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ABSTRACT 

An in te l l igent robot, operating in an external 
environment that cannot be f u l l y modeled in the 
robot's software, must be able to monitor the suc­
cess of its execution of a previously generated 
plan . This paper outlines a unif led i ormalism for 
describing and relat ing the various functi ons oi a 
robot operating in such an environment. After 
exploring the d is t inet ion between the external 
world and the robot' s i nternal model of i t , and 
the d is t inct ion between actions that interact with 
the world and the robot's descriptions of those 
actions, we formalize the concepts of a plan and 
of i ts execution. Current developments at Stanford 
Research Inst i tu te , and the benchmark idea oi an 

ultimate rat ional robot, are both analyzed in 
this framework. 

INTRODUCTION AND MOTIVATION 

In robotry, however, a di f ferent s i tuat ion 
obtains. The system must interact wlth the real 
environment, or world, which is represented inter­
nally by the robot's model. In general' for a 
number of reasons, th is representation w i l l be 
neither comprehensive nor exact : 

(1) Real-valued quant it ies cannot bo measured, 
nor represented, with i n f m i t e precision ; 

(2) Many physical objects and s i tuat i ons do 
not admit of complete description (for 
example, a human, or a complex piece of 
equipment); 

(3) Sensory or perceptual ac t i v i t i es , used to 
update the model in accordance with the 
world, are subject to accuracy l imi tat ions 
and also to gross errors, 

(4) Effector acti v l t ies that affect the world 
are subject to inaccuracies (e .g , , distance 
moved) and also to gross fa i lu res , 

(5) The state-of- the-art may not permit a model 
large enough or sophisticated enough to 
represent f u l l y the pertinent aspects of 
the world, even ignoring the other d i f f i -
cul t ies l i s ted . * 

We can describe robotry as that subfield of 
A r t i f i c i a l Intel l igence (AI) in which the i n te l -
l igent system in the computer deals d i rect ly with 
a rea l , external environment. As a part of AI , 
robotry potent Ia l ly partakes of all the problem 
areas oi AI : We want to develop robots capable oi 
problem sol ving , pattern rocogni t ion , 1 anguage 
comprehension, and so on. However, interaction 
with an external environment that cannot be f u l l y 
modeled in the computer emphasizes a new set of 
problems 1 argely unique to robotry. These problems 
center on the robot's execution, in an uncertain 
environment, of previously generaled pians. 

In any AI problem t ormulation there is an in i or-
mati on structure within the computer that const i-
tutes a model of the problem domain. Given the 
present state oi the ar t , the models tend to be 
reasonably simple. Puzzles and board games have 
been very popular problem domains for AI because 
the domains can be fu l ly represented by re la t ive ly 
simple and unambiguous models, freeing the experi-
menter t o concentrate on the problem-solving issues 
Ot her domains, which ref lect real-world problems, 
are typical ly abstracted and l imited to simple 
models tha t serve as vehicles for problem-solving 
studies. An excellent example ot th is approach is 
the monkey-and-bananas problem.(1,2) The states 
of the model are i ew, and the act ions of the opera­
tors that can affec t the model are considered to 
be unequi vocal . 

In such an approach, the test for successful 
operat ion of the problem-solving system is inher-
ently based on the model i t s e l f . If the system 
finds what it reports to be a solution to a problem 
(and if the system is logical ly sound), the experi­
menter is sat ist led . 

Ry assumption, the model constitutes the sum 
to ta l of knowledge about i t s environment on the 
basis of which the robot must make i t s plans. The 
acid test of the plans occurs, however, when they 
are executed by the physical robot acting in the 
world . Thi s d is t inet ion between the internal and 
external environments introduces new issues of 
execution and monitoring that are characterist ic 
of robotry. 

This paper deals, then, with the beginnings of 
a theory re lat ing robot planning, execution, and 
monitoring in an uncertain environment. We are 
concerned with formalizing the robot's uncertainty 
about world-states and the consequences of i t s 
actions, and i t s ab i l i t y to deal with a planning 
tree whose branches have measures of probabi l i ty 
or uncert ainty associ ated with them. 

It is too early to say what directions the 
teasible implementations o1 such theory w i l l take, 
since the t e r n tory is a part of AI that is largely 
unexplored. Because of the almost universal occur­
rence of uncertainty in rea l i s t i c environments, 
research in robot ry ls l ikely to be led u l t imately 
to new iormulations incorporating the ideas of 

We recognize that th is f i f t h point could apply, 
and the considerations of th is paper be applicable, 
to cases in which a computer deals with an external 
environment" that is not physical—for example, 
another computer program or human bel ief structure. 
For s impl ic i ty , however, and in keeping with the 
i n i t i a l motivation of th is work at SRI, we shall 
continue to refer to the domain of our inquiry as 
robotry. 
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probability theory, Tuzzy sets,(3,4) or modal 
logic,(5) in contrast to the two-valued deductive 
logic characterist ic of current work in problem 
solving and theorem proving. 

ROBOT WORLD STATES AND MODEL STATES 

As a general framework, we adopt the iamiliar 
terminology of state spaces and transitions induced 
t herein by various operators . We define W, the 
robot's world space, as the collection of possible 
states of the environment of the robot, W - (w1} • 
At a given point in time, the world is in some 
state w1. We associate wi with the experimenter's 
(presumably omniscient) view of the robot and its 
surroundings, so that w1 includes all there is to 

know " about the environment. Clearly, given the 
present st atus of our capabilities in informat ion 
representation, we cannot reduce W to an explicit 
formulation . 

We define M, the robot's model space, as the 
set {rnj} of possl bio states of a dist inguished 
data structure in the robot's computer, i.e., the 
model. By assumption, the model comprises all 
of the robot's information about the current 
status of itself and its surroundings. At a given 
point in time, the model is in some statr. m 1 .* 

In keeping with the reasons listed in the intro­
duction, there is no simple relationship between 
the elements of W and the elements oi M. In 
particular, there is no unique functional mapping 
in either direct ion. Present-day models are 
necessarily very simple and crude relative to the 
worlds they represent, so that a given stale of 
the model will represent many states of the world. 
Conversely, when the world is in a given state, the 
model may be in any state. Intuitively, we feel 
that some state or states of the model are correct 
descriptions of a given world state, whereas others 
are incorrect. Formally, one can postulate a 
modeling relation R.W.M, which maps world states 
into the model states that correctly (or best) 
represent them. 

In general, the modeling relation R cannot bo 
a function in the mathematlcal sense, uniquely 
defined at every point in W, If, for example, the 
world consists of a single doorway, there will be 
not only states of W that clearly map into mopen 
and inclosed, but also marginal states for which 
the correct state of M is ambiguous. Further­
more, the marginal region is context-sens!tive: 

*The states of the robot's model, denoted by mi 
herein, are the same as the states denoted by S, 
Si, etc., in the paper describing the STRIPS plan­
ner. (6) Also, our model is called the world 
model therein, and there are other minor differ­
ences in notation. 
Although the experimenter's "omniscient view" may 

include knowledge of the robot's model and its 
program, these are not contained in wi ; Wi includes 
only the external, or physical robot and surround 
ings . 

it diters depending whether we are modeling the 
ability of the doorway to let the robot pass, to 
shut out a draft of air, etc. 

One approach to this difficulty is to detine R 
as a partial function, defined only whore the map­
ping is unambi guous, but this prohibi ts the model­
ing of marginal states . A better alternati ve is to 
include both mappings wm mopen and wm— nicinsed , 
where wm is a marginal state. One might further 
try to refine the mapping by attaching probability 
or conlidence assignments to both branches of the 
mapping, but it is questionable whether the idea of 
probability captures the desired spirit in this 
situation. Perhaps a more appealing approach is 
the introduction of fuzzy sets and iuzzv func­
tions developed by Zadeh,(3) Chang,(4) and others, 
in which various mathematical concepts (e.g., set 
membership) are broadened to include nonbinary 
alternati ves. It is beyond the scope ot this paper 
to explore this issue further. We merely point out 
that this is an unsolved problem that arises at 
every turn in the modeling of real environments. 

ACTIONS AND OPERATORS 

Included in the robot system is a set Q - {Qj} of 
actions, through which the robot 1ntoract s with i ts 
world, causlng changes in i ts environment and/or 
gathering perceptual informat ion therefrom. We may 
think of each action as being embodied in an actIon 
routlne in the robot's software, which can bo 
invoked as desired by the robot's overall executive 
routine. From our viewpoint (that of the omni-
scient experimenter ) , the ant i cipated outcome of 
the application ol Qj when the world is in some 
state wx and the model is in some state m1 is a 
change to new states ln both the world and the model, 
thus, the action may be described by a functional 
relation mapping the world-and-model Cart es i an 
product space into i tself . 

We dist inguish sharply between the robot's actions 
and i t s operators, 0 - [0 ] . Whereas an action Q 
is a routine the robot can execute in order to ihter-
act with the world, the corresponding operator 0 
is the description of the expected results of that 
action that is available within the robot system. 
We might ca l l the operator the robot's model ol 
the action . 

Because the robot's software (except for the 
action routines) can only deal with the model, and 
not the world, an operator can only be a relat ion 
among states of the model, 

We can think of each operator as being embodied in 
an operator descript ion, a routine (or data for 
dr iv ing an. interpretive routine) that yields the 
desired functional transformation when applied to 
the model. We shall use the terms operator' and 
operator description interchangeably, and the 

symbol 0. to refer to both. 

Q1 : W X M W X M 
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Actions and their Possible Outcomes 

In developing and describing actions and opera­
tors for a robot, we tend to think of them accord­
ing to their desired outcome: roll ahead x feet, 
go to the next room, plan a route, and so on. 

We must pay heed, however, to the fact that various 
outcomes are possible and that the experimenter's 
estimates of the possible outcomes of actions and 
their likelihoods differ from the estimates made 
by the robot (i.e., contained in the operators). 

An omniscient experimenter might report the 
behavior of a robot like the SRI robot, executing 
the action roll ahead x feet, as follows: 
Usually, the full roll is completed . Experience 

shows that, for a given x, the actual distance 
rolled is described by a Gaussian distribution 
with mean 0.98 x and standard deviation 0.04 x. 
The robot's position coordinates in the model will 
be incremented by x cos θ and x sin θ where 8 is 
the current angular position of the robot in the 
model (not in the world) . If , however, there is 
an obstacle in the robot's path, it will bump that 
obstacle, stop, update the model with the new 
robot position and also with the entry of a new 
object, and terminate the action. On the other 
hand, we have programmed the robot to check the 
model before moving, and if it finds a modeled 
obstacle in the path (whether there in reality or 
not) it will terminate the action without moving 
and will report the cause of its failure. 

Several points may be made about this description. 
Although it describes one of the robot's primitive 
actions, it is already somewhat complex. Even so, 
it is far from being comprehensive: The experimenter 
has neglected to describe addit ional "failure 
modes of the action that may occur in reality, such 
as slippage of the robot's wheels. 

Even among the modes he has described, the 
experimenter cannot predict the exact outcome of 
a motion, and he has quantifled his degree of 
ignorance among the infinity of possible outcomes 
with a probabilistic relation Qj containing a 
(Gaussian) probabillty density f unction . In other 
cases , a "fuzzy" or modal form of Qj might be 
deemed to best express the human's manner of es t i ­
mation . 

In practice, one models the outcome of a com­
pleted robot motion with a single outcome specifi­
cation. One would like to dispense with the tedious 
mechanics of error analysis, but it is a fact that 
such motions lead to cumulative error that must be 
dealt with ultimately. This seems to be a basic 
problem of robotry in a physical environment. The 
natural solution is to use perceptual feedback on 
some sort of peri odic basis, perhaps governed by 
accumulated anticipated error, to correct the 

errors in the robot's dead reckoning. 

In the illustrative action description given 
above, we observe that the final states of the 
world and the model depend in a significant way 
on the initial states of both. That is, factoring 

Qj into its components, we have 

Qj (w 1 ,m 1 ) = (wf ,mf ) = (Qj,w (wi,mi ) , Q (w1 ,m 1 )) , 

in which the dependence of q on mi and ol Qj'm 

on w1 cannot in general be ignored. 
We further observe t hat what we have called a 

single act ion Qj is in fact a (theoret ically 
infinite) f amily or schema of actions , generated 
by the parameter x, the nominal distance the robot 
is to move. We loosely refer to such a parameter­
ized family as a single action, using Q j as a 
shorthand notation for the family QJ;Z, where z is 
the set of parameters defining the tamily. Note 
that the functional dependence of Qj;z on z together 
with Wi and mi may bo arbitrarily complex. In an 
actual robot system, of course, a single action 
routIne implements such a f amily oi actions, re­
ceiving the parameters as arguments when called. 

Operators and thei r PossIble Outcomes 

We have just seen that there are three possible 
sources of variation in the final states of M and 
W resulting from an action Qj : the implicit de­
pendence of QJ on a parameter, its functional 
dependence on' the initial states, and the possi bility 
that QJ is a probabilistic relation, rather than 
a single-valued function . Correspondingly, an 
operator OJ has the form of a family of functional 
relations from M to M, generated by a set of param­
eters z. It is reasonable to take the parameter 
set for an operator as being identical to those 
for the corresponding act ion. 

We distinguish different types oi operators 
according to the number and nature of thei r speci­
fied outcomes. A simple operator is single-valued, 
i.e., a function: O1 (m 1 ) = mf . A compound operator 
is a multiple-valued relation over part or all of 
its domain : OJ (m1 ) = {mf1l,mf2 ,...........mfn}.A compound 
operator expresses the robot system's anticipation 
that, when action Q is applied with the model in 
state mi , the resulting state will be mf1 or mf2 
or . . . or mfn, without attaching any measures of 
likelihood to the alternate outcomes. A complex 
operator is a multiple-valued relation for which 
likelihood estimates have been attached to the 
alternate outcomes, using a probabilistic (or fuzzy 
or modal) formalism. 

Furthermore, the operator functions and relations 
may be partial functions and relations, defined 
over proper subsets of M. The domain over which a 
given operator is defined represents the set of 
states of the model in which the robot considers 
that operator to be applicable. We shall subse­
quently observe the use of such criteria of appli-
cability in the planning process.* 

The domain-defining formulas are called precon­
ditions in lief . 6. 
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Just as there is no simple relationship inherent 
between states of the world and states of the model, 
so there is none between the functional form of an 
action and that of its associated operator. On one 
hand, operators will tend to be quite crude in rep­
resenting actions, given the present state of the 
art, just as models will be crude in representing 
the world. On the other hand, by way oi example, 
consider an action that might be represented as a 
simple function (if we do not scrutinize it too 
closely)--for example, an action go straight to 
location L. " In the experimenter's view, this 
action has a fully predictable outcome: it will 
succeed for states of the world in which there is 
no obstacle on the straight-line path from the 
robot 's current location Lc to L, and will fail 
when there is an obs tacle. We can consider several 
possible operator forms, any of which might reason­
ably be used in practice to represent tins action: 

(1) A simple operator, whose outcome merely 
specifles that the robot j s at L (thus, it 
always predicts success) ; 

(2) A compound operator, specify i ng that the 
robot ends up either at L or at some un­
known location U;* 

(3) A simple operator, more complicated than 
(1) above, that places the robot at L or 
at U according to whether there is an 
obstacle on the path in the model, 

('1) A complex operator that estimates the liko-
lihood of the robot's encountering an 
obstacle. This est imate might be based on 
both information from the model and a priori 
estimates of the likelihood of surprises. 
For example, if the model indicates no 
obstacle, the operat or might place the 
robot at L with 90% probability and at U 
with 10% probability. 

Clear!y, an important question is that of the 
fidellty of an operator in representing its associ­
ated action. Ideally, we want the transit Ions in 
M generated by the operator to mirror the trans!tions 
in W generated by the action. This idea can be 
expressed formally, as follows. Let us make the 
simplifying assumption that the action' s effects 
on the world do not depend on the model--i.e., we 
consider that QJ,W is equi valent to a function 

j tw 

throughout M—we may consider that 0. f a i t h f u l l y 
represents Qj in the context of the modeling re la­
t ion R. Periect agreement would mean that Oj t e l l s 
the robot as best it can, confined to the language 
of M, what Qj w i l l do in W.* 

(The foregoing is merely the nucleus of a formal 
theory of computer representation of actions, and 
we have skipped over the deta i l s . To properly 
develop such a theory would require the treatment 
of several topics, including the proper def in i t ion 
oi the inverse of R, the establishment of measures 
and metrics in W, and the extension oi a l l the 
pertinent concepts to the probabi l ist IC—or fuzzy 
or modal--case. We suggest that the development 
of such a theory of representations of the world 
may be an interesting and rewarding endeavor. To 
carry lt further here would be beyond the scope 
and aims of this paper) , 

The Form of an Operator Description 

The foregoing discussion of an operator as a 
mathemati cal re lat ion possesses full generallty . 
It f a i l s , however, to take into account the 
pract ical i t ies of computer implementation of oper­
ators . To this end, we redescribe the operator 
description in more convenient operational terms. 

It is convenient to break the operator descrip­
t ion into the following components : 

• The name of the operator (and, synonymously, 
of its associated action); 

• Its parameters, if any (in which case the 
operator is actually a schema), 

Then the modeling relation R : W → M, together with 
the relation Qj,w in W, induces a relation in M. 
To the extent that 0 agrees with this induced 
relation—i.e.i to the extent that Oj = RQj,wR-1 

• Specification of the domain of applicability 
of the operator; 

• Speciflcation of the value of the operator 
at each point (state) in the domain. 11 the 
operator has multiple outcomes, this becomes 
a multiple specification, with appropria te 
measures of probabillty (in the case of a 
complex operator) attached to each branch . 

The output specification(s) may have an explicit 
functional dependence on the domain, and both of 
them may depend explicitly on the paramet ers. 

In the present development of the SRI robot 
system, the model is an uns tructured collect ion 
of relatively simple entri es--namel y , axioms i n 
the first-order predicate calculus. The specifi-
cation of the domain of an operator takes the form 
of a statement in the predicate cnlculus, which we 
call the precondition(s). The domain oi the 

The operator description might specify that U is 
constrained to be of the form 

, if the robot system can handle such infor 
mation. 

Ideally, in addition, the effect Q of the 
action on the model would also equal RQJ,W R-1. 

That is, at execution time the action would up­
date the model to keep It correctly descrIbing 
the world, exac tly as predicted by the ideal 
operator. 
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operator then consists of a l l states (axiom sets) 
in the model space in which the precondition state" 
ment is provable as a theorem. 

An (individual) outcome of an operator is 
expressed as a set of changes to be made in the 
model, in the form of an add l i s t and a delete 
l i s t , describing the additions to and deletions 
irom the model. The reader is referred to Ref . 6 
for examples of model entries , precondi t ion expres­
sions , and add- and delete-expressions. 

PLANS AND PLANNERS 

A planner is a robot system component that, in 
i t s normal mode of operation, takes three inputs: 

• An i n i t i a l state of the model, ma (often the 
current state of the robot fs model), 

• A set of operator descriptions; 
• A goal specif icat ion, go. 

The goal specif ication defines or induces a set 
Mg of model states, the goal states, in which the 
specification gO is va l id . (For example, the goal 
specif ication may be a formula in the predicate 
calculus, and Mg is the set of states--] .e . , axiom 
sets—in which gO is derivable as a theorem.) 

The output of a planner is a plan. In tu i t i ve ly , 
we think of a plan as a sequence of operators 
(O1 , . . . ,OΩ) with instanti ated parameters , causing 
state transit ions in the model space M leading 
irom the i n i t i a l state ma to a goal state: 

However, our actual def in i t ion of a plan general­
izes this in tu i t i ve concept in several ways: a 
plan need not begin in the specified i n i t i a l 
state, it may not succeed in reaching a goal state; 
it may consist of a tree or a more complicated 
directed-graph structure, it may inciude operators 
with multiple outcomes; and the nodes of a plan 
are not single states of the model, but subsets of 
M. 

The de f in i t i on that fol lows i s assumed to be 
taken in the context of a given model space, M, 
and a givon set o1 operators, 0. 

A plan is a colored, directed graph that sat is-
f ies the following four conditions . 

(1) Each arc oi the graph is colored (labeled) 
with an operator OJ € O,or a parameterized 
operator schema. 

(2) To each node nk of the graph is attached 
a formula Fk which in turn specifies a 
subset Mk of the model space M. 

(3) Only arcs of a single color emanate from 
a single node. 

(4) The state set M, at a node is contained 
in the domain of the operator 0, coloring 
the arc(s) emanating from the node; or, 
equivalently, F, implies the preconditions 
of 0, . 

Condition (1) allows steps of a plan (arcs) to 
be fu l l y specified or to have free variables, which 
may ref lect either don't-care conditions or goneral 
izations of an instantiated plan . Plan generaliza­
t ion is a fundamental and important process for 
learning in a robot system. We hope to give the 

SRI robot the ab i l i t y , once it has generated a plan 
for a specific s i tuat ion, to generalize the plan 
to refer to arbitrary objects, locations, etc . and 
to store the generalized plan in the form of a new 
meta-action routine and meta-operator with an 
appropriate operator descript ion. 

As an i l l us t ra t ion of Conditions (1) and (2), 
consider a plan for the SRI robot that includes 
the fragment 

where the operator schema 0 indicates the robot 
pushing any object ob from any location x to any 
location y. Then the predicate-calculus formula 
Fk induces a set of states Mk in M; namely, those 
states ( i . e . , sets oi axioms) in which an instance 
of Fk can be deduced. These are just the states 
in which the robot and some object are at the same 
place. Note that the state set Mk is generalized 
from a single state in two important ways. F i rs t , 
Fk has parameters (ob, x) corresponding to the 
parameters of Oj, so that the plan is generalized 
and can be applied to any object at any location. 
Second, the bulk of the state-delining inlormati on 
is treated as don't-care information: the applic­
ab i l i t y of the plan does not depend on whether 
the robot's TV camera is on, etc. Thus, in general, 
M, is an ( in f in i te ) family of states ref lect ing 
the expansion of a l l the don't-care conditions. 

A directed graph is a col lect ion of nodes (vert ices), 
connected by arcs (edges) each of which can only be 

traversed in one direct ion, defined as "forward". 
If a label from a set of labels (here, the robot 
operators) is attached to each arc, we ca l l the 
graph colored and ca l l the labels the colors . Pro-
ceeding in the forward direct ion, we say an arc 
emanates from i ts predecessor node and points to 
i t s successor node. Node ns in the directed graph 
is accessible from node nr if there exists a con­
nected path of forward traversals along arcs leading 
from nr to ns . 
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Condition (3) means that at any point (node) in 
a plan, the plan will unambiguously specify to a 
robot executive what action to invoke next. If an 
operator is parameterized—i.e., an operator schema 
it is assumed that the parameters will be bound to 
specific values in the model at the time of execu­
tion. Multiple arcs emanating from a node signify 
multiple possible outcomes of the operator that 
labels the arcs : 

(3) For at least one node 
implies g 

ns of P , Fs 

These characterize compound and complex plans, 
described below. 

Condltion (4) constitutes a basic check on the 
semantics of the plan. If the robot's model is in 
a state m that is a member of a state set Mk , so 
that we could say the robot is "at" node nk, in the 
plan , this cond jtion guarantees that the opera tor 
O1 emanat ing from node nk is applicable to the 
state m. 

Translated into execution-time terms, this means 
the following: If a robot exocutive is at point nk 
in the execution of n plan, and if the state of the 
robot model at that time is a member of Mk, then 
insoiar as the robot can tell, it should be proper 
to invoke the action routine Qj corresponding to 
Oj . More precisely, assuming that the model state 
correctly represents the world state, and assuming 
that the operator description fai thfully represents 
the action routine, then the conditions for success­
ful application of the action routine should be met. 

The robot's executive can thus monitor the execu­
tion ot a plan by comparing the robot's model after 
each action against the appropriate state set(s) 
Mk in the plan. For this reason, the Mk's are 
called moni tor sets, and the Fk's, monitor iormulas. 

Complete and Incomplete Plans 

The foregoing definition of a plan has been made 
quite broad, in anticipation of the day when a robot 
might maintain large, complicated plans, of which 
only fragments might be required in specific instan­
ces at execution time. Our main interest, however, 
is in the use of a plan (or an appropriate fragment 
of a larger plan)* to carry the robot from a 
specific initial state to a specific goal. We say 
that P is a complete plan from state ma to goal go 
if P contains a subgraph P such that: 

(1) P' is a plan, 
(2) All of P' is accessible from a node nr such 

that ma € Mr ; 

A plan P that does not satisfy those conditions is 
incomplete (in the context of a given initial state 
and goal). 

Typically, a planner is provided with an initial 
state and a goal, and its objectIve is to create a 
complete plan. The output of the planner, however, 
may fail to satisfy either or both of (2) and (3) 
above. Such an incomplete plan may st i l l have value; 
in particular, the robot executive may be able to 
proceed with an incomplete plan that has a node nr 
that includes the initial state. This topic is 
resumed in a subsequent section on the robot execu­
tive. 

Simple Compound, and Complex Plans 

We define a simple plan as one containing only 
simple operators--hence, a graph with only a single 
arc emanating from each nonterminal node. A 
compound pi an is one including compound operators 
(and, possibly, simple operators) , hence, multiple 
arcs of a single color may emanate from a node. 
Finally, a complex plan is one that also includes 
complex operators, in which estimates ot like]ihood 
are attached to the arcs representing multiple out­
comes . 

(In diagramming a plan, it may be more convenient 
to int roduce auxillary nod es on t he compound and 
complex operators, so that a single arc of a given 
color emanates from each state node: 

Note that a well-formed subgraph of a plan is 
itself a plan. 

The state-transit!on graph then takes on the 
appearance of a game graph, in which chance or 
the unknown makes a play at the auxiliary nodes.) 

In most problem-solving work to date, the task 
presented to the planner has been to produce a 
simple, complete plan . The QA3 theorem prover(2, 
7) at SRI, when used as a robot pianner, reports 
success only when it has produced a completo plan--
i.e., proved the theorem representing the goal. 
QA3 does have a rudimentary capability to act as a 
compound planner by using operator-description 
axioms of the form (0, applied to mi implies mf 
or mf') and to proceed from both resultant states 
to the goal. 

The STRIPS Planner for the SRI Robot 

The STRIPS planner(6) is currently the corner­
stone of our software implementation efforts for 
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the SRI robot. STRIPS works in a model space of 
the type described herein, using a GPS-like stra­
tegy. (1) Given operator descriptions, an init ial 
model ma, and a goal statement g0, STRIPS uses 
theorem-proving methods(2,7) to find differences 
between g and mQ. Selecting an operator that may 
be relevant to reducing such a difference, STRIPS 
attempts to show (again using theorem-proving 
methods) that part or all of the difference can be 
eliminated by the application of the operator. 
Success in this endeavor allows STRIPS to postulate 
the preconditions of the operator as a subgoal to 
be achieved from tho init ial state. 

STRIPS iterates the foregoing process, dealing 
at any time with a problem composed of a goal (the 
original goal or a subgoal) together with a model 
state, and maintaining a planning tree of such 
subproblems. New model states appear in the plan­
ning tree when STRIPS finds that a preconditions 
subgoal is realized in a state. STRIPS applies the 
associated operator to that state, generating a 
new state which (together with the next-most-recent 
subgoal established along that branch of the plan­
ning tree) constitutes a new subproblem. (Space 
does not permit a fuller description of STRIPS 
here; the reader is referred to Ref. 6 for a 
description and examples.) 

If STRIPS succeeds in advancing the init ial 
state, by successive application of operators, to 
a state satisfying the goal, it has achieved a 
complete plan. The arcs of the plan are labeled 
with the operators that were applied. The nodes 
of the plan, however, are not the successive states 
calculated along the solution path. Rather, associ 
ated with each node is a monitor formula Fk 
generated as follows. 

Remember that an operator Oj appears in the plan 
only when Its preconditions have been proved from 
the axiom set representing a particular state. Let 
Sj denote the support of the preconditions of Qj--
l.e.i the conjunction of all the axioms actually 
required in the proof. Then Sj is included in Fk, 
the monitor formula for the node from which 0 
emanates. 

The foregoing is a minimal prescription for Fk, 
since it merely satisfies Condition (4) in the 
definition of a plan. An Fk can be made much 
stronger (more restrictive) by backing up axioms 
from other Sj 's downstream in the plan and con­
joining them to the Fk in question. The developers 
of STRIPS plan to incorporate such a procedure. It 
is described in detail in Ref. 8. Basically, every 
axiom appearing in every Sj is backed up, node by 
node, toward the beginning of the plan as long as 
the axiom was not added to the model by the operator 
(arc) being traversed. 

The result of this accumulation of axioms is to 
create Fk's that guarantee not merely the applic­
ability of the forthcoming operator, but the applic­
ability of all subsequent operators and the attain­
ment of the goal, as long as the intervening operators 
(or actions) make the predicted changes to the model. 

In this sense, the augmented F. 's (called kernels 
in Ref. 8) serve as comprehensive tests for the 
applicability of a plan, beginning at any node. 
When a plan is stored away as a meta-operator, the 
Fk for the init ial node (or for each node con­
sidered as a potential entry point) can act as its 
preconditions. 

STRIPS currently runs until it produces complete 
plans (or until it has exhausted all possibilities, 
or is cut off). It should not be difficult, how­
ever, to introduce termination criteria enabling 
STRIPS to produce incomplete plans compatible with 
various executive structures, such as are dis­
cussed below. 

THE EXECUTIVE 

We now consider robot systems in which tho top 
level of the control hierarchy is represented by 
a system component called the executive. The 
executive can call on the planner, as a subroutine, 
the executive can also execute a plan by calling 
on actions (corresponding to operators in the plan) 
that cause the robot to act in the world . 

In practice, the executive may communicate in 
various ways with an experimenter at a console 
attached to the robot system. For the present, 
however, we assume simply that the executive has 
had presented to it a goal statement in a problem 
language (e.g., the predicate calculus) that it 
shares with tho planner. We shall distinguish 
several levels of executive capability according 
to the sophistication with which the executive 
monitors the behavior of the robot and chooses 
between planning and action. 

A Classification of Executives 

We may catalog the various classes of robot 
systems according to the nature of the plans that 
the executive can accept from the plannei—i.e., 
whether complete or incomplete, and whether simple, 
compound, or complex—and according to whether the 
executive checks the model for feedback ' after 
each step of execution. This categorization is 
shown in the following table. 

Complete 
plans 
only 

No feedback 
(Simple plans 
only) 

Feedback 

Simple 
Compound 
Complex 

Complete or 
incomplete 

plans 

B 

C 
E 
G 

D 
F 
H 

The letter identifiers are used in the subsequent 
discussion. We shall refer to a Type A system, 
etc., or to a Type A executive, although the 
basis for the distinction often lies as much in 
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the planner as in the executive itself. Generally 
speaking, the systems increase in complexity as 
their identifiers advance through the alphabet. 

The Type A executive receives a simple, complete 
plan and acts on it with no feedback from the actual 
operation of the robot. More precisely, remember­
ing that a (simple) plan is a sequence of instanti­
ated operators interleaved with monitor formulas, 
we can define a Type A executive as one that ignores 
the monitor formulas and blindly executes the actions 
corresponding to the operators in sequence. Assum­
ing only that each action terminates within a finite 
amount of time and returns control to the executive, 
the executive will run through the entire list, 
implicitly assuming that the result of each action 
leaves the world ready for the next one. As far as 
a Type A executive can tell, it has successfully 
carried out the plan. 

It should be noted that we have not prohibited 
an action routine working under control of a Type 
A executive from employing feedback in its own 
internal workings• An act ion routine may cause 
the robot to move, may take pictures or utilize 
other sensory inputs for navigation, etc., and may 
update the model with any amount of information 
that it has acquired from the world. Our definition 
merely prescribes that at the end of an action the 
Type A executive does not access the updated model 
to determine whether the conditions for applying 
the next action are met. 

Although Type A executives may seem needlessly 
crude within the framework of this paper, they occur 
naturally in robot research programs because they 
are the easiest to implement. Having created a 
planner (e.g., QA3), one merely needs to make the 
instantiated operator list comprising a plan avail­
able to a minimal executive routine that will call 
the associa ted action routines in order. This 
allows the experimenter to see the robot in action 
without developing the more complex intercommunica­
tions demanded by more sophisticated executives . 
Early experiments with the SRI robot were carried 
out in this fashion. 

We define a Type B executive as one that can 
accept incomplete plans from the planner but which, 
like a Type A executive, executes each accepted 
plan without feedback. A Type B system is interest­
ing because, with a very simple executive, it can 
achieve a crude monitoring ability by relying on 
the abilities of the planner. The planner can pre­
sent an incomplete plan that only attempts to achieve 
a portion of the original goal (for example, a 
single clause in a formula representing the goal) . 
Alternatively, the plan might only specify the 
first operation to be applied to the initial state, 
or the operations up to and including the first one 
with a multiple outcome. After blindly executing 
the actions corresponding to the incomplete plan, 
the executive returns to the planner, presenting the 
new current state of the model and the initial goal 
as a new problem. 

Assuming that the planner takes the new problem 
and solves it from scratch, it will effect ively 
reestablish the validity of any unused portion of 
its former planning tree that i t has to regenerate. 
If, on the other hand, unplanned outcomes of the 
executed actions have affected the model so as to 
invalidate the previous work, the planner will 
automatically have a revised problem to work on. 
In the extreme case, in which the incomplete plans 
on which the executive acts have only one step each, 
the planner has in effect taken over the job of 
checking the monitor sets at each step during actual 
execution. This mode of operation is conservative, 
in that the robot does not plan to execute actions 
that are not properly applicable. It is grossly 
inefficient, in that the planner will typically be 
redoing much of its previous computation at every 
step. (However, the Type B executive, like Typo A, 
can be a worthwhile experimental approach, in view 
of the human labor involved in setting up more 
complex executives.) 

It is apparent that one could remove the major 
inefficiency of a Type B system by allowing the 
planner to retain the planning trees from its pre­
vious attempts and reestablish the validity of 
unused segments. This would have the same effect 
as some of the more sophisticated executives to 
be described below. In general, it may be an 
arbitrary matter whether a particular calculation 
or decision is described as being performed in the 
planner or in the executive, since they communicate 
di rectly wi th each other. 

A Type C executive receives a complete, simple 
pi an, and proceeds to execute the plan step by step. 
After each execution step, however, the executive 
stops to see whether the monitor formula for the 
next step is satisfied before proceeding with i t . 
(As suggested above, the executive might actually 
call upon the deductive machinery of the planner 
to perform this check.) As long as the checks are 
satisfied, the execution of the plan proceeds. If 
the plan is completed, the executive checks tor 
satisfaction of the goal condition and, if it is 
satisfied, reports success. 

If at any point the monitor check fails, it 
implies that the execution of an action resulted 
in an unplanned model state not prescribed by the 
simple plan. The simplest Type C executive would 
merely start afresh with the now-current state and 
the initial goal as a new problem to be solved by 
the pianner, and execute the resultant plan. It 
is evident, however, that some port i on of the 
planner 's previous work may st i l l be valuable. In 
particular, the successive monitor formulas of 
the former plan serve as inviting target goals for 
getting back on the track oi the plan, since it 

is plausible on heuristic grounds that the new 
state of the robot may be quite close to satisfying 
at least one of the monitor formulas. Thus, the 
planner could be called again and given an initial 
planning tree whose nodes contain the former monitor 
formulas as subgoals. If the planner can make 
a plan from the new state to any moni tor formula, 
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the old plan w i l l carry the rest of the way to the 
goal . A procedure of this sort , for replanning 
with the kernels (monitor formulas) produced by 
STRIPS, is described in Ref. 8. 

An executive that checks the model after per­
forming each action is able to deal with alternate 
outcomes, hence with compound or complex plans. 
Type G (and Type E) executives are such; after each 
execution step, a Type G executive refers to the 
model and the plan. As long as the new model state 
agrees with the momtor formula at any of the suc­
cessor nodes of the arc just executed, execution 
proceeds. If this check f a i l s , the executive 
behaves as described under Type C. 

Because execut ives of Types C , E, and G require 
complete plans by def in i t ion , the question of when 
to plan and when to act is simple for these classes 
(as we have seen) . Since a complete plan promises 
to carry the robot a l l the way to i t s goal—at 
least, assuming the r ight outcomes occur when 
several are possible--there is l i t t l e point in 
i urther planning as long as the checks at every 
step show that the next action can be applied 
along a path to a goal st ate. 

Executives Acting with Incomplete Plans 

If, however, we allow incomplete plans that do 
not extend al l the way to the goal,* appropriate 
to executives of Types D, F, and H, there is a 
very real question at times whether it is more 
efficacious to act on an incomplete plan or to 
continue planning. There is a r isk either way. 
The r isk involved in further planning (which w i l l 
tend to emphasize the extension of the exist ing 
incomplete plan) is that, if unanticipated out­
comes occurring during subsequent executi on render 
the plan inval id , the ef for t is wasted. The r isk 
in execution is that it may be leading up a blind 
alley in terms of attainment of the f i na l goal. 
Further planning might have exposed the f u t i l i t y 
of the incomplete plan. 

Thus, we are led to a formulation for Type D, 
F, and II executives in which planning and execution 
are competing ac t iv i t ies that can be engaged in by 
the executive. It is assumed that both ac t IV I t ies 
have associated, imite costs . Planning costs real 
time or computer time ( i f it were free, the robot 
would of course plan everything a l l the time). In 
fact, in the present state of the ar t , the planning 
of a step may often take considerably longer than 
i t s execution. Execution also takes time, and in 
addition may make i r reversible, undesirable changes 
in the world and the model. Thus, at a given point 
in time, the executive needs to make a cost-
effective decision between planning and acting. 

In the section that follows, we sketch an 
abstract cost-effectiveness formulati on for t reat­
ing robot planning and execution. It appears that 
this formulation is general enough to describe a 
broad class of robot executive systems. 
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A COST-EFFECTIVENESS FORMULATION 
FOR ROBOT EXECUTIVES 

Game theory, which descends from the work of 
Von Neumann and Morgenstern,(9) may be character­
ized as the study of rational decision-making under 
conditions of uncertainty. Given the " philosophical" 
assumptions that the benefits and costs of an ent i ty1 

possible actions relat ive to an environment can be 
quantified into units of a common measure ( u t i l i t y ) , 
and that the iormalism of probabil i ty theory is an 
adequate vehicle for representing uncertainties 
about the environment and the outcomes of actions, 
game theory provides a formal ism for investigating 
optimum strategies for the enti ty (human, organiza­
t ion , or robot) . A major goal of game-theoretic 
reasoning can be summarized in the concept of cost-
effectiveness : choosing strategies that yield the 
largest expectation value of effectiveness (posi t ive 
benefits) minus cost, when the two are related to 
each other through the measure of u t i l i t y . 

It we make the same philosophical assumptions 
about the operation of a robot in an uncertain 
( i . e . , imperfectly modeled) environment, game theory 
is the natural vehj cle for f inding and descnibing, 
in abstract terms at least, the optimum or u l l i ­
mate" behavior strategies for a robot executive. 
It must be quickly admitted that, because of our 
pr imit ive capabil i t ies in quantifying real environ­
ments, there seems l i t t l e hope of using the elegant 
abstractions of game theory as a guide to the con­
struction of practical executives. The game-
theoretic viewpoint, however, does provide a land­
mark and a conceptual viewpoint for comparing 
specific executive structures with the ultimate 
rat ional executive. 

Let us sketch a cost-effectiveness-based robot 
executive. As usual, we distinguish between the 
world and the model, and between actions and oper­
ators . We st i l l view the model as an assemblage 
of exp l ic i t entries, but observe that some entries 
may express the level of confidence or degree of 
uncertainty of others. For example, the robot may 
model not only i t s location, x, but the error in 
i t s location Ax, which may be incremented each time 
the robot moves. The presence of objects, the 
status of doors, etc . , may be assigned levels of 
confidence that are increased through observations 
or decreased with the passage ol time. 

A plan must always begin with a monitor formula 
sat isf ied in the current model state, if executing 
the f i r s t step of the plan is to be a rea l i s t i c 
current option. 
This is in marked contrast to most human ac t i v i t i es , 

in which the comparable "planning" is so rapid and 
so automatic that it is often carried out on the sub­
conscious leve l . At most, the human may devote con­
scious ef for t to estimating the l ikelihood of success 
along various branches of 'spontaneously generated 
complex plans . 
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A goal Is sti l l a specification in terms of 
states of the model, but now a specification of the 
goal's utility is added. The utility of a goal 
must also include the concept ot timeliness; achiev­
ing a goal in a minute is clearly preferable, in 
general, to achieving it in an hour. The time 
dependence of utility may be explicit in some cases, 
e.g., This goal is worthless if not achieved by 
one o'clock. In general, however, it appears 
appropriate to attach a cost to the passage of time 
in all phases of the robot's activities. This cost 
of the robot' s (and the experimenter's) time could 
be calculated automatically by the robot's execu­
tive in considering the cost-effectiveness of every 
action. 

Among a family of states constituting a goal, 
the utility may vary irom state to state, reflect­
ing the concept that some states are better 
at tainment s oi the goal than others. The executive 
can thus judge when a goal is attained well enough 
to dispense with further effort. A human often 
does this—for example, when maneuvering a car into 
a parking place. 

The introduction of utility for goals, with 
time dependence, provides the mechanism for the 
treatment of multiple goals. priori ties among goals, 
urgency, etc. The experimenter can then give the 
robot goal commands equivalent to Drop what you're 
doing and perform this task right away, you 
have nothing else to do, explore the environment, 
and so on. 

In our terminology, the operators for a cost-
el tec tive executive are complex, specifying multiple 
outcomes with probabilitv estimates nttached to 
each . In addJtion, each operator must be supplied 
with an estimate (or a priori estimates must be 
generated) ot the time that the corresponding 
ac tion is expected to consume . Ot her, explicit 
measures of the cost of the action might be pro­
vided, if, for example, the action consumed n 
valunble resource, such as electrical power in the 
case oi a self-contained robot . 

Armed with such goal descr i ptions and operator 
descriptions, a planner in a robot system performs 
a search that is governed by utility, not merely 
probability. One can envision a STRIPS-IJkc planner, 
for example, maint a)ning a complex planning tree 
but terminating any branch of the tree for which t he 
accumulated costs of the actions exceed the utility 
of the goal. More generally, the calculation <>i 
expected utility for the portion of plan extant at 
each node in the plarming t ree becomes the guidi ng 
measure for search . This calcula t i on must combine 
the costliness of the partial plan thus tar gener­
ated (i.e., the expected cost of execut ing it) with 
an estimate ol the costliness ot the remainder oi 
the plan needed to make it complete (see the dis­
cussion of the "A" search algorithm in Refs. 10 
and 11.) Thus, the cost-effective planner must have 
some mechanism, however crude, 1 or estimating the 
nearness ot a plan to completeness and thus esti­
mating 11 s progress at any point . 

This leads us to the major conceptual step in 
the formulation of a cost-effective executive. If 
the progress of a planner in generating a plan can, 
however crudely, be estimated and dealt with as a 
measurable quantity, just as the progress of the 
robot across the room can, why not treat the plan­
ner as a kind of action routine that affects, not 
the external environment, but a quasi-environment 
whose states are plans? Furthermore, just as an 
action routine has an operator description that 
models it, so we can provide the executive with a 
quasi-operator description for the planner, that 
estimates (for a given current model state, goal, 
and existing accumulation of plan) the outcome of 
a call to the planner. By using this description 
to estimate the cost-effeetIveness of a call to the 
planner, and by comparing that with the estimated 
cost-effectiveness attached to any exist ing complete 
or incomplete plans, the executive can make a 
rational decision whether to plan or to act. 

We note that the executive may be able to buy 
differing amounts of effort from t he planner, 
specified in various ways, e.g., Proceed to a 
complete plan (with some time limit), Plan until 
you encounter the first application oi a complex 
operator, Plan only along branches wi th cumtil a-
tive probability of occurrence greater than 0.2, 
Cut off all branches oi the plan whose anticipated 

utility falls below a certain value, and so on. 
Thus, a planner may be considered as a family of 
quasi-actions, parameterized by the condltions 
governing its effort when called, and the planner 
description should (however crudely) reflect this 
variability. * 

It we consider the formal space in which a cost-
ef lective executive operates, It is apparent that 
it is at least the product ot the space of model 
states and the space of plans. Actions (not includ­
ing the planner) cause transitions in this space 
by changing the state oi the model and also by 
trimming down the plan, i .e., obsoleting that part 
of the plan that is no longer relevant to the new 
model state. The planner, on the other hand, 
generally augments the plan or creates a plan where 
none exists, while not affectlng the st ate oi the 
model. 

Formally, t herofore, both the actions and the 
planner can be described at the mota-level by 

In any cost-etiective robot executive likely to 
be implemented in the foreseeable Iuture, 1 he 
decision when to plan and when to net will probably 
be implemented by an ad hoc routine that calculates 
the utilitles of both sides and makes a simple 
decision. Abstractly, however, given a complicated 
planner descrlption or descriptions for a family 
ot planners, the problem oi when and how to call 
a planner J n preference to ac t ing could become 
difficult enough to require the services of a 
meta-planner in the executive. 



348 

functional relations in a space whose states incor­
porate the model state and the state of the plan. 
We ca l l this space the knowledge space of the robot, 
K. K has states of the form {mi ;P;C}, where mi is 
a state of the model, P is a state of the plan, and 
C is a set of additional control information re­
quired to specify fu l l y the state of the executive. 

The need for the control information C can be 
i l lust rated by the following examples. Suppose that 
the executive cal ls a planner, and the planner f a i l s 
to create any new plan. Again, suppose that a 
planner is called and yields a plan, which is exe­
cuted but which leaves the model in i t s i n i t i a l 
state (or, perhaps, by some measure, no closer to 
the goal than the i n i t i a l state was). In either of 
these cases, both the model and the state of the plan 
end up where they were or ig ina l ly . Clearly, to avoid 
endless looping, the executive must have some infor­
mation about i t s recent history; we define this as 
the control information, C. 

In practice, the control information is l i ke ly 
to be buried in the executive routines in the form 
of program control f lags, or even embodied in the 
progress of the program's location counter. For 
example, a simple executive might have a flow chart 
that works as follows: If there is no plan for the 
current state, ca l l the planner. If there is s t i l l 
no plan, ex i t . Otherwise, execute the plan. I± 
the goal is achieved, exi t with success. Otherwise, 
return to the top." From the lo f ty viewpoint of 
the knowledge-space abstraction, we can discern in 
the flow of control an extremely simple form of 
control information. More important, we have a 
conceptual framework in which to relate this to 
other executive structures. 

SUMMARY: PRESENT STATUS 
AND PROBLEMS FOR THE FUTURE 

In this paper, we have presented a general for­
mulation that we believe is appropriate to the 
planning, execution, and monitoring functions of a 
robot working in an uncertain ( i . e . , imperfectly 
modeled) environment. We feel that this formulation 
is general enough to encompass the ultimate 
rational robot executive, working under the game-

theoretic doctrine of cost-effectiveness. At the 
same time, it has provided a specific framework 
within which to view the development of the STRIPS 
problem solver at SRI, and we feel that it will 
continue to serve as a guide and a check on further 
efforts. 

STRIPS and the formulation herein grew out of a 
common impetus, namely, the observed inadequacies 
of problem solvers confined to the first-order 
predicate calculus for work in a dynamic problem 
environment. This issue is discussed by the creators 
of STRIPS in Ref. 6. Our response in both develop­
ments has been to choose the formalism of states 
and operators as the basic problem representation, 
leading to the use (in STRIPS) of GPS-like search 
methods, while retaining the calculus as a deductive 
mechanism within states. 
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It is the author's opinion, however, that any 
system confined to crisp, black-and-white reason­
ing (i.e., logical formalisms in which all formulas 
ultimately map into the two truth values TRUE and 
FALSE) will turn out to be inadequate for intelli­
gent behavior in realistic environments. Even in 
the most menial tasks, the human operates in a 
perennially inexact and potentially uncertain environ­
ment, in which probably and maybe and might 
and sort of are constant companions. A robot per­
forming similar tasks must be prepared to handle 
comparable contingencies, unless it works in an 
environment fully sanitized by the expensive 
process of engineering away all the uncertainties. 
This view motivates the several references herein 
to probability theory and other logics that are not 
two-valued, and the portrayal of a cost-effectivenoss-
based robot executive (originally developed in Ref. 
12) . 

Still, we must walk before we can run. The first 
implementation of STRIPS, which exists at the time 
of this writing (early 1971), utilizes two-valued 
logic. In fact, STRIPS is currently confined to 
producing simple plans, rather than compound ones. 
Nonetheless, in combining formal deductive methods 
with a state-space formalism, STRIPS represents a 
major advance in our problem-solving capability. 

In the future, an attempt may be made to incor­
porate compound operators and probabilistic out­
comes in STRIPS. It appears that the most immediate 
effort, though, will be devoted to further under­
standing the relationship between the monitor 
formulas and the plan structure, and using this 
knowledge to control the revision and generalization 
of plans. 

At this writing, the executive to work with STRIPS 
and operate the SRI robot has not been coded. We 
may expect it to be a Type C or D or F executive, 
in terms of the classification discussed earlier, 
and to build on the ideas presented in Ref. 8. A 
major portion of the effort in creating an execu­
tive for the SRI robot actually lies in establishing 
communication with an experimenter at a computer 
console for the transmission of state-defining axioms, 
goals, responses, and miscellaneous system instruc­
tions, including the use of a limited subset of 
natural English.(13) A large, corollary effort is 
involved in programming the action routines for the 
robot's navigation and perception, and devising 
their operator descriptions. Many of these action 
routines call lower-level routines that control the 
robot vehicle, and the action routines have to have 
some problem-solving capability in their own right. 
We are trying to relate the plans or flow charts 
for these action routines to the concepts developed 
in Ref. 6 and herein. 

We have alluded to certain problem areas that 
have been skirted in the current implementation 
efforts. One of these is the role of uncertainty. 
A second is the problem of representing or model­
ing complicated environments. A third is the 
extremely complex issue of human use of language 
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and concepts, and their ref lect ion in the formalisms 
and routines used in the robot system. (For example, 
our robot should perhaps '' go to" an object to push 
i t , and go to it to observe it visual ly, in quite 
different ways.) Compounded together—because they 
interact strongly—these three problem areas might 
be considered to form the hub of the study of i n t e l l i 
gent behavior, which w i l l attract the efforts of AI 
workers for many years to come. 
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