Bethesda, Maryland (1969).

(5) R. Feys, Modal Logics, Col l . de Logique Math.,
Series 13, Louvain (1965).

(6) R. E. Fikes and N. J. Nilsson, "STRIPS: A New
Approach to the Application of Theorem Proving
to Problem Solving, presented at the Second
International Joint Conference on A r t i f i c i a l
Intel l igence, London, England, September 1-3,
1971 .

(7) C. C. Green, Theorem-Proving by Resolution
as a Basis for Question-Answering Systems,
Machine Intell igence 4 , B. Meltzer et a l . (Eds.)
(American Elsevier, New York, 1969).

(8) R. E. Fikes, M onitored Execution of Robot
Plans Produced by STRIPS," presented at TFIP
Congress 71, Ljubljana, Yugoslavia, August
23-28, 1971.

(9) J. Von Neumann and 0. Morgenstern, Theory ot
Games and Economic Behavior (John Wiley and
Sons, New York, Science Editions, 3rd Ed.,
paper, 1964) .

(10) P. E. Hart et a l . , "A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,
IEEE Trans, on Systems Science and Cybernetics,
Vol. SSC-4, No. 2, pp. 100-107 (July 1968).

(11) N. J. Nilsson, Problem-Solving Methods in
A r t i f i c i a l Intell igence (McGraw-Hill, New
York, 1971) .

(12) J. H. Munson, A Cost-Effectiveness Basis for
Robot Problem Solving and Execution," A r t i ­
f i c i a l Intelligence Group Technical Note 29,

349

Stanford Research Ins t i tu te , Menlo Park,
California (January 1970). Available from
the author.

(13) L. S. Coles, "Talking with a Robot in English,"
Proc. F i rs t International Joint Conf. on
A r t i f i c i a l Intell igence, Washington, D.C.,
May 7-9, 1969, Donald Walker (Ed.) (The MITRE
Corporation, Bedford, Massachusetts, 1969).

ACKNOWLEDGMENT

The research reported herein was sponsored by
the Advanced Research Projects Agency and the National
Aeronautics and Space Administration under Contract
NAS12-2221.

